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1 Introduction

The Jacobian Conjecture in dimension two stated by Keller in [10] claims

that any pair of polynomials P,Q ∈ L = K[x, y], with [P,Q] = ∂xP∂yQ−
∂xQ∂yP ∈ K×, defines an invertible automorphism of L. If this conjec-

ture is false, then we can find a counterexample such that the shape of

the support of the components P = f(x), Q = f(y) is contained in rect-

angles (0, 0), m(a, 0), m(a, b), m(0, b) and (0, 0), n(a, 0), n(a, b), n(0, b),

where m(a, b) is in the support of P and n(a, b) is in the support of Q. In

a recent paper [14], Yangsong Xu gives two formulas for the intersection

number of possible counterexamples, which we call IM and Im. If these

formulas were true, we would be able to discard several infinite families

of possible counterexamples as described in [7].

When we translated the result and proofs of [14] into the language

of [12], we obtained the same formula for IM (Theorem 6.2), but for Im
we achieved only an inequality (Theorem 7.3). Consequently, we cannot

discard the infinite families as desired.

Hence, the main result of the present article is the translation of

the concept of approximate roots into our language (see [12], also [5]

and [7]), which requires a dictionary from Moh’s language into our own.

This is interesting by itself, and the modified formulas help understand

some features of Moh’s methods.

Along this paper we freely use the notation of [12].

2 General lower side corners

For l ∈ N let (P,Q) ∈ L(l) be an (m,n)-pair (see [12, Definition 4.3]).

In this section we take (ρ, σ) ∈](0,−1), (1, 1)] subject to

1

m
enρ,σ(P ) =

1

n
enρ,σ(Q) = (a/l, b) with a/l > b > 0

(assuming that such a direction exists). Note that ρ > 0 is true by

assumption. Suppose up = vρ,σ(P ) > 0. Then the points (a/l, b) and
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(c/l, d) =
1

m
stρ,σ(P ) must satisfy certain conditions. The purpose of

this section is to analyse them.

Proposition 2.1. For P , Q and (ρ, σ) as described above we have

[`ρ,σ(P ), `ρ,σ(Q)] = 0.

Proof. By [12, Proposition 1.13] we need to prove vρ,σ(P )+vρ,σ(Q) > ρ+

σ. If ρ+σ ≤ 0, then this is true, since we have vρ,σ(Q) =
n

m
vρ,σ(P ) > 0;

while for ρ+ σ > 0, because of
a

l
> b ≥ 1 and ρ > 0, we have

vρ,σ(P ) + vρ,σ(Q) = (m+ n)
(
ρ
a

l
+ σb

)
> (m+ n)b(ρ+ σ) > ρ+ σ,

as desired.

Proposition 2.2. Under the above assumptions, if ρ + σ > 0, then ρ

divides l and there exist λ, µ ∈ K× such that `ρ,σ(P ) = λxup/ρ(z−µ)mb,

here z = x−σ/ρy.

Proof. By [12, Theorem 2.6], there exists a (ρ, σ)-homogeneous element

F ∈ L(l) such that

• vρ,σ(F ) = ρ+ σ,

• [F, `ρ,σ(P )] = `ρ,σ(P ),

• stρ,σ(P ) ∼ stρ,σ(F ) or stρ,σ(F ) = (1, 1),

• enρ,σ(P ) ∼ enρ,σ(F ) or enρ,σ(F ) = (1, 1).

If enρ,σ(P ) = m(a/l, b) ∼ enρ,σ(F ), then we can find λ > 0 such that

enρ,σ(F ) = λ(a/l, b). Therefore

ρ+ σ = vρ,σ(F ) = ρλ
a

l
+ λσb > λb(ρ+ σ)

implies 0 < λb < 1, which is impossible since λb = v0,1(enρ,σ(F )) ∈ Z.

Consequently we have enρ,σ(F ) = (1, 1), and hence stρ,σ(F ) = (1 +
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σ/ρ, 0) by [12, Proposition 2.11(2)]. Thus ρ divides l and we have

stρ,σ(P ) ∼ stρ,σ(F ), which readily implies v0,1(stρ,σ(P )) = 0. Write

F = x
u
l yvf(z) and `ρ,σ(P ) = x

c
l ydp(z), with p(0), f(0) 6= 0.

Note that here v = d = 0, ρc/l = up, v0,1(enρ,σ(P )) = mb and f(z) =

λ1(z − µ) for some λ1, µ ∈ K×. By [12, Proposition 2.11(1)] we have

then `ρ,σ(P ) = λxup/ρ(z − µ)mb for some λ ∈ K×, which concludes the

proof.

By [12, Proposition 2.1(2)] (which applies thanks to Proposition 2.1)

there exist λP , λQ∈K× and a (ρ, σ)-homogeneous element R ∈ L(l) such

that

`ρ,σ(P ) = λPR
m and `ρ,σ(Q) = λQR

n.

Take λ ∈ K× and let R0 ∈ L(l) be a (ρ, σ)-homogeneous element such

that `ρ,σ(P ) = λRh0 with h maximal (consequently m divides h and we

can assume R = R
h/m
0 and λP = λ). Arguing as in [5, Corollary 2.6]

we obtain a certain i ≥ 0 and a (ρ, σ)-homogeneous element G ∈ L(l)

subject to [G,R] = Ri.

Let (a/l, b), (c/l, d) ∈ 1

l
Z × Z be such that a/l > b > d ≥ 0 and

a > c > 0. Assume also b− d < a/l− c/l (we do not claim the existence

of P and Q at this point). It is well known that for each (r/l, s) ∈
1

l
Z × Z \ Z(1, 1) there exists a unique (%, ς) ∈ V>0 (see (3.2) at page

29 of [12]), which we denote by dir(r/l, s), such that v%,ς(r/l, s) = 0.

Set (ρ, σ) = −dir((a/l, b) − (c/l, d)) and note the inequality (0,−1) <

(ρ, σ) < (1,−1). We will analyse the existence of i ∈ N and (ρ, σ)-ho-

mogeneous elements R,G ∈ L(l), such that

vρ,σ(R) > 0, [G,R] = Ri, (a/l, b) = enρ,σ(R) and (c/l, d) = stρ,σ(R).

(2.1)

Let ` ∈ N be minimal with `vρ,σ(R) + ρ + σ > 0. By [5, Proposi-

tion 3.12], if there exist i ∈ N and R,G ∈ L(l) satisfying (2.1), and such
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that

R 6= λx
u
ρ hj(z) for all λ ∈ K×, j ∈ N and all linear polynomials h,

(2.2)

where z = x−
σ
ρ y, then either there exist ϑ, t′ ∈ N subject to

ϑ ≤ N1, t′ < `ϑ and (ρ, σ) = −dir
(
t′
(c
l
, d
)

+ ϑ(1, 1)
)
,

(2.3)

where N1 = gcd(a− c, b− d), or

d > 0, ϑ divides N2, t
′ < `ϑ and (ρ, σ) = −dir

(
t′
(c
l
, d
)

+ ϑ(1, 1)
)
,

(2.4)

where N2 = gcd(c, d). By [5, Remark 3.13] we have then

ϑ

t′
= −ρa/l + σb

ρ+ σ
.

Therefore defining

s =
ρa+ σbl

gcd(ρl + σl, ρa+ σbl)

∣∣∣∣ϑ,
we can take (and we do take it) ϑ = s in (2.3) and (2.4).

We suspect that the existence of ϑ and t′ satisfying the conditions

in (2.3) or in (2.4) is enough for the existence of i ∈ N and two (ρ, σ)-

homogeneous elements R,G ∈ L(l) such that the conditions in (2.1)

and (2.2) are fullfiled (with (c/l, d) = stρ,σ(R)), but at the moment we

have no proof of this claim.

Remark 2.3. Since N2 < b, if s = b, then necessarily b ≤ N1. So, by [5,

Proposition 3.12(2)], there exists a linear factor with multiplicity b. As

this contradicts (2.2), we have consequently s < b.

Remark 2.4. By [5, Theorem 3.4], in (2.1) we can assume that i is the

minimal element subject to

vρ,σ(R)(i− 1) + ρ+ σ ≥ 0,

or, equivalently, i =
⌈
1− ρ+σ

vρ,σ(R)

⌉
.
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For the case b = 2, we can establish necessary and sufficient con-

ditions on a, l for the existence of c ∈ N, d ∈ {0, 1} and two (ρ, σ)-

homogeneous elements R,G ∈ L(l) satisfying the conditions of (2.1)

as soon as we impose that R satisfies (2.2). This additional require-

ment corresponds to the existence of split roots (see Definition 3.5).

Before we establish the result we note that (0,−1) < (ρ, σ) < (1,−1)

and (ρ, σ) = −dir
(
a−c
l , b − d

)
∼ (lb − ld, c − a) imply c < a and

b− d < a/l − c/l.

Proposition 2.5. Let a, l ∈ N be such that a/l > 2. Set b = 2. Let

(ρ, σ) ∈](0,−1), (1,−1)[ be a direction, and define the number

ϑ =
ρa+ σbl

gcd(ρl + σl, ρa+ σbl)
.

Then the following assertions are equivalent.

(1) There exist c ∈ N, d ∈ {0, 1} and two (ρ, σ)-homogeneous elements

R,G ∈ L(l) satisfying conditions (2.1) and (2.2).

(2) There exist c ∈ N and two (ρ, σ)-homogeneous elements R,G ∈
L(l) satisfying conditions (2.1) and (2.2) with d = 1.

(3) We have ϑ = 1, vρ,σ(a/l, 2) > 0 and there exist c ∈ N such that

(ρ, σ) = −dir
(a− c

l
, 1
)

= −dir
(
t′
(c
l
, 1
)

+ (1, 1)
)
, (2.5)

for some 0 < t′ < `, here ` ∈ N is minimal with the property

`vρ,σ(a/l, 2) + ρ+ σ > 0.

(4) There exists ∆ ∈ N with l < ∆ < a/2 such that a − 2∆ | ∆ − l.
Moreover, (ρ, σ) ∼ (l,−∆).

Proof. We first prove that 1) implies 2). Suppose d = 0 and write

R = λx
u
l (z − α1)(z − α2) with z = x−

σ
ρ y.
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Note that by (2.2) we have α1 6= α2. Also ρu/l = 2σ + ρa/l implies

u = (2lσ + ρa)/ρ. Moreover, since b− d = 2, we have

(2l, c− a) ·
(a
l
− c

l
, b− d

)
= 2(a− c)− (c− a)(b− d) = 0,

and consequently (ρ, σ) ∼ (2l, c− a). Also, since d = 0, necessarily (2.3)

is satisfied. We claim that 2 divides a− c. In fact, this follows from

0 = (2l, c− a) ·
(
t′
(c
l
, 0
)

+ ϑ(1, 1)
)

= 2ct′ + (c− a)ϑ,

for otherwise 2 divides ϑ ≤ N1 = gcd(a − c, 2) = 1. Set ∆ = (a − c)/2
and consider the automorphism ϕ of L(l) defined by ϕ(x1/l) = x1/l and

ϕ(y) = y + α1x
−∆/l. Using (ρ, σ) ∼ (l,−∆) it is easy to conclude

ϕ(R) = λx
u
l z(z − (α2 − α1)).

By [12, Proposition 3.10], we have [ϕ(G), ϕ(R)] = ϕ(R)i. An easy com-

putation gives enρ,σ(ϕ(R)) = (a/l, b) and stρ,σ(ϕ(R)) = ((a − ∆)/l, 1).

So, replacing R by ϕ(R) yields d = 1.

That 2) implies 1) is a trivial fact.

Now we prove that 2) implies 3). Since d = 1, we get N1 = N2 = 1.

Hence we have ϑ = 1, and Equality (2.5) is satisfied for some 0 < t′ < `.

Moreover, it is clear that

vρ,σ

(a
l
, 2
)

= vρ,σ(R) > 0

is verified and we also have

(ρ, σ) = −dir
(
enρ,σ(R)− enρ,σ(R)

)
= −dir

(a− c
l

, 1
)
.

For 3) implies 4), since

(l, c− a) ·
(a
l
− c

l
, 1
)

= 0,
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we have (ρ, σ) ∼ (l,−∆), with ∆ = a− c. Thus, by (2.5), we obtain

0 = (l,−∆) ·
(
t′
(a−∆

l
, 1
)

+ (1, 1)
)

= t′a− 2t′∆ + l −∆,

which implies a − 2∆|l − ∆, as desired. But (ρ, σ) ∼ (l,−∆) and

vρ,σ(a/l, 2) > 0 yield

a− 2∆ = (l,−∆) ·
(a
l
, 2
)

=
l

ρ
(ρ, σ) ·

(a
l
, 2
)
> 0,

and so ∆ < a/2. Finally, the relation l−∆ =
l

ρ
(ρ+σ) < 0 forces ∆ > l.

To show that 4) implies 2) we set c = a−∆, z = x∆/ly and (ρ, σ) =

−dir((a/l, 2) − (c/l, 1)). Since 0 < l < ∆, the inequalities (0,−1) <

(ρ, σ) < (1,−1) hold. Let k1 ∈ N be such that k1(a − 2∆) = ∆ − l

and let g(z) be a polynomial with derivative g′(z) = zk1(1 + z)k1 . A

straightforward computation shows that

R = x
a−2∆
l z(1 + z) = x

c
l y(1 + z) and G =

l

2∆− a
g(z),

satisfy
(a
l
, 2
)

= enρ,σ(R),
(c
l
, 1
)

= stρ,σ(R), vρ,σ(R) > 0 and [G,R] =

Rk1+1, as desired.

3 Approximate π-roots

Recall that the intersection number of two bivariate polynomials P

and Q is defined by I(P,Q) = degx(Resy(P,Q)), where Resy(P,Q) de-

notes the resultant of P and Q as polynomials in y. In [14], the author

defines for a Jacobian pair (P,Q) the polynomial Pξ = P (x, y)−ξ, where

ξ is a generic element of the field K, and proposes two different formulas

for I(Pξ, Q): one in terms of the major roots (see [14, Theorem 5.1]),

and the other in terms of the minor roots (as in [14, Theorem 4.7]). We

will prove the first formula using our language (see Theorem 6.2), how-

ever, instead of equality in the formula for Im we recover an inequality
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in Theorem 7.3. In order to achieve these results, it will be convenient to

provide a proof of the preparatory results of [14] in the language of [12].

We first define approximate roots, final major roots and final minor

roots using our language.

In this section we consider a polynomial P ∈ L, monic in y. For

l ∈ N we take the following algebras:

L = K[x, y] ( K[x±
1
l , y] ( K((x−1/l))[y] ( K[π]((x−1/l))[y],

where π is a variable (a “symbol” in [14]). We also will use the subring

L
(l)
π = K[π][x±1/l, y] of K[π]((x−1/l))[y]. Note that degx = v1,0 is well

defined in K[π]((x−1/l))[y].

Unless otherwise indicated, the elements P of the above mentioned

algebras are polynomials in y with coefficients in one of the algebras

K[x], K[x±
1
l , y], K[π]((x−1/l)),. . . . Consequently, expressions like P (τ),

P (α),. . . , will mean P with y replaced by τ , by α, and so on.

By the Newton-Puiseux theorem (see [4, Corollary 13.15, page 295])

there exist l ∈ N and αi, βi ∈ K((x−1/l)) such that

P =

M∏
i=1

(y − αi).

We set R(P ) = {αi : i = 1, . . . ,M}. Let α ∈ R(P ) and write α =∑
j ajx

j with j ∈ 1

l
Z. The π-approximation of α up to xj0 is the

element

τ =
∑
j>j0

ajx
j + πxj0 ∈ K[π, x±

1
l ].

Note the equality degx(τ − α) = j0.

Let τ =
∑
j>j0

ajx
j + πxj0 ∈ K[π, x±

1
l ]. Set

DP
τ = {α ∈ R(P ) : τ is the π-approximation of α up to xj0}.

If α ∈ DP
τ , we say that τ approximates α up to xj0 .
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Note that the element αi =
∑
j bjx

j ∈ R(P ) belongs to DP
τ if and

only if degx(α̂i) ≤ j0, where α̂i = αi −
∑
j>j0

ajx
j , that is, if and only

if we have aj = bj for all j > j0.

We say that τ =
∑
j>j0

ajx
j + πxj0 ∈ K[π, x±

1
l ] is a π-root of P

if there exists α ∈ R(P ) such that τ approximates α up to xj0 . In that

case we say that j0 is the order of τ . When we want to underline the

dependence of j0 on τ we will write δτ = j0.

Notation 3.1. Let τ =
∑
j>j0

ajx
j + πxj0 be a π-root of P . In what

follows denote by ϕτ the automorphism of L(l) determined by ϕτ (x1/l) =

x1/l and ϕτ (y) = y +
∑
j>j0

ajx
j .

Remark 3.2. Let α ∈ R(P ). Assume that τ approximates α up to j0
and τ1 approximates α up to j1. If j0 > j1, then we have DP

τ1 ⊆ D
P
τ .

In the sequel, for each j ∈ 1

l
Z, we let dir(j) denote the unique

direction (ρ, σ) such that ρ > 0 and j =
σ

ρ
. Moreover, given a polynomial

τ =
∑
i>j0

aix
i + πxj0 , we set z = x−σ/ρy, where (ρ, σ) = dir(j0).

The following proposition shows that our definition of π-root coin-

cides with that given in [11, Definition 1.3] with x−1 replaced by t.

Proposition 3.3. Let τ =
∑
j>j0

ajx
j +πxj0 and fP,τ (π) ∈ K[π] be the

polynomial determined by the equality

P (τ) = fP,τ (π)xλτ + terms with lower order in x, (3.1)

where λτ = degx(P (τ)) ∈ 1

l
Z. Set ϕ = ϕτ and (ρ, σ) = dir(j0). Then

we have

|DP
τ | = deg(fP,τ ) = v0,1(enρ,σ(ϕ(P ))) (3.2)

and

`ρ,σ(ϕ(P )) = xλτ fP,τ (z). (3.3)

Consequently τ is a π-root of P if and only if we have deg(fP,τ ) > 0.
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Proof. Let evπxj0 : L
(l)
π → L

(l)
π be the evaluation of y at πxj0 . For ex-

ample we have, evπxj0 (y) = πxj0 = πxσ/ρ and evπxj0 (x1/l) = x1/l. Note

the relation P (τ) = evπxj0 (ϕ(P )). Since evπxj0 is (ρ, σ)-homogeneous,

we get

`ρ,σ(evπxj0 (ϕ(P ))) = evπxj0 (`ρ,σ(ϕ(P ))).

On the other hand, since ρ divides l, we get

`ρ,σ(ϕ(P )) = xr/lg(z) for some r ∈ Z and g(z) ∈ K[z]. (3.4)

Using evπxj0 (z) = π we obtain

`ρ,σ(evπxj0 (ϕ(P ))) = xr/lg(π).

Therefore we have

P (τ) = evπxj0 (ϕ(P )) = xr/lg(π) + terms with lower order in x,

because vρ,σ(xj) = jρ < ρr/l = vρ,σ(xr/l) if and only if j < r/l. So

we have fP,τ (π) = g(π), λτ = r/l, and Equality (3.4) becomes Equal-

ity (3.3). Since degz(`ρ,σ(ϕ(P ))) = degy(`ρ,σ(ϕ(P ))), we also have

deg(fP,τ ) = v0,1(enρ,σ(ϕ(P ))). Consequently, in order to conclude the

proof, it suffices to prove |DP
τ | = v0,1(enρ,σ(ϕ(P ))). In the chain of

equalities

v0,1(enρ,σ(ϕ(P ))) =

M∑
i=1

v0,1(enρ,σ(ϕ(y−αi))) =

M∑
i=1

v0,1(enρ,σ(y− α̂i))),

where α̂i = αi −
∑
j>j0

ajx
j , when we replace

enρ,σ(y − α̂i)) =

{
(0, 1) if degx(α̂i) ≤ σ/ρ = j0,

(degx(α̂i), 0) if degx(α̂i) > σ/ρ = j0,

we finish up with

M∑
i=1

v0,1(enρ,σ(y − α̂i))) = #{αi ∈ R(P ) : degx(α̂i) ≤ j0} = |DP
τ |,

as desired.
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Remark 3.4. Note that if |DP
τ | > 0, then |DPy

τ | = |DP
τ | − 1 ≥ 0. In

fact, we get ϕ(Py) = (ϕ(P ))y, and it is straightforward to check that if

ρ > 0 and v0,1(enρ,σ(P )) > 0, then v0,1(enρ,σ(Py)) = v0,1(enρ,σ(P ))− 1.

The assertion then follows from (3.2).

Definition 3.5. We say that a π-root τ of P is a final π-root of P

if fP,τ (π) has no multiple roots and degπ(fP,τ (π)) > 1, here fP,τ (π) is

defined by Equality (3.1).

Remark 3.6. Let τ be a final π-root of P . Since the support of fP,τ
has more than one point, from Equality (3.3) we conclude (ρ, σ) ∈
Dir(ϕτ (P )).

Proposition 3.7. Let τ =
∑
j>j0

ajx
j + πxj0 be a π-root of P and let

λ ∈ K. Consider the automorphism ϕ1 : L(l) → L(l) given by ϕ1(x1/l) =

x1/l and ϕ1(y) = y +
∑
j>j0

ajx
j + λxj0 . Assume that ϕ1(P ) is not a

monomial and set (ρ′, σ′) = Predϕ1(P )(ρ, σ) (see [12, Definition 3.4]),

where (ρ, σ) = dir(j0). If ρ′ > 0, then set j1 =
σ′

ρ′
, else take any j1 ∈

1

l
Z

with j1 < j0. In both cases set (ρ1, σ1) = dir(j1). If π−λ has multiplicity

r > 0 in fP,τ (π), then

τ1 =
∑
j>j0

ajx
j + λxj0 + πxj1

is a π-root of P and we get |DP
τ1 | = r (remember that j1 < j0). Moreover,

we have

(ρ1, σ1) ∈ [Predϕ1(P )(ρ, σ), (ρ, σ)[. (3.5)

Proof. Write ϕ1 = ϕ̃◦ϕ, where ϕ is as in Proposition 3.3, ϕ̃(y) = y+λxj0 ,

and ϕ̃(x) = x. By Equality (3.3), the fact that ϕ̃ is (ρ, σ)-homogeneous

together with ϕ̃(z) = z + λ lead us to

`ρ,σ(ϕ1(P )) = ϕ̃(`ρ,σ(ϕ(P ))) = ϕ̃(xλτ fP,τ (z))

= xλτ ϕ̃(fP,τ (z)) = xλτ zrg1(z),
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for some g1(z) ∈ K[z] with g1(0) 6= 0. By construction we have then

(ρ1, σ1) ∈ [Predϕ1(P )(ρ, σ), (ρ, σ)[, and so, by Proposition 3.3, we get

r = v0,1(stρ,σ(ϕ1(P ))) = v0,1(enρ1,σ1
(ϕ1(P ))) = |DP

τ1 |,

as desired.

Corollary 3.8. Let τ =
∑
j>j0

ajx
j + πxj0 be a π-root of P and let

λ ∈ K. If π − λ does not divide fP,τ (π), then there exists no root

α ∈ R(P ) such that degx(α− (λxj0 +
∑
j>j0

ajx
j)) < j0.

Proof. Let fP,τ (π) =
∏k
i=1(π − λi)mi . By Proposition 3.7, for each i

there exist τ1(i) and mi roots in DP
τ1(i) ⊂ DP

τ , for which Coeffxj0 = λi.

Since we have

|DP
τ | = deg(fP,τ (π)) =

k∑
i=1

mi =

k∑
i=1

|DP
τ1(i)|

and the sets DP
τ1(i) are pairwise disjoint, we obtain DP

τ =
⋃k
i=1D

P
τ1(i).

Consequently, the coefficient of xj0 in each element of DP
τ is a root of

fP,τ . Since λ is not a root of fP,τ , this finishes the proof.

Remark 3.9. The proof of the corollary shows that if the multiplicity

of π − λ in fP,τ (π) is r, then any π-root τ2 of P which begins with

λxj0 +
∑
j>j0

ajx
j satisfies |DP

τ2 | ≤ r.

Remark 3.10. Let α =
∑
j ajx

j ∈ K((x−1/l)), j0 ∈
1

l
Z, (ρ, σ) =

dir(j0) and τ =
∑
j>j0

ajx
j + πxj0 . Define T =

∑
j≤j0 ajx

j . Since

P (α) = evy=T (ϕτ (P )),

we have `ρ,σ(P (α)) = `ρ,σ(evy=λxj0 (ϕτ (P ))) whenever the right hand

side of the equality is nonzero.

Proposition 3.11. Let α =
∑
j>j0

ajx
j+λxj0 +

∑
j<j0

ajx
j and set τ =∑

j>j0
ajx

j+πxj0 . If fP,τ (λ) 6= 0, then λPτ = degx(P (τ)) = degx(P (α)).

Pro Mathematica, XXX, 60 (2019), 51-89, ISSN 2305-2430 63



J. Guccione, J. Guccione, R. Horruitiner, C. Valqui

Proof. By Remark 3.10, Equality (3.3) and the fact that evy=λxj0 is

(ρ, σ)-homogeneous we get

`ρ,σ(P (α)) = `ρ,σ(evy=λxj0 (ϕ(P ))) = evy=λxj0 (`ρ,σ(ϕ(P ))) = xλ
P
τ fP,τ (λ).

Thus, we achieve

degx(P (α) = degx(`ρ,σ(P (α))) = λPτ = degx(P (τ)),

as needed.

4 Approximate roots for Jacobian pairs

For the rest of the section (P0, Q0) will be a Jacobian pair in L satisfying

the conditions required in [12, Corollary 5.21]. This in particular means

that (P0, Q0) is a minimal pair and a standard (m,n)-pair for some

coprime integers m,n > 1. By [12, Proposition 4.6(3)], there exist a < b

in N such that en1,0(P0) = m(a, b) and en1,0(Q0) = n(a, b). So, by [12,

Corollary 5.21(4)], we know that `1,1(P0) = λxamybm and `1,1(Q0) =

λ′xanybn hold for some λ, λ′ ∈ K×. Replacing P0 by
1

λ
P0 and Q0 by

1

λ′
Q0, we can further assume λ = λ′ = 1. Let ψ be the automorphism

of L characterized by ψ(y) = y and ψ(x) = x + y. Set P = ψ(P0) and

Q = ψ(Q0) (see Figure 1). Since ψ is (1, 1)-homogeneous we have

`1,1(P ) = ψ(`1,1(P0)) = (x+ y)maymb and `1,1(Q) = (x+ y)naynb.

(4.1)

Hence, P and Q are monic polynomials in y and, moreover, a straight-

forward computation yields

en1,0(P ) = m(a, b) and en1,0(Q) = n(a, b). (4.2)

Remark 4.1. We will establish several results about P , but, since

by [12, Proposition 4.6] we know that (Q,P ) is an (n,m)-pair, the same

results remain valid, mutatis mutandis, for Q.
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x

y

(1,0)

SuccP0
(1, 0)

x

y

(1,0)
ψ

P

(1, 1)

Figure 1: The shapes of P0 according to [12, Corollary 5.21(4)] and of

P according to (4.1) and (4.2).

Proposition 4.2. Let α ∈ R(P ) and let τ be the π-approximation of α

up to xj0 . Assume λτ = degx(P (τ)) > 0, and take ϕ and (ρ, σ) as in

Proposition 3.3. Then the following facts hold.

(1) If fP,τ has multiple roots, then [`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))] = 0.

(2) If [`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))] = 0, then there exists β ∈ R(Q) such

that degx(α− β) < j0.

Proof. Write τ =
∑
j>j0

ajx
j + πxj0 . By Proposition 3.7 there exists

j1 < j0 such that

τ1 =
∑
j>j0

ajx
j + λxj0 + πxj1

is a π-root of P .

(1) Since we have `ρ,σ(ϕ(P )) = xλτ fP,τ (z) (see Equality (3.3)),

by hypothesis there exist k > 1 and λ ∈ K such that (z − λ)k divides

`ρ,σ(ϕ(P )). Consequently (z−λ)k−1 divides [`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))]. As

we have [`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))] ∈ K, this yields [`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))]

= 0.
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(2) Let (z − λ) be a linear factor of `ρ,σ(ϕ(P )). Since we have

vρ,σ(P ) = ρλτ > 0, from [12, Proposition 2.1(2)b)] it follows that (z−λ)

divides `ρ,σ(ϕ(Q)). Hence, by Proposition 3.3 we know that τ is a π-root

of Q and so, by Proposition 3.7, there exists j2 < j0 such that

τ2 =
∑
j>j0

ajx
j + λxj0 + πxj2

is a π-root of Q. We conclude that for any α ∈ DP
τ1 and β ∈ DQ

τ2 the

inequality degx(α− β) < j0 holds, as claimed.

Remark 4.3. Let α =
∑
ajx

j ∈ R(P ). Assume j0 > j1 and that τ

approximates α up to xj0 and τ1 approximates α up to xj1 . Then we must

have λτ > λτ1 . In fact, setting (ρ, σ) = dir(j0) and (ρ1, σ1) = dir(j1),

Equality (3.3) and [12, Proposition 3.9] show

vρ,σ(xλτ ) = vρ,σ(ϕ(P )) = vρ,σ(ϕ1(P )) ≥ vρ,σ(enρ1,σ1 ϕ1(P )),

with ϕ = ϕτ and ϕ1 = ϕτ1 . A direct computation using (ρ, σ) > (ρ1, σ1),

vρ1,σ1
(ϕ1(P )) = vρ1,σ1

(xλτ1 ) and v0,1(enρ1,σ1
(ϕ1(P ))) > v0,1(xλτ1 ) de-

rives in

vρ,σ(enρ1,σ1
(ϕ1(P ))) > vρ,σ(xλτ1 ).

Since ρ > 0, the result follows.

Proposition 4.4. Let α ∈ R(P ). Then there exists j0 such that λτ = 0

for the π-approximation τ of α up to xj0 .

Proof. Let ϕ0 ∈ Aut(K((x−1/l))[y]) be given by ϕ0(x1/l) = x1/l and

ϕ0(y) = y + α. We will construct a direction (ρ0, σ0) ∈](0,−1), (0, 1)[

such that vρ0,σ0
(ϕ0(P )) = 0. In order to achieve this, for each point of

Supp(ϕ0(P )) we consider the direction (ρ, σ) ∈](0,−1), (0, 1)[ orthogonal

to the segment that joins that point to the origin. The minimum (ρ0, σ0)

of these directions satisfies vρ0,σ0
(ϕ0(P )) = 0. Set j0 =

σ0

ρ0
. We assert

that the π-approximation

τ =
∑
j>j0

ajx
j + πtj0
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of α up to xj0 satisfies λτ = 0. In fact, we have

0 = vρ0,σ0(ϕ0(P )) = vρ0,σ0(ϕτ (P )) = vρ0,σ0(xλτ ) = ρ0λτ ,

where the second equality follows from [12, Proposition 3.9], and the

third, from (3.3).

Proposition 4.5. Let τ =
∑
j>j0

ajx
j + πxj0 be a π-root of P , and let

(ρ, σ), λτ and ϕ be as in Proposition 3.3. If τ is also a π-root of Q and

we have λτ ≥ 0, then we get

enρ,σ(ϕ(Q)) =
n

m
enρ,σ(ϕ(P )) and

|DQ
τ |

|DP
τ |

=
n

m
.

Proof. Write Dir(ϕ(P )) ∩ [(ρ, σ), (1, 1)] = {(ρ, σ) = (ρ0, σ0) < (ρ1, σ1) <

· · · < (ρk, σk) = (1, 1)}. Take α ∈ DP
τ and 0 ≤ i ≤ k. Let ji =

σi
ρi

and

let τi be the π-approximation of α up to xji . Set λτi = degx(P (τi)) and

ϕi = ϕτi . Since we have

[`ρi,σi(ϕ(P )), `ρi,σi(ϕ(Q))] ∈ K,

if [`ρi,σi(ϕ(P )), `ρi,σi(ϕ(Q))] 6= 0, then v0,−1([`ρi,σi(ϕ(P )), `ρi,σi(ϕ(Q))]) =

0, and next, by [12, Proposition 1.13], we obtain

0 =v0,−1([`ρi,σi(ϕ(P )), `ρi,σi(ϕ(Q))])

≤v0,−1(`ρi,σi(ϕ(P ))) + v0,−1(`ρi,σi(ϕ(Q)))− (−1 + 0).

This in turn implies

v0,−1(stρi,σi(ϕ(P )) + v0,−1(stρi,σi(ϕ(Q)) ≥ −1,

or, equivalently,

v0,1(stρi,σi(ϕ(P )) + v0,1(stρi,σi(ϕ(Q)) ≤ 1;

hence in this case we obtain i = 0. The bottom line is that, if we want

i > 0, we must have [`ρi,σi(ϕ(P )), `ρi,σi(ϕ(Q))] = 0, where we must take

λτi > 0 by Remark 4.3. So we can conclude

vρi,σi(ϕ(P )) = vρi,σi(ϕi(P )) = ρiλτi > 0;
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here the first equality follows from [12, Proposition 3.9] and the second

from (3.3). Now, an inductive argument using (4.1), [12, Remark 3.1]

and enρi,σi(ϕ(P ))) = stρi+1,σi+1
(ϕ(P ))), for i = k, . . . , 1, proves

vρi,σi(ϕ(Q)) > 0 and stρi,σi(ϕ(Q)) =
n

m
stρi,σi(ϕ(P )), for i = k, . . . , 1.

So we get

enρ0,σ0
(ϕ(Q)) =

n

m
enρ0,σ0

(ϕ(P )) and
v0,1(enρ0,σ0

(ϕ(Q)))

v0,1(enρ0,σ0
(ϕ(P )))

=
n

m
.

This finishes the proof, as we have
|DQ

τ |
|DP

τ |
=
v0,1(enρ,σ(ϕ(Q)))

v0,1(enρ,σ(ϕ(P )))
, by Propo-

sition 3.3.

In [14] the author chooses a generic element ξ ∈ K and analyses the

roots of Pξ = P + ξ. Instead of speaking of a generic element ξ, we will

assume (summing eventually to P an element ξ ∈ K) that any π-root τ

of P with λτ = 0 is such that

(1) fP,τ has no multiple roots;

(2) fP,τ and fQ,τ have no common roots (thus are coprime).

This is possible, since, by (3.3), in the case λτ = 0 adding ξ to P is the

same as adding ξ to the univariate polynomial fP,τ (z). We also can, and

will, assume (0, 0) ∈ Supp(P ) ∩ Supp(Q).

Remark 4.6. Suppose that τ is a π-root of P with λτ < 0. Then, by

Proposition 3.7, Remark 3.2 and Item (1) we have |DP
τ | = 1. Moreover,

we also get |DQ
τ | = 0. In fact, take α ∈ DP

τ . By Proposition 4.4 there

exists j1 and a π-approximation τ1 of α up to xj1 such that λτ1 = 0. By

Remark 4.3 necessarily j1 > j0, where j0 is the order of τ . Let λ be the

coefficient of α at xj1 . Then π−λ divides fP,τ1 and so, by item (2), π−λ
does not divide fQ,τ1 . If τ1 is not a π-root of Q, then clearly |DQ

τ | = 0.

Otherwise, by Corollary 3.8 applied to τ1 and Q, we also reach |DQ
τ | = 0.
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Remark 4.7. From the first assertion in the previous remark it follows

that for any final π-root τ of P we must have λτ ≥ 0.

Notation 4.8. Let α =
∑
j ajx

j ∈ R(P ) and set

δα = min{degx(α− β) : β ∈ R(Q)}.

Remark 4.9. Note that the π-approximation of α up to xδα is also a

π-root of Q.

Proposition 4.10. (Compare [14, Lemma 4.2]) Set τ =
∑
j>δ ajx

j +

πxδα . Then τ is a final π-root of P .

Proof. Since clearly τ is a π-root of P , we only need to prove that τ is

a final π-root of P , i.e., that we have deg(fP,τ ) > 1 and that fP,τ has

no multiple roots. By Remark 4.6 we know λτ ≥ 0. By Item (1) above,

we also know that when λτ = 0, the polynomial fP,τ has no multiple

roots. If λτ > 0, then fP,τ also does not have multiple roots: otherwise

by Proposition 4.2 there exists β ∈ R(Q) such that degx(α − β) < δα,

contradicting the definition of δα. Finally, by Proposition 4.5 we know

that m divides |DP
τ | = deg(fP,τ ), and so, we obtain deg(fP,τ ) > 1, which

concludes the proof.

5 Major and minor final π-roots

A final π-root τ of P is called a minor final π-root of P if λτ = 0,

and it is called a major final π-root of P if λτ > 0. The set of minor

final π-roots of P is denoted by Pm, while the set of final major π-roots

of P is denoted by PM .

Note that we have

R(P ) =
⋃

τ∈Pm∪PM

DP
τ ,

since, by Proposition 4.10, every root α ∈ R(P ) is associated with a final

π-root of P (that we will call the final π-root of P associated with
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α), here λτ ≥ 0 by Remark 4.7. Note also that if τ 6= τ1 are final π-roots,

then DP
τ ∩DP

τ1 = ∅. In fact, assume by contradiction α ∈ DP
τ ∩DP

τ1 , and

take for example δτ < δτ1 , which means that τ is a better approximation

of α than τ1. Then, since the multiplicity of any factor of fP,τ1 is one,

by Remark 3.9 we get |DP
τ | ≤ 1, which contradicts the fact that τ is a

final π-root of P .

Remark 5.1. Given a final π-root τ of P take α ∈ DP
τ . Then, by

Proposition 4.10, the π-approximation of α up to xδα is a final π-root,

and, since DP
τ ∩DP

τ1 = ∅ for any other final π-root τ1 of P , necessarily

τ is the π-approximation of α up to xδα . This is equivalent to δτ = δα.

Proposition 5.2. Let τ be a final π-root of P , let ϕ = ϕτ and set

λQτ = degx(Q(τ)). Then we have the following.

(1) If τ is a minor final π-root of P , then we have

a) λQτ = 0,

b) [`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] = 0,

c) δτ < −1.

(2) If τ is a major final π-root of P , then we have

a) [`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] 6= 0,

b) τ is a major final π root of Q,

c) λQτ =
n

m
degx(P (τ)),

d) δτ > −1.

Proof. By Remarks 4.9 and 5.1, any final π-root τ of P is also a π-root

of Q. We will use this fact for (1)a) and (2)b).

(1) By Proposition 4.5, since λτ ≥ 0, we have

m enρ,σ(ϕ(Q)) = n enρ,σ(ϕ(P )),

and so we obtain

ρλQτ = vρ,σ(ϕ(Q)) =
n

m
vρ,σ(ϕ(P )) =

n

m
ρλPτ = 0,
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where the first and third equality follow from (3.3). This implies λQτ =

degx(Q(τ)) = 0, thus proving a). Moreover, by [12, Proposition 2.1(1)]

we know that the vanishing of vρ,σ(ϕ(Q)) and vρ,σ(ϕ(P )) implies

[`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] = 0,

this proves item b). Now assume by contradiction
σ

ρ
= δτ ≥ −1, which

implies ρ+ σ ≥ 0. Then, by [12, Proposition 1.13], we have

0 = vρ,σ([ϕ(P ), ϕ(Q)]) ≤ vρ,σ(ϕ(Q))+vρ,σ(ϕ(P ))−(ρ+σ) = −(ρ+σ) ≤ 0,

so we have equality and, again by [12, Proposition 1.13], we also ob-

tain [`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] 6= 0. But this contradicts item b) and thus

proves δτ < −1, that is, part c).

(2) By Remarks 4.9 and 5.1, we know that τ is a π-root of Q and,

that for any α ∈ DP
τ , we have

δτ = min{degx(α− β)|β ∈ R(Q)}.

Hence, by Proposition 4.2(2), we obtain [`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] 6= 0,

which proves a). Moreover, by Proposition 4.2(1) with Q and P inter-

changed, fQ,τ has no multiple roots. On the other hand, by Proposi-

tion 4.5, we have

|DQ
τ | =

n

m
|DP

τ | > 1,

and so τ is a final π-root of Q. Again Proposition 4.5 and Equality (3.3)

yield

ρdegxQ(τ) =ρλQτ = vρ,σ(ϕ(Q)) =
n

m
vρ,σ(ϕ(P ))

=
n

m
ρλPτ = ρ

n

m
degx(P (τ)),

and so degxQ(τ) =
n

m
degx P (τ)) > 0, which finishes the proof of b)

and c). It remains to check the condition δτ > −1. Assume by contra-

diction
σ

ρ
= δτ ≤ −1. Then ρ+ σ ≤ 0, and so

vρ,σ(ϕ(Q))+vρ,σ(ϕ(P ))−(ρ+σ) ≥ ρλPτ
(

1 +
n

m

)
> 0 = vρ,σ[ϕ(P ), ϕ(Q)],
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which, by [12, Proposition 1.13], implies [`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] = 0.

This contradicts item a) and thus finishes the proof of part d).

6 Intersection number and major roots

In this section we first obtain in Theorem 6.2 the same formula for IM
as in [14, Theorem 5.1]. Then we explain how to compute IM for the

families found in [7].

Lemma 6.1. For τ a final π-root of P , we have λQτ = degx(Q(τ)) =

degx(Q(α)) whenever α ∈ DP
τ .

Proof. We assert that fP,τ (z) and fQ,τ (z) have no common roots. In

fact, assume on the contrary that z − s is a common factor. If τ is a

major final root, then

z − s | [λτfP,τ (z), λQτ fQ,τ (z)] = [`ρ,σ(ϕ(Q)), `ρ,σ(ϕ(P ))] ∈ K×,

a contradiction. Whereas, if τ is a minor root, then the choice of ξ

guarantees that fP,τ and fQ,τ have no common roots.

Note that if the coefficient of xj0 in α is s, then fP,τ (s) = 0, since

otherwise π − s does not divide fP,τ (π) and Corollary 3.8 leads to a

contradiction. Hence, by the assertion, we get fQ,τ (s) 6= 0, and from

Proposition 3.11, we obtain degx(Q(τ)) = degx(Q(α)).

Theorem 6.2. For IM =
∑
τ∈PM |D

Pξ
τ |λQτ we have IM = I(P,Q).

Proof. From the well know equality Resy(P,Q) =
∏
α∈R(P )Q(α) we pass

to

I(P,Q) = degx
∏

α∈R(P )

Q(α) =
∑

α∈R(P )

degx(Q(α)) (6.1)

=
∑

τ∈Pm∪PM

∑
α∈DPτ

degx(Q(α)). (6.2)
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Using Lemma 6.1 we arrive to

I(P,Q) =
∑

τ∈Pm∪PM

∑
α∈DPτ

degx(Q(α))

=
∑
τ∈PM

|DPξ
τ |λQτ +

∑
τ∈Pm

|DPξ
τ |λQτ =

∑
τ∈PM

|DPξ
τ |λQτ ,

since λQτ = 0 if τ ∈ Pm.

A root α ∈ R(P ) is called a minor root if the associated final

π-root τ is a minor final π-root; it is called a major root if τ is a major

final π-root.

Proposition 6.3. Let τ be an approximate π-root of P of order j0 ≤ 0,

with λτ ≥ 0, and let (ρ, σ) = dir(j0). If v1,−1(enρ,σ(ϕτ (P ))) > 0, then

any root α ∈ DP
τ is a minor root.

Proof. The hypotheses guarantee that (ϕτ (P ), ϕτ (Q)) and (ρ, σ) satisfy

the hypotheses of Proposition 2.1 (for instance (ρ, σ) ∈ ](0,−1), (1, 0)],

because of j0 ≤ 0). If vρ,σ(ϕτ (P )) = ρλτ = 0, then τ is a minor final

π-root and the result is true. Else we have vρ,σ(ϕτ (P )) = ρλτ > 0,

since λτ ≥ 0. Take α ∈ DP
τ . By Proposition 5.2 it suffices to prove

δα < −1. By Propositions 2.1 and 4.2 we have δα < δτ = j0, so the

result is clear when δτ ≤ −1. Assume δτ > −1. In this case we have

ρ+σ > 0. Using Proposition 2.2 and Equality (3.3) we obtain fP,τ (z) =

ς(z − µ)mb for some ς, µ ∈ K×, where b =
1

m
v0,1(enρ,σ(ϕτ (P ))) =

|DP
τ |
m

(see Proposition 3.3). Hence, by Proposition 3.7, there exists j1 < j0
such that for the π-root

τ1 =
∑
j>j0

ajx
j + µxj0 + πxj1

we have DP
τ1 = DP

τ . If j1 ≤ −1, then we finish the proof immediately

after applying the above argument with τ replaced by τ1 since we must

have λτ1 ≥ 0 (in fact, if λτ1 < 0, then, by Remark 4.6, we get |DP
τ1 | = 1,
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which is impossible because of bm = |DP
τ |). Assume now j1 > −1 and

set (ρ1, σ1) = dir(j1). By Proposition 2.2 ρ1 divides l, and so j1 ∈ 1
lZ.

Hence, if j0 = −kl for some 0 ≤ k ≤ l, then −j1 ∈ {k+1
l , k+2

l , . . . , l−1
l ,

l
l},

so, after repeating the same procedure a finite number of times, say t,

we arrive at δα < jt ≤ −1, as desired.

Proposition 6.4. Let a, b satisfy Equalities (4.1). There exist ma minor

roots α of P with degx(α) = 1 and leading term −x, and mb roots β of

P with degx(β) ≤ 0.

Proof. Take τ0 = πx0. Then we have j0 = 0, dir(j0) = (1, 0) and

ϕτ0 = id. From the first equality in (4.2), we get

enρ,σ(ϕτ0(P )) = en1,0(P ) = m(a, b),

and by Proposition 3.3, we obtain |DP
τ0 | = mb. Since degx(β) ≤ j0 = 0

for all β ∈ DP
τ0 , this yields mb roots with degx(β) ≤ 0. On the other

hand, by Proposition 3.7, with τ = πx, λ = −1 and ϕ1(y) = y−x, there

exists j1 < 1 such that the π-root τ1 = −x + πxj1 satisfies |DP
τ1 | = ma

since fP,τ (z) = (z+1)mazmb; therefore the multiplicity of λ = −1 is ma.

Moreover, by (3.5) and the first equality in (4.1), we have

enρ1,σ1
(ϕ1(P )) = st1,1(ϕ1(P )) = m(b, a),

and so v1,−1(enρ1,σ1
(ϕ1(P ))) > 0. Then every root α ∈ DP

τ1 is a minor

root.

Following [14], the minor roots in Proposition 6.4 are called top

minor roots.

Proposition 6.5. Let α ∈ R(P ) be a major root, let τ be the associated

final π-root and let (ρ, σ) = dir(δα). Then

(
1

m
enρ,σ(ϕτ (P )), (ρ, σ)

)
is a

regular corner of type I of (ϕτ (P ), ϕτ (Q)) (see [12, Definition 5.5] and

the discussion above Remark 5.9 in [12] for the classification of regular

corners).
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Proof. Item (3) of [12, Definition 5.5] holds by hypothesis, Item (1) holds

by the very definition of π-root, Proposition 6.3 and [12, Theorem 2.6(4)],

and Item (2) holds by Remark 3.6. Moreover, Proposition 5.2(2)a) proves

that

(
1

m
enρ,σ(ϕτ (P )), (ρ, σ)

)
is of type I.

Proposition 6.6. Let j0 < j1 < · · · < jk ∈
1

l
Z and let (ρ, σ) = dir(j0).

Consider the automorphism ϕ of L(l) defined by

ϕ(x1/l) = x1/l and ϕ(y) = y +

k∑
i=1

aix
ji .

Let A = ((a/l, b), (ρ, σ)) be a regular corner of (ϕ(P ), ϕ(Q)). Then the

following facts hold.

(1) τ =
∑k
i=1 aix

ji + πxj0 is a π-root of P and Q.

(2) If A is of type Ib, then τ is a final major π-root of P and Q, with

|DP
τ | = mb and |DQ

τ | = nb; (6.3)

moreover, if stρ,σ(ϕ(Q)) = (k/l, 0) for some 1 ≤ k < l − a/b, then

λQτ =
k

l
.

Proof. (1) By Items (1) and (3) of [12, Definition 5.5], we have A =
1

m
enρ,σ(ϕ(P )) and b ≥ 1. Hence, by Equalities (3.2) and (3.3) we

conclude deg(fP,τ ) > 0 and that τ is a π-root of P . Since by [12,

Corollary 5.7] and Remark 4.1 the equality A =
1

n
enρ,σ(ϕ(Q)) holds

and (Q,P ) is an (n,m)-pair, we infer that τ is also a π-root of Q.

(2) The two expressions for A obtained in the proof of Item (1),

combined with Equality (3.2) and the corresponding equality for Q yield

the equalities in (6.3). Since A is of type Ib, we have

[`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))] 6= 0,
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and so, by Proposition 4.2(1), the polynomial fP,τ has no multiple

root. Moreover, using again Equality (3.2) and Equality (6.3) we ob-

tain deg(fP,τ ) = mb > 1. This proves that τ is a major final π-root

of P , and then, by Proposition 5.2(2)b), also of Q. Finally, assuming

stρ,σ(ϕ(Q)) = (k/l, 0), Equality (3.3) for Q implies ρλQτ = vρ,σ(ϕ(Q)) =

ρ
k

l
, from which the last assertion follows, as ρ 6= 0.

Example 6.7. Consider the family F1 of [7], corresponding to an (m,n)-

pair (P0, Q0) as in [12, Corollary 5.21]:

A0 = (4, 12), A′0 = (1, 0), A1 = (7/4, 3), k = 1, m = 2j+ 3, n = 3j+ 4.

(6.4)

Then (P0, Q0) has the shape given in Figure 2 and we get `−2,1(P ) = R4m

for a (−2, 1)-homogeneous element R = λ0(λ1y − xy3) with λ0, λ1 6= 0.

x

y

A′0 = (1, 0)

A0 = (4, 12)

Figure 2: The shape of (P0, Q0)

In fact, by (6.4), the edge from A0 to A′0 is determined. So we only

need to prove

(ρ, σ) = SuccP0
(1, 0) = SuccQ0

(1, 0) = (−2, 1)
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and
1

m
en−2,1(P ) = (0, 4). From [12, Corollary 5.21(4)] we obtain

(−1, 1) < (ρ, σ) < (−1, 0). Moreover, by the second equality in [7,

(2.13)] we have

q0 =
v4,−1(4, 12)

gcd(v4,−1(4, 12), 4− 1)
=

4

gcd(4, 3)
= 4.

On the other hand, at the beginning of [5, Subsection 2.4] it is shown

the equality

enρ,σ(F0) =
p0

q0

1

m
enρ0,σ0

(P0),

and therefore, by [12, Corollary 7.2], there exists a (ρ, σ)-homogeneous

element R such that `ρ,σ(P ) = R4m. This is only possible if (ρ, σ) =

(−k, 1) for some k ∈ N, with k ≥ 2. But k ≥ 3 leads to vρ,σ(P0) ≤ 0 and

then to degy(P0(0, y)) ≤ 0, which contradicts [13, Proposition 10.2.6].

Therefore we have k = 2, R = λ0(λ1y − xy3) and hence we get

1

m
en−2,1(P ) = 4 en−2,1(R) = (0, 4),

as desired. Since P = ψ(P0) and Q = ψ(Q0), where ψ(y) = y and

ψ(x) = x + y (see the beginning of Section 4), the shape of P is as in

Figure 3, and P is a monic polynomial in y of degree 16m.

Write `4,−1(P ) = xmg(z)m, where z = x1/4y. By [5, Theorem

2.20(6)] and the condition v1,−1(A′0) > 0, we know that (A0, (ρ, σ)) =

((4, 12), (4,−1)) is a regular corner of type IIb) of (P,Q). Hence, by

item (8) of the same theorem, we get v0,1(A1) =
mλ

m
, where mλ is the

multiplicity of z−λ in p0(z) = g(z)m. Since we have v0,1(A1) = 3, by [5,

Remarks 3.8 and 3.9] we get

g(z) = λ0(z4 − λ4
1)3,

for some λ0, λ1 ∈ K×. We obtain then

`4,−1(Pξ) = λ0x
m(z − λ1)3m(z − iλ1)3m(z + λ1)3m(z + iλ1)3m,
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x

y

(m, 0)

(4m, 12m)

(0, 16m)

Figure 3: The shape of Pξ

and so, we have four final major π-roots

τ0 = λ1x
1/4 + πxδ, τ1 = iλ1x

1/4 + πxδ,

τ2 = −λ1x
1/4 + πxδ, τ3 = −iλ1x

1/4 + πxδ,

where δ = σ/ρ, with (ρ, σ) = dir
(
m
(

7
4 , 3
)
−
(

3
4 , 1
))

. Here A1 =
(

7
4 , 3
)

is the same final corner (see [5, Definition 2.18]) for all major final roots,

corresponding to the regular corner (A1, (ρ, σ)) of type Ib) of each of

the four (m,n)-pairs (ϕτj (P ), ϕτj (Q)). By the first equality in (6.3),

there are 3m roots of P associated to each of these major roots, and by

Proposition 6.4, the remaining 4m roots of P are minor roots. Now we
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can compute

IM =
∑
τ∈PM

|DP
τ |λQτ =

3∑
j=0

|DP
τj |λ

Q
τj

= 4 ·mb · k
l

= 4 ·m · 3 · 1

4
= 3m = 3(2j + 3).

7 Intersection number and minor roots

In this section we obtain an inequality for Im in Theorem 7.3, as opposed

to the equality in [14, Theorem 4.7], whose proof has a serious gap. We

also show how to compute Im for the families of [7]. For the sake of

brevity we write Px, Qx, Py and Qy instead of the partial derivatives

∂xP , ∂xQ, ∂yP and ∂yQ.

Lemma 7.1. Let (P,Q) be as above, (ρ, σ) be a direction, with ρ 6= 0,

and α ∈ R(P ). Write `ρ,σ(P ) = xug(z) with z = x−σ/ρy. The following

facts hold.

(1) If deg(g) > 0, then `ρ,σ(Py) = xu−σ/ρg′(z).

(2) α is a minor root if and only if degx(Q(α)) = 0.

(3) Let β ∈ R(Py). There exists τ ∈ Pm such that β ∈ D
Py
τ if and

only if degx(P (β)) = 0.

(4) If α is a minor root, then degx(Py(α)) = −δα.

(5) Let τ ∈ Pm and assume that fPy,τ and fQy,τ are coprime. Then

degx(Qy(β)) = −δτ for all β ∈ DPy
τ .

(6) Let τ ∈ Pm and assume that fPy,τ and fQy,τ are not coprime.

Then there exists β ∈ DPy
τ such that degx(Qy(β)) < −δτ .

Proof. (1) This follows from the fact that the morphism ∂y satisfies

∂y(xiyj) = jxiyj−1 for j > 0: in fact we have

vρ,σ(∂y(xiyj)) = vρ,σ(xiyj)− σ.
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Hence `ρ,σ(∂yP ) = ∂y`ρ,σ(P ) when ∂y`ρ,σ(P ) 6= 0, and so

`ρ,σ(Py) = ∂y(xug(z)) = xu−σ/ρg′(z),

because of deg(g) > 0.

(2) By Items (1)a) and (2)c) of Proposition 5.2, we know that α is

a minor root if and only if we have λQτ = 0 for the π-root τ associated

to α. This proves (2), since we have λQτ = degx(Q(α)) by Lemma 6.1.

(3) If we define

δβ = min{degx(α− β)|α ∈ R(P )},

and

β =
∑
j>δβ

ajx
j + λxδβ +

∑
j<δβ

ajx
j ,

then τ =
∑
j>δβ

ajx
j + πxδβ is a π-root of P . From Remark 3.4 we

obtain 0 < |DPy
τ | = |DP

τ | − 1, and so, by Remark 4.6 we get λPτ ≥ 0.

Take α ∈ DP
τ and let τ1 be the final π-root of P associated with α. We

have δα ≤ δβ (since δβ < δα implies |DP
τ | = 1) and hence λτ1 ≤ λτ , so

λPτ = 0 if and only if τ = τ1 is a final minor π-root of P .

We claim the equality λPτ = degx(P (β)). In fact, we have fP,τ (λ) 6=
0 since otherwise, by Proposition 3.7, there exists j1 < δβ such that

the π-approximation of β up to j1 is a π-root of P , contradicting the

minimality of δβ . Hence, by Proposition 3.11, we have degx(P (β)) =

λPτ ≥ 0. Therefore, if degx(P (β)) = 0, then β ∈ DPy
τ and τ ∈ Pm. On

the other hand, if β ∈ D
Py
τ2 for some τ2 ∈ Pm, then δβ ≤ δτ2 , hence

0 ≤ λτ ≤ λτ2 = 0, and so 0 = λPτ = degx(P (β)), as desired.

(4) Let τ =
∑
j>δα

ajx
j + πxδα be the minor final π-root of P

associated with α. Write

α =
∑
j>δα

ajx
j + λxδα +

∑
j<δα

ajx
j .

Since fP,τ (λ) = 0, and fP,τ has no multiple roots, we have f ′P,τ (λ) 6= 0.

But by Item (1) we have fPy,τ = f ′P,τ , and, by Proposition 3.11, we
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obtain λ
Py
τ = degx(Py(τ)) = degx(Py(α)). Using again Item (1) we get

λ
Py
τ = λτ − σ/ρ, and the result follows immediately since λτ = 0.

(5) Let τ =
∑
j>j0

ajx
j + πxj0 and take β ∈ DPy

τ . Set

β =
∑
j>j0

ajx
j + λxj0 +

∑
j<j0

ajx
j .

By Corollary 3.8, we have fPy,τ (λ) = 0. As fPy,τ is coprime with

fQy,τ , we get fQy,τ (λ) 6= 0. By Proposition 3.11, we obtain λ
Qy
τ =

degx(Qy(τ)) = degx(Qy(β)) and by Item (1) we have λ
Qy
τ = λQτ − σ/ρ.

The result follows immediately from the equality λQτ = 0.

(6) Write τ =
∑
j>j0

ajx
j+πxj0 . Let λ ∈ K be such that fQy,τ (λ) =

0 = fPy,τ (λ). By Proposition 3.7, there exist j1, j2 < j0 such that

τ1 =
∑
j>j0

ajx
j + λxj0 + πxj1 is a π-root of Py and τ2 =

∑
j>j0

ajx
j +

λxj0 + πxj2 is a π-root of Qy. Take j3 = max{j1, j2}. Then τ3 =∑
j>j0

ajx
j + λxj0 + πxj3 is a π-root of Qy and Py. If β ∈ DPy

τ3 , then

β =
∑
j>j0

ajx
j + λxj0 +

∑
j<j0

ajx
j .

With T = λxj0 +
∑
j<j0

ajx
j we have

Qy(β) = evy=T (ϕτ (Qy)) = evy=λxj0 (`ρ,σ(ϕτ (Qy))) +R

= xλ
Qy
τ fQy,τ (λ) +R

for some R with vρ,σ(R) < vρ,σ(ϕτ (Qy))) = ρλ
Qy
τ . Since fQy,τ (λ) = 0,

we obtain

ρdegx(Qy(β)) = vρ,σ(Qy(β)) < ρλQyτ .

However, from Item (1) we have λ
Qy
τ = λQτ − σ/ρ, and since λQτ = 0 we

conclude

degx(Qy(β)) < −σ/ρ,

as desired.
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Lemma 7.2. For any α ∈ K((x−1/l)) we have

Qy(α)
d

dx
P (α)− Py(α)

d

dx
Q(α) ∈ K×.

Proof. This follows directly from
d

dx
P (α) = Px(α)+Py(α)

dα

dx
,
d

dx
Q(α) =

Qx(α) +Qy(α)
dα

dx
and the Jacobian condition.

Theorem 7.3. For Im = 1−
∑
τ∈Pm(δτ + 1) we get Im ≤ I(P,Q). We

also have

I(P, PyQ) = deg(P )−
∑
τ∈Pm

|DP
τ |(1 + δτ ). (7.1)

Proof. It suffices to prove (7.1) and

I(P, Py) ≤ deg(P )− 1−
∑
τ∈Pm

(|DP
τ | − 1)(δτ + 1). (7.2)

In fact, Equality (7.1) and Inequality (7.2) yield

I(P,Q) = I(P, PyQ)− I(P, Py) ≥ 1−
∑
τ∈Pm

(δτ + 1),

as desired.

Proof of Equality (7.1). By Lemma 7.2, for each α ∈ R(P ) we have

Py(α)
d

dx
Q(α) ∈ K×. Moreover, by Lemma 7.1(2), if α is a major root,

then degX(Q(α)) = λQτ > 0, and so degx(Py(α)Q(α)) = 1. On the other

hand, if α is a minor root, then by Proposition 5.2(1)a), Lemma 6.1 and

Lemma 7.1(4) we obtain

degx(Py(α)Q(α)) = degx(Py(α)) = −δα = −δτ ,

where τ is the minor final π-root associated with α. Using these facts
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we obtain

I(P, PyQ) =
∑

α∈R(P )

degx(Py(α)Q(α))

=
∑
τ∈Pm

∑
α∈DPτ

degx(Py(α)Q(α)) +
∑
τ∈PM

∑
α∈DPτ

degx(Py(α)Q(α))

=
∑
τ∈Pm

|DP
τ |(−δτ ) +

∑
τ∈PM

|DP
τ |+

∑
τ∈Pm

|DP
τ | −

∑
τ∈Pm

|DP
τ |

= deg(P )−
∑
τ∈Pm

|DP
τ |(1 + δτ ),

where the first equality is justified as in the proof of Theorem 6.2.

Proof of Inequality (7.2). By Lemma 7.2, for each β ∈ R(Py), we have

Qy(β)
d

dx
P (β) ∈ K×. Define

Py,m = {β ∈ R(Py) : there is a minor final π-root τ with β ∈ DPy
τ }.

Then, by Lemma 7.1(3), if β is not in Py,m, we have degx(Qy(β)P (β)) =

1. On the other hand, if β is in Py,m, then by Items (3), (5) and (6) of

Lemma 7.1 we obtain

degx(P (β)Qy(β)) = degx(Qy(β)) ≤ −δτ ,

where τ is the minor final π-root associated with β. Using these facts
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we obtain

I(Py, PQy) =
∑

β∈R(Py)

degx(P (β)Qy(β))

=
∑
τ∈Pm

∑
β∈DPyτ

degx(P (β)Qy(β)) +
∑

β/∈Py,m

degx(P (β)Qy(β))

≤
∑
τ∈Pm

|DPy
τ |(−δτ ) + deg(Py)−

∑
τ∈Pm

|DPy
τ |

= deg(P )− 1−
∑
τ∈Pm

|DPy
τ |(1 + δτ )

= deg(P )− 1−
∑
τ∈Pm

(|DP
τ | − 1)(1 + δτ ),

(7.3)

where the last equality follows from Remark 3.4.

Since the Jacobian condition implies

Resy(Py, Qy) Resy(Py, Px) = Resy(Py, QyPx) =
∏

β∈R(Py)

Qy(β)Px(β) = 1,

we have I(Py, Qy) = 0, and thus (7.3) yields Inequality (7.2).

Example 6.7 (continuation). In the case of family F1 of [7] there is

only one minor root τ corresponding to the remaining 4m roots of Pξ,

and δτ = −3. Hence we have Im = 1−(−3+1) = 3. Since IM = 3(2j+3),

we have Im < IM (which is compatible with Theorem 7.3 and doesn’t

allow us to disregard this family).

In fact, consider the diagram in Figure 4, where flip : K[x, y] →
K[x, y] is given by flip(x) = y and flip(y) = −x, and the three morphisms

ϕ,ϕ1, ϕ̃ : K[x, x−1, y]→ K[x, x−1, y] are characterized by

ϕ(x) = x+ y, ϕ1(x) = x, ϕ̃(x) = x,

ϕ(y) = y, ϕ1(y) = y − x, ϕ̃(y) = y + λ1x
−2.

In order to define G set u = x + y + λ1x
−2. The morphism G :

K[y]((x−1)) → K[y]((x−1)) is given by G(x) = u and G(y) = y +
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x

y

P0

flip

x

y

P = ϕ−1(P0)

ϕ1

ϕ

x

y

P1

x

y

ϕ̃(P1)
ϕ̃

x

y

ϕ1(P )

ϕ

ϕ̃

x

y

ϕ̃(ϕ1(P ))

G

Figure 4: Finding minor roots: `1,−3(ϕ̃(ϕ1(P ))) = `1,−3(ϕ̃(P1))

λ1(x−2 − u−2). Note that u is invertible in K[y]((x−1)) with

u−1 = x−1
(
1− x−1(y + λ1x

−2) + x−2(y + λ1x
−2)2 − . . .

)
.

We also have G ◦ ϕ̃ = ϕ̃ ◦ ϕ and `1,−3(G(S)) = `1,−3(S) for all S ∈
K[y]((x−1)), which implies `1,−3(ϕ̃(S)) = `1,−3(ϕ̃(ϕ(S))).

Now, the previous computations yield `1,−2(P1) = R4m
1 where

R1 = flip(R) = λ0x
3(y − λ1x

−2).

Moreover, we also have `−1,4(ϕ̃(P1)) = `−1,4(P1) and the element F
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of [12, Corollary 7.4] satisfies

st−1,4(F ) = (9, 3) =
3

4

1

m
st−1,4(ϕ̃(P1)),

and so we must have q = 4 in [12, Corollary 7.4]. Hence, if we assume by

contradiction (ρ1, σ1) = Predϕ̃(P1)(1,−2) > (1,−3), from [12, Corollary

7.4] we obtain a (ρ1, σ1)-homogeneous element R2 ∈ K[x, x−1, y] such

that `ρ1,σ1(ϕ̃(P1)) = R4m
2 , which is impossible.

It follows that

Predϕ̃(P1)(1,−2) = (1,−3) = Predϕ̃(Q1)(1,−2)

holds, as we also know that (0, 0) belongs to Supp(ϕ̃(P1))∩Supp(ϕ̃(Q1)).

But we have `1,−3(ϕ̃(P1)) = `1,−3(ϕ̃(ϕ1(P ))) and so, from Proposi-

tion 3.3 we know that τ = −x + λ1x
−2 + πx−3 is a π-root of P , since

ϕτ = ϕ̃ ◦ ϕ1. Moreover we get λτ = 0; and fπ,P (z) = `1,−3(ϕτ (P ))

has no multiple roots (eventually replace P by P + ξ for an adequate

constant ξ). Consequently τ is a final minor root of P and |DP
τ | =

v0,1(en1,−3(ϕτ (P ))) = 4m, where 4m is the number of remaining minor

roots of P . So we conclude that τ is the only minor root of P and we

also obtain δτ =
σ

ρ
=
−3

1
= −3, as claimed.
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Resumen

En [14] Yansong Xu calcula el número de intersección de un par jaco-

biano usandos dos igualdades diferentes. Probamos la primera de estas

desigualdades usando el lenguaje de [12], pero en lugar de la segunda

solamente obtenemos una desigualdad.
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