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Abstract

In this paper, we study foliations on the projective plane of degree two

which have a first integral with degree two. Such first integrals define a

pencil of conics.

The Hilbert-Mumford criterion is a powerful tool of the Geometric

Invariant Theory. An application of this theory is the characterizarion

of the instability of the space of foliations of degree two, with respect to

the action by a change of coordinates, and the characterization of the

stability of pencils of conics, given by Alcántara.

The aim of the paper is to give another proof of the fact that a

foliation of degree two defined by a pencil of conics is unstable if, and

only if, the pencil is unstable.
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1 Introduction

The problem of classification of holomorphic foliations in complex mani-
folds has been the object of intense study in the last decades, see [5, 6, 8]
and the references therein.

The set of holomorphic foliations on the complex projective plane
of degree d, denoted by Fol(d), is a projective space and accepts a linear
action of Aut(P2) under a change of coordinates. In this paper, we
study foliations on P2 of degree two which have a first integral of degree
two. Our main tool would be Geometric Invariant Theory (GIT), as
developed mainly by Hilbert and Mumford [11]. We also deal with the
pencil of conics defined by said first integral. In [10], Miranda found
a characterization of the stability of pencils of cubic curves. Based on
this result, Alcántara and Sánchez-Argáez [13] (see also [4]) proved the
following characterization on the stability of a pencil of conics.

Theorem 1.1 ([13, Teorema 8]). Let A(x, y, z) and B(x, y, z) be de-

gree two homogeneous polynomials in P2
defining conics without com-

mon components. Let L
A,B

be the pencil generated by such conics, and

let B(L
A,B

) the set of common zeros of A and B. Then P (L) is unstable
if and only if B(L

A,B

) contains at most three di↵erent points.

In [2], Alcántara obtained maximal sets of generators for unstable
foliations, namely
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Moreover, Alcántara also achieved a characterization of the insta-
bility of a degree two foliation.

Theorem 1.2 ([2]). Let X 2 Fol(2) be a foliation with isolated singu-

larities. Then X is unstable if and only if it has one of the following

properties:
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On the stability of a foliation of degree two

1. there exists a singular point p of multiplicity 2, or

2. it has an invariant line with a unique singular point with multiplic-

ity 1 and Milnor number 5.

Moreover, a foliation X satisfies (1) if and only there exists g 2 SL(3,C)
such that gX 2 CN1, and satisfies (2) if and only if there exist g 2
SL(3,C) such that gX 2 CN2 \ CN1.

In [7], Cerveau et al. proved that there exist, up to the action,
three foliations of degree two on P2 defined by a pencil of conics. On
the other hand, in [3], Alcántara constructs a stratification (based on
GIT, see [11]) of the space of foliations with respect to the action by a
change of coordinates and presents the following corollary: a foliation

of degree two defined by a pencil of conics is unstable if and only if the

pencil is unstable. In this work, we present a new proof of this corollary,
where, instead of using the aforementioned stratification, we rely on
Proposition 3.2, due to Darboux, by studying the singular fibers of the
first integral defined by the pencil. We also use the characterization given
in Theorem 1.2 for the instability of a foliation and the characterization
given in Theorem 1.1 for the instability of a pencil of conics. In other
words, we will establish the folllowing result.

Theorem 1.3. Let F be a foliation of degree two in P2
with fist integral

H =
F

G
, here F,G are polynomials of degree two. Then F is unstable if

and only if L
F,G

is unstable.

2 Preliminaries

Let k be an algebraically closed field. An algebraic group G over k
is a group that by own right is a variety over k and is such that the
multiplication and inversion operations are morphisms of the variety.
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Classical examples of algebraic groups include

GL(n, k) = {A 2 M
n

(k) : det(A) 6= 0},
SL(n, k) = {A 2 M

n

(k) : det(A) = 1},

respectively called the general and special linear groups. Given G,H
algebraic groups, a morphism ' : G ! H should be both a group
homomorphism and a morphism of varieties.

A linear algebraic group is an algebraic group that is isomorphic
to an algebraic subgroup of GL(n, k). Note that both GL(n, k) and
SL(n, k) are linear algebraic groups.

From now on, ⇡ will denote the projection from An+1
k

\ {0} to Pn.
Let G be an algebraic group acting on an a�ne variety X ⇢ An+1

k

(respectively, a projective variety X ⇢ Pn). We say that the action is
linear if there exists a group homomorphism

⇢ : G ! GL(n+ 1, k)

with g · x = ⇢(g)(x) (respectively, g · x = ⇡(⇢(g)(x̄)), where x̄ 2 ⇡�1(x)).

Remark 2.1. Note that if an action over a projective varietyX is linear,
then ⇢ induces an action in the a�ne cone

X̌ = {0} [
[

x2X

⇡�1(x).

of X.

Denote by C[x, y, z]
d

the space of homogeneous polynomials of de-
gree d. Given F 2 C[x, y, z]

d

, the set

V (F ) = {[x : y : z] 2 P2 : F (x, y, z) = 0}

is called the locus of F . Recall that F,G 2 C[x, y, z]
d

define the same
curve (i.e., locus) if and only if F = �G, for some � 2 C⇤. Then

X = {V (F ) : F (x, y, z) 2 C[x, y, z]
d

}
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is a proyective variety, because of the identification

X ' C[x, y, z]
d

\ {0}
C⇤ ' PN ,

where N =

 
d+ 2

2

!
� 1.

Example 2.2. Let X be the set of cubic planar curves, that is

X = {V (F ) : F (x, y, z) 2 C[x, y, z]3} ' P9.

The action in X given by

⇢ : SL(3,C)⇥X �! X

(g, F (x, y, x)) 7�! F (g�1(x, y, z)).

is linear.

Let G be an algebraic group acting on X. In general the quotient
space X/G is not a variety.

Example 2.3. Let G = C⇤ = C \ {0} and X = C2. Consider the action
⇢ : G⇥ C2 ! C2 given by

⇢(�, (z1, z2)) = � · (z1, z2) = (�z1,�
�1z2).

The orbits of X are given by

O(0, 0) = {(0, 0)},
O(z1, 0) = {(�z1, 0) : � 2 G},
O(0, z2) = {(0,��1z2) : � 2 G},
O(z1, z2) = {(x, y) : xy = z1z2},

where z1, z2 6= 0. We conclude that X/G is not an algebraic variety.
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Let G be an algebraic group acting on a variety X. Denote by A(X)
the algebra of morphisms ' : X ! k. The action of G on X induces an
action of G on A(X). We define

A(X)G = {f 2 A(X) : f(g · x) = f(x), for all g 2 G},

called the invariant ring of X.

Example 2.4. For the action ⇢ of Example 2.3 we have

A(X) = {f : C2 ! C : f is a polynomial}.

Here we obtain

A(X)G = k[xy] = A(C)

and, so, the ring is finitely generated.

The set V (A(X)G) = V (A(C)) = C is called the GIT-quotient

and is denoted by X//G. The question of whether or not A(X)G is
finitely generated is a variation on Hilbert’s 14th problem. The most
general answer was given by Nagata [12] in 1963. See also [1].

Theorem 2.5 (Nagata). If G is a reductive group then A(X)G is finitely

generated. ⇤

We say that a linear algebraic group G is reductive if for every
linear action of G in kn, and every invariant point v 2 kn \ {0} there
exists a G-invariant homogeneous polynomial f of degree � 1 such that
f(v) 6= 0.

Example 2.6 ([1, Ejemplo 10]). The groups G = GL(3,C) and G =
SL(3,C) are known to be reductive.

One of the main goals of Geometric Invariant Theory (GIT) is to
classify objects in Algebraic Geometry. The case of interest here is when
X is the space of foliations of degree d, see Section 3.
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Definition 2.7 ([11, Proposition 2.2], see also [1, Proposición 4]). Let
X be a projective variety in Pn and G a reductive group acting linearly
on X. Let x 2 X and x 2 ⇡�1(x) ⇢ X̌ ⇢ Cn+1. Then x is semistable

when 0 /2 O(x). We write Xss for the set of semistable points of X.

Also, we say that x is stable whenever 0 /2 O(x), the orbit of x is
closed in Xss, and dimO(x) = dimG.

In general, it is di�cult to determine when a point in a projective
variety is stable. We now describe a usable criterion, originally given by
Hilbert for G = SL(n), and later extended by Mumford for arbitrary G.

A 1-parameter subgroup of G is a non-trivial homomorphism of
algebraic groups � : C⇤ ! G.

Given a 1-parameter subgroup � and a linear action G on X ⇢ Pn,
we introduce the representation

C⇤ ! GL
n+1(C)

t 7! �
t

: �
t

(v) = �(t) · v.

This representation is diagonalizable.

Proposition 2.8 ([1, Proposición 5]). There is a basis {e0, e1, . . . , en}
of Cn+1

such that �(t)e
i

= trie
i

, with r
i

2 Z.

By Proposition 2.8, given a point x 2 X̌, with x =
nX

i=0

x
i

e
i

, we have

�(t)x =
X

trix
i

e
i

.

Mumford used this 1-parameter subgroup to calculate the stability
of elements of X by the action of G. In that way he introduced the now
called Mumford’s function: for x 2 X and � in a given 1-parameter
subgroup of G, we set

µ(x,�) = min{r
i

: x
i

6= 0}.

Pro Mathematica, XXXI, 61 (2020), 33-52, ISSN 2305-2430 39



Liliana Puchuri

Theorem 2.9 ([11, Theorem 2.1], see also [1, Teorema 12]). Let X be

a projective variety in Pn

and G a reductive group acting linearly on X.

Then, for any x 2 X we have that

• x is semistable if and only if µ(x,�)  0 for all 1-parameter subgroups

� of G.

• x is stable if and only if µ(x,�) < 0 for all 1-parameter subgroups �
of G.

Remark 2.10. Almost directly from the definition we get

µ(g · x,�) = µ(x, g�1�g),

for any g 2 G.

Proposition 2.11 ([1, Proposición 6]). Every 1-parameter subgroup � :
C⇤ ! SL(3,C) is conjugated to a diagonal one. In other words, we have

�(t) = g

0

BB@

tn0 0 0

0 tn1 0

0 0 tn2

1

CCA g�1,

for some g 2 SL(3,C), where n0 � n1 � n2, n0 + n1 + n2 = 0.

Example 2.12. Let X = {V (F ) : F 2 C[x, y, z]3} and consider the
linear action

⇢ : SL(3,C)⇥X �! X

(g, F (x, y, x)) 7�! F (g�1(x, y, z)).

We now calculate the Mumford’s function associated to X and ⇢. For
that purpose let

B = {x3, y3, z3, x2y, x2z, xy2, xz2, yz2, y2z, xyz}
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be a base of X. By Remark 2.10, in order to analyze the stability of
F 2 X, it is enough to consider the 1-parameter subgroups given by

� : C⇤ ! SL(3,C)
t 7! diag(tn0 , tn1 , tn2),

where n0 � n1 � n2 and n0 + n1 + n2 = 0. A few calculations yield
µ(x3�i�jyizj ,�) = (i+ j � 3)n0 � in1 � jn2 and

µ(F,�) = min{(i+ j � 3)n0 � in1 � jn2 : a
ij

6= 0}.

where

F (x, y, x) =
3X

i,j=0

a
ij

x3�i�jyizj .

3 Foliations in the complex projective plane

An holomorphic foliation F on a complex compact surface X is a family
of holomorphic 1-forms {!

i

}
i2I

defined on an open covering {U
i

}
i2I

of
X, such that !

i

= g
ij

!
j

, for some holomorphic functión g
ij

without
zeroes on U

i

\U
j

. A foliation of degree d in P2 is determined by either

• a projective 1-form ⌦ = Pdx+Qdy+Rdz, with P,Q,R homogeneous
polynomials of degree d + 1 subject to xP + yQ + zR = 0 (called
Euler’s condition), that satisfies ⌦ ^ d⌦ = 0, the integrabitility

condition or

• a vector field X = A
@

@x
+B

@

@y
+ C

@

@z
, with A,B,C homogeneous

polynomials of degree d, modulo a product GX
R

of the radial vec-

tor field X
R

= x
@

@x
+ y

@

@y
+ z

@

@z
and a homogeneous polynomial

G.
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The singular set of a foliation F , denoted by Sing(F), is given by
the set

Sing(F) = {p 2 P2 : P (p) = Q(p) = R(p) = 0}

when F is defined via a 1-form, and by

Sing(F) = {p = [x : y : z] 2 P2 : X(p) = �X
R

(p), for some � 2 C}

when F is defined via a vector field.

Example 3.1. Let P , Q be homogeneous polynomials of degree k in
P2 without common factors. Then the 1-form ⌦ = PdQ�QdP satisfies
i
XR(PdQ �QdP ) = 0, where i

XR is the contraction of the 1-form, and
defines a foliation F⌦ of degree 2k � 2.

Let P , Q be homogeneous polynomials of degree k in P2. For ↵ =
[a : b] 2 P1, let L

↵

= aP +bQ be a fiber of P/Q, whose decomposition in
irreducible factors is L

↵

= fn

1

↵,1 · · · f
nj

↵,j

, with n1, . . . , nj

2 N and j 2 N,
all depending on ↵. In this setting, we write G

↵

= fn

1

�1
↵,1 · · · fnj�1

↵,j

. We
have the following proposition due to Darboux [9].

Proposition 3.2 (Darboux). Let ⌦ = PdQ � QdP . Then there exist

� = G
�

1

· · ·G
�n , with �1, . . . ,�n

2 P1
, and a 1-form ! such that

⌦ = � · !.

Moreover, ! defines a foliation F(P,Q) of degree 2k � 2� deg(�) with

isolated singularities, where k = deg(P ) = deg(Q).

Remark 3.3. In Proposition 3.2, the quotient H =
P

Q
is called a first

integral of the foliation F = F(P,Q). When this is the case, the quo-

tient
P + �Q

P + µQ
, whenever � 6= µ, is also a first integral of F .
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Remark 3.4. By Proposition 3.2, if P and Q are polynomials of degree
two, we have PdQ�QdP = �!, � = G

�

1

· · ·G
�n , with �1, . . . ,�n

2 P1,
! defines F and

deg(F) = 2 = 2 · 2� 2� deg(�),

which implies deg(�) = 0. Then, if G
�

= fn

1

�1
�,1 . . . fnk�1

�,k

is a factor of
� then n

j

= 1, for j = 1 . . . n, and L
↵

= fn

1

↵,1 · · · f
nk
↵,k

is a singular fiber
of H. In particular, every singular fiber of H is a product of two lines.

Lemma 3.5. Let F be a foliation of degree two in P2
with isolated singu-

larities and with H =
F

G
as first integral, where F and G are polynomials

of degree 2. Then, under an automorphism of P2
we can reach one of

the following three forms

• H =
z(ax+ by + cz)

xy
, with at most one of a, b, c equal to zero,

• H =
(x� y)(ax+ cz)

xy
, where a · c 6= 0,

• H =
xy

Q(x, y, z)
, with Q = ax2 + cy2 +mxz + nyz + pz2 irreducible.

Proof. For ↵ = [a : b] 2 P1, the quadratic form H
↵

= aP + bQ is a fiber
of H. Let A

↵

be the associated matrix of H
↵

. Given �, � 2 P1 we have
the identity

det(A
�

+ tA
�

) = det(A
�

) det(A�1
�

A
�

� (�t)Id) = det(A
�

)q(�t),

where q(x) is the characteristic polynomial of A�1
�

A
�

. It follows that
there is at least one singular fiber of H, a product of two lines by Re-
mark 3.4. Let us call L

↵

this singular fiber.
By Remark 3.3, any two fibers of H determine a first integral of F .

Therefore, we have two possibilities:

• if H has two singular fibers, then H =
`1`2
`3`4

, where `1`2 and `3`4 are

the singular fibers of H;

Pro Mathematica, XXXI, 61 (2020), 33-52, ISSN 2305-2430 43



Liliana Puchuri

• if H has one singular fiber, then H =
`1`2
Q

, with Q irreducible.

In the first case, after a change of coordinates H assumes one of the
following shapes

• H =
z`

xy
=

z(ax+ by + cz)

xy
, where at most one of a, b, c is zero, since

F has isolated singularities.

• H =
(x� y)`

xy
=

(x� y)(ax+ by + cz)

xy
. By Remark 3.3, we can

further assume b = 0. Note that a 6= 0 returns us to the first case,
so we can asume a 6= 0. Finally, we should have c 6= 0 if we wish F
to have only isolated singularities.

In the second case, it is clear that under a linear change of coordi-
nates H takes the form

H =
xy

Q
=

xy

ax2 + cy2 +mxz + nyz + qxy + pz2
,

and, by Remark 3.3, we can assume that q = 0.

4 Pencils of curves of degree d

To C[x, y, z]
d

, the space of homogeneous polynomials of degree d, we
associate the corresponding projective space P(C[x, y, z]

d

) ' Pn�1, here

n =

 
d+ 2

2

!
=

(d+ 1)(d+ 2)

2
.

Given F,G 2 C[x, y, z]
d

, with F 6= G, the pencil of plane curves

of degree d generated by F and G is defined by

L = L
F,G

= {aF + bG : [a : b] 2 P1},

to which we associate the base locus

B(L
F,G

) = V (F ) \ V (G).
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The set of pencils of plane curves of degree d is denoted by G
d

.
On the other hand, writing

F =
dX

i=0

d�iX

j=0

a(i,j)x
iyjzd�i�j , G =

dX

i=0

d�iX

j=0

b(i,j)x
iyjzd�i�j ,

we consider the 2⇥ n-matrix
"
a(0,0) a(0,1) · · · a(0,d) · · · a(d,0)

b(0,0) b(0,1) · · · b(0,d) . . . b(d,0)

#
.

Note that the indices of the columns of the previous matrix are lexico-
graphically ordered. Define the determinants

M
i,j,k,l

= det

"
a
ij

a
kl

b
ij

b
kl

#

and the set of N -tuples

(M
i,j,k,l

)(i,j)<
lex

(k,l),

where N =

 
n

2

!
=

n(n� 1)

2
. The function

P : G
d

�!PN�1

L 7�!(M
i,j,k,l

)

determines what are called the Plucker coordinates of L.

Theorem 4.1. With the notations above, P is an embedding and P (G
d

)
is a projective variety.

Proof. See [13, Teorema 7].

In Theorem 1.1, the action of the group SL(3,C) on G
d

is

� : SL(3,C)⇥G
d

�!G
d

�(g, {k1A+ k2B}(k
1

:k
2

)2P(C)1) 7�!{k1Ag + k2Bg}(k
1

:k
2

)2P(C)1 .
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5 Relating the pencil and the foliation

The group PGL(3,C) of automorphisms of CP2 is a reductive group that
acts linearly on Fol(d) by the change of coordinates

PGL(3,C)⇥ Fol(d) �! Fol(d)
(g,X) 7�! g ·X = DgX � (g�1),

or more specifically, on F2, as

0

BB@g,

0

BB@

P (x, y, z)

Q(x, y, z

R(x, y, z)

1

CCA

1

CCA 7�! g

0

BB@

P (g�1(x, y, z))

Q(g�1(x, y, z))

R(g�1(x, y, z))

1

CCA .

Lemma 5.1. Let L
F,G

be the pencil of conics for F = z(ax + by + cz)
and G = xy. Then L

F,G

is unstable if and only if we have abc = 0.

Proof. The base locus B(L) of F and G is obtained by solving

xy = 0

z(ax+ by + cz) = 0.

For c = 0 we obtain

B(L) = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}

while for c 6= 0 we get

B(L) = {[1 : 0 : 0], [0 : 1 : 0], [0 : c : �b], [c : 0 : �a]}.

Thus, B(L) has at most three points provided a = 0 or b = 0 or c = 0 (or
abc = 0 in short). Therefore, by Theorem 1.1, the pencil L is unstable
if and only if abc = 0.

Lemma 5.2. Let L
F,G

be the pencil of conics for F = (x� y)(ax+ cz)
and G = xy. Then L

F,G

is unstable if and only if c 6= 0.

46 Pro Mathematica, XXXI, 61 (2020), 33-52, ISSN 2305-2430



On the stability of a foliation of degree two

Proof. When c = 0 (hence a 6= 0), the base locus B(L) of F and G is

B(L) = {[0 : y : z]} ' P1.

This in turn implies that the pencil L is stable. On the other hand, when
c 6= 0 we obtain

B(L) = {[0 : 0 : 1], [0 : 1 : 0], [c : 0 : �a]}.

Since B(L) has at most three points, the pencil L is unstable. Therefore,
by Theorem 1.1 the pencil L is unstable if and only if we have c 6= 0.

Lemma 5.3. Let L
F,G

be the pencil of conics for F = xy and G =
ax2 + cy2 + mxz + nyz + pz2, irredutible. Then L

F,G

is unstable if

and only if p = 0, or p 6= 0 and �1�2 = 0, here �1 = n2 � 4pc and

�2 = m2 � 4pa.

Proof. A point [x : y : z] of the base locus of the pencil must be either [0 :
y : z], where cy2+nyz+pz2 = 0, or [x : 0 : z], where ax2+mxz+pz2 = 0.
If p = 0, these points reduce to [0 : 0 : 1], [0 : m : �a] and [m : 0 : �a], so
the base locus has at most three points. When p 6= 0, if�1 = n2�4pc = 0
or �2 = m2�4pa = 0, then the base locus also has at most three points.
On the other hand, if �1 6= 0 and �2 6= 0, the base locus has four points.
The lemma now follows by Theorem 1.1.

Theorem 5.4. Let F be a foliation of degree two in P2
with fist integral

H = F/G, here F,G are polynomials of degree 2. Then F es unstable if

and only if L
F,G

is unstable.

Proof. By Lemma 3.5, the first integral H =
F

G
must be of one of the

following three types:

• H =
z(ax+ by + cz)

xy
, where at most one among a, b, c is zero;

• H =
(x� y)(ax+ cz)

xy
, with a · c 6= 0;
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• H =
xy

Q
=

xy

ax2 + cy2 +mxz + nyz + pz2
, with Q irreducible.

For the first case set L = ax+by+cz. Then the foliation F induced
by

⌦1 = zLd(xy)� xyd(zL)

= yz(by + cz)dx+ xz(ax+ cz)dy � xy(ax+ by + 2cz)dz

has singularities in the solution set of the system

xy(ax+ by + 2cz) = 0,

xz(ax+ cz) = 0,

xyz(by + cz) = 0.

Thus, the singular set of F is

Sing(F) =

(
[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [c : 0 : �a],

[�b : a : 0], [0 : c : �b], [bc : ac : �ab]

)
.

The foliation F is induced around the singularities [1 : 0 : 0], [0 : 1 :
0], [0 : 0 : 1] by

⌦1|x=1 = z(a+ cz)dy � y(a+ by + 2cz)dz, (5.1)

⌦1|y=1 = z(b+ cz)dx� x(ax+ b+ 2cz)dz, (5.2)

⌦1|z=1 = y(by + c)dx+ x(ax+ c)dy, (5.3)

respectively. Then, by Equations 5.1, 5.2, and 5.3, if abc = 0 the foliation
has a singularity with multiplicity 2 and F is unstable. On the other
hand, if abc 6= 0, the foliation F has 7 singularities of multiplicity one,
so F is semistable. In conclusion, in the first case F is unstable if and
only if abc = 0. Hence, by Lemma 5.1, the foliation F = F(F,G) turns
out to be unstable if and only if the pencil L

F,G

is unstable.
In the second case the foliation F is induced by

⌦2 = �y(cyz + ax2)dx+ x2(ax+ cz)dy � cxy(x� y)dz
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with singular set

Sing(F) = {[0 : 1 : 0], [0 : 0 : 1], [c : 0 : �a], [c : c : �a]}.

The foliation F around p1 = [0 : 0 : 1] is induced by

⌦1|z=1 = �y(cy + ax2)dx+ x2(ax+ c)dy,

so it is unstable because the multiplicity of p1 is 2. Therefore again by
Lemma 5.2 we conclude that F = F(F,G) is unstable and the pencil
L
F,G

is unstable.
In the third case the foliation F = F(F,G) (here F = xy and

G = Q) is induced by

⌦3 = (xy)dQ�Qd(xy) = y(xQ
x

�Q)dx+ x(yQ
y

�Q)dy + xyQ
z

dz

= y(ax2 � cy2 � nyz � pz2)dx+ x(cy2 � ax2 �mxz � pz2)dy+

+ xy(mx+ ny + 2pz)dz,

and so now we get Sing(F) = {[0 : 0 : 1]} [ S1 [ S2 [ S3, where

S1 = {[0 : y : z] : cy2 + nyz + pz2 = 0},
S2 = {[x : 0 : z] : ax2 +mxz + pz2 = 0},
S3 = {[x : y : z] : Q = xQ

x

= yQ
y

, Q
z

= 0, xy 6= 0}.

We now prove that F is unstable if and only if p = 0 or p 6= 0 and
�1�2 = 0, where �1 = n2 � 4pc and �2 = m2 � 4pa.

First assume p = 0. In this case, we get m 6= 0 or n 6= 0, otherwise
Q becomes Q = ax2 + cy2, which is not irreducible. The foliation near
[0 : 0 : 1] is induced by

⌦3|z=1 = y(ax2 � cy2 � ny)dx+ x(cy2 � ax2 �mx)dy,

so [0 : 0 : 1] has multiplicity two. This implies that F is unstable.
Now assume p 6= 0 and �1 = 0. In this case we have the singular

point [0 : 1 : � n

2p ] 2 S1 and the foliation is given by

⌦|
y=1 = (ax2 � c� nyz � pz2)dx+ x(mx+ n+ 2pz)dz.
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After a translation to the origin, the foliation can be rewritten as

! = (ax2 � pz2)dx+ x(mx+ 2pz)dz.

It is clear now that F is unstable, because the multiplicity at [0 : 1 : � n

2p ]
is two. The case p 6= 0 and �2 = 0 is handled analogously.

Finally, assume p 6= 0 and �1 · �2 6= 0. In this case S1 and S2

have two singularities each. The singularities in S3 are obtained from
the equations

Q = xQ
x

, Q = yQ
y

, Q
z

= 0.

Note that Q
z

= mx + ny + 2pz = 0 implies z = �mx+ ny

2p
. Replacing

this in either Q = xQ
x

or Q = yQ
y

, we obtain

�1y
2 +�2x

2 = 0,

so S3 has two singularities, totalling seven of them. This implies that F
is semistable.

Therefore, if p 6= 0, then F is unstable if and only if �1 = 0 or
�2 = 0. By Lemma 5.3 the foliation F = F(F,G) is unstable if and
only if the pencil L

F,G

is unstable.

Remark 5.5. It follows from the proof of the previous theorem, when

H =
(x� y)(ax+ cz)

xy
, with a ·c 6= 0, that both F and L

F,G

are unstable

(see Lemma 5.2).
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Resumen

En este art́ıculo estudiamos foliaciones de grado dos en el plano proyec-
tivo que acepten integral primera, también, de grado dos. Tales in-
tegrales primera definen una familia lineal de cónicas. El criterio de
Hilbert-Munford es una poderosa herramienta de la teoŕıa de invarian-
tes geométricos. Una aplicación de esta teoŕıa es la caracterización de la
inestabilidad en el espacio de foliaciones de grado dos respecto a la acción
por un cambio de coordenadas, y asimismo la caracterización de la esta-
bilidad de las familias lineales de cónicas, ambas dadas por Alcántara. El
objeto de este art́ıculo es presentar una prueba alternativa del hecho de
que una foliación de grado dos definida por una familia lineal de cónicas
es inestable si y solo si la correspondiente familia lineal es inestable.

Palabras clave: Foliaciones, pincel de cónicas, inestabilidad.
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