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Abstract

The local dynamics around a fixed point has been extensively studied

for germs of one and several complex variables. In dimension one, there

exist a complete picture of the trajectory of the orbits on a full neigh-

bourhood of the fixed point. In greater dimensions some partial re-

sults are known. In this paper we analyze a case that lies between

one and several variables. We consider skew product maps of the form

F (z, w) = (�(z), f(z, w)) and deal with the parabolic case, that is, when

DF (0, 0) = Id. We describe the behaviour of orbits around a neigh-

bourhood of the origin. We establish formulas for conjugacy maps in

di↵erent regions of these neighbourhoods.
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1 Introduction

The dynamics of skew-product maps F (z, w) = (�(z), f(z, w)) has been
studied by several authors [11, 13, 16, 17, 18]. In this work we focus on
local aspects of the theory, namely, we look at the dynamics of F close
to a fixed point. For the sake of simplicity, we take said fixed point at
the origin (0, 0). We turn our attention to a class of skew-product maps
that we call parabolic, defined as those subject to �(z) = z + O(|z|2)
and f(z, w) = w +O(|(z, w)|2).

Skew-product maps are suitable to test general aspects of the dy-
namics of self-maps on several dimensions. Since the first coordinate
depends only on one variable, we can borrow results from one dimen-
sional complex dynamics to gain information. Nonetheless, they provide
a richer theory than in dimension one. An instance of this fact can be
seen in a recent article by Astorg et al. [3] where they describe a polyno-
mial skew-product map in two dimensions that has a wandering Fatou
component.

We center our study on maps given by

F :(C2, 0) ! (C2, 0) (1.1)

F (z, w) = (�(z), f(z, w)),

where �(z) = z + a
2

z2 +O(z3) , with a
2

6= 0, and f(z, w) = w+ b
2

w2 +
O((z, w)3), with b

2

6= 0.
Our goal is to describe the dynamics of such maps in a neighbour-

hood of the origin. We divide our program into two categories.

A. Describe regions in which F is conjugated to a simpler map.

B. Find formulas for the conjugation map in each region, as in the
one dimensional case.

Finding a conjugacy map to a simpler map depends strongly on the
type of map we are studying and the dimension of the space.

Consider a holomorphic germ F : (Cn, p) ! (Cn, p) with a fixed
point p. A local conjugacy of F to G is a one-to-one map � : Up !
Cn, from an open neighbourhood Up around p, in such way that the
conjugation G = ��1 �F �� holds. In general, the main goal is to obtain
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a conjugacy to an easier map to study than F . This is a rich history
that goes back to Schroeder. We redirect the reader to [1] or [15] for a
list of helpful results.

In the case of a parabolic map F , that is, when DF (p) = Id, only
partial results are available when n � 2. The dynamics of parabolic maps
in several dimensions is in general unpredictable [2, 8], and although
some results have been proven for generic maps, much less is known in
comparison with the one dimensional case.

One common feature of the study of parabolic maps is partial con-
jugacy to a translation. While usually this conjugacy cannot be realized
on a whole neighbourhood around p, it is well defined on certain open
sets with p at its boundary. The conjugacy is commonly referred to as
a Fatou coordinate.

Fatou coordinates are useful for the study of parabolic maps. In
dimension one for instance it is a crucial tool in the understanding of
parabolic bifurcations.

Let us recall standard facts in dimension one. Consider the map
f(z) = z + a

2

z2 + O(z3), with a
2

6= 0, where the origin is a parabolic
fixed point. The Leau Fatou flower theorem states that there exists a
parabolic basin B for the origin, that is, an open set with the origin at its
boundary, where every point converges to the origin after iteration by f .
There exists in fact a conjugacy of f to the translation map g(w) = w+1
in the set B. Similarly, there exists a repelling basin R converging to
0 under backward iteration. Likewise, we can construct a conjugacy to
the translation. In this particular case, the union of B and R contains
a full pinched neighbourhood of the origin [15].

Our goal is to describe the dynamics of parabolic maps in two di-
mensions in a similar fashion. That is, we would like to divide an entire
neighbourhood of the origin into several open sets, in such a way that
we can conjugate our parabolic map to a simpler map.

Our main results are stated as Theorem 5.1 and Theorem 5.2 which
can be sumarized as follows.

Theorem. Let F be as in (1.1). Then, after a change of coordinates,
the set

U = {(z, w) 2 C2, |z| < ✏, |w| < ✏, |w| < |z|M},
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(where M can be chosen as large as desired) can be divided into regions
where F is conjugated to a translation map.

One immediate consequence of the theorem above is that the set U
is foliated by invariant curves.

While most of the conjugacy maps for the hyperbolic case can be
obtained as a limit of iterates, Fatou coordinates are in general not so
easily computed. In this article we provide formulas for Fatou coordi-
nates for the class of skew-product parabolic maps as in (1.1).

This paper is organized as follows. In Section 2 we write down
properties of Fatou coordinates, namely the way they are modified after
we perform change of coordinates. In Section 3 we recall results from
dimension one. Section 4 gathers results from [26], where we find a com-
plete description of the dynamics of a more particular class of parabolic
maps on a whole neighbourhood of the origin. In Section 5 we work the
main theorem.

2 Fatou coordinates

Since we use Fatou coordinates of di↵erent maps throughout our work,
we write down here the main definitions and properties. Set F 1 = F
and F k = F � F k�1 for all k � 2.

Let F : (Cn, p) ! (Cn, p) be a holomorphic germ with a fixed point
p subject to DF (p) = Id and F 6= Id. We will alternate between our
fixed point p being the origin and the point at infinity. The hypotheses
on the derivative of F guarantees that there is a local well defined inverse
holomorphic germ F�1 on a neighbourhood of p.

Given ⇣ 2 Ck we write T⇣ : Ck ! Ck for the translation map
T⇣(z) = z + ⇣. Unless otherwise stated, we take ⇣ 6= 0.

Let U i,F ⇢ Cn be an open connected set such that p 2 @U i,F

and such that for any z 2 U i,F , we have (i) F (z) 2 U i,F and (ii)
limk!1 F k(z) = p. When this is possible, we say U i,F is a parabolic

attracting basin of F .

Let U i,F ⇢ Cn be an attracting basin of F . Assume there is a
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holomorphic map �i,F : U i,F ! Ck such that the diagram

U i,F F����! U i,F

�i,F

?

?

y

�i,F

?

?

y

Ck T⇣����! Ck

(2.1)

commutes. Then we say �i,F is an incoming Fatou map for F and
U i,F with translation T⇣ .

Remark 2.1. If �i,F is an incoming Fatou map for F and U i,F with
translation T⇣ , then ��i,F is an incoming Fatou map for F and U i,F with
translation T�⇣ once we choose � 2 C⇤.

Remark 2.2. Note that we do not require �i,F to have an inverse map.
In fact, in some cases, k, the target dimension of �i,F , can be strictly
smaller than n; in such case �i,F cannot be injective. In the literature
this is sometimes referred as a semi-conjugacy.

Repelling basins as well as repelling Fatou maps are defined by
considering the local inverse map F�1. We do this next.

Whenever Uo,F ⇢ Cn is an open set such that p 2 @Uo,F and Uo,F

is an open attracting basin of F�1, we will call Uo,F a repelling basin

of F .
Assume there exists an incoming Fatou map  for F�1 and Uo,F

with translation T�⇣ so that the diagram

Uo,F F�1

����! Uo,F

 

?

?

y

 

?

?

y

Ck T�⇣����! Ck

commutes. Assume in addition that  has a holomorphic inverse map
(this will imply n = k). Then we call the inverse �o,F =  �1 defined on
 (Uo,F ) the outgoing Fatou map for F and Uo with respect to T⇣ . A
closer look at the functional equation satisfied by  and F�1 yields

F (�o,F (z)) = �o,F (z + ⇣) or F � �o,F = �o,F � T⇣ . (2.2)

We point out some basic facts related to the concepts above.
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Remark 2.3. When n = 1, we can assume without loss of generality
⇣ = 1. The incoming or outgoing change of coordinates are usually
referred to as, respectively, incoming or outgoing Fatou coordinates.

Remark 2.4. When n � 2 and k = 1, the incoming change of coordinate
has been used in the past to prove the existence of Fatou-Bieberbach
maps for automorphisms of Cn (compare [8], [25]).

Remark 2.5. It is easy to see that Fatou coordinates are not unique.
From the functional relations we see that compositions (respectively pre-
compositions) of translations with incoming (respectively outgoing) Fa-
tou coordinates are also incoming (respectively outgoing) Fatou coordi-
nates.

When there is no risk of confusion, we simply write �i and �o. For
now, though, we stick to the superscript for referring to the maps in
question since we want to establish how they behave when changing
coordinates.

Proposition 2.6. Let F be a parabollic germ as above. Assume F
and F�1 have attracting basins U i,F and Uo,F = U i,F�1

. Then F�1

has also a repelling basin, namely we can take Uo,F�1

= U i,F . Let
also �i,F (respectively �o,F ) be an incoming (respectively outgoing) Fatou
coordinate for Fand U i,F with respect to T⇣ . Assume further that �i,F

has a well defined inverse map. Then the following formulas

�o,F�1

(z) = (�i,F )�1(�z), �i,F�1

(z) = �(�o,F )�1(z) (2.3)

yield outgoing (respectively incoming) Fatou maps for F�1 and Uo,F�1

(respectively U i,F�1

) with respect to T⇣ .

Proof. The proof follows easily by verifying directly the respective equa-
tions and using Remark 2.1.

Although the following proposition is trivial, we will use the trans-
formation between Fatou coordinates for di↵erent maps repeatedly on
the following sections.
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Proposition 2.7. Let ⌘ be a (local) change of coordinates between F
and G as in

(Cn, q)
G����! (Cn, q)

⌘

?

?

y

⌘

?

?

y

(Cn, p)
F����! (Cn, p).

(2.4)

Assume U i,F and Uo,F are attracting and repelling basins for F along
with �i,F and �o,F injective Fatou coordinates for F . Then the following
provides attracting and repelling basins for G as well:

U i,G = ⌘�1(U i,F ), Uo,G = ⌘�1(Uo,F ), (2.5)

�i,G = �i,F � ⌘, �o,G = ⌘�1 � �o,F .

here �i,G (respectively �o,G) is defined in U i,G (respectively Uo,G). ⇤
Remark 2.8. One observation that we will use repeatedly on the next
sections is that we do not need ⌘ to be defined on a whole neighbourhood
of the origin. In fact, it is enough for ⌘ to be defined only on U i,G.

3 Fatou coordinates in one dimension

Consider a parabolic germ at the origin of the form

f(z) = z + az2 +O(|z|3),

with a 6= 0. By the standard change of coordinates Z = �az we reduce
to the case a = �1. The following is the classic theorem of Leau and
Fatou. See [15] for details.

Theorem 3.1. (Leau-Fatou theorem) Take f as above. Then there exist
U i,f and Uo,f such that U i,f [ Uo,f forms a punctured neighbourhood
of the origin. In each of these open sets we can define incoming and
outgoing Fatou coordinates �i,f : U i,f ! C, �o,f :  (Uo,f ) ! Uo,f . ⇤

We can write down an explicit choice for the sets U i,f and Uo,f .
Indeed, for any f there exist ✏ > 0 so that V✏ = {⇣ 2 C, |⇣| < ✏, |Arg(⇣)| <
3⇡/4} is an attracting basin and �V✏ is a repelling basin.
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Next we translate all the action to a neighbourhood of 1 using the
reciprocal involution S(z) = 1/z. We then obtain

g(w) = w + 1 +
↵

w
+O(1/w2),

where g = S � f � S. Our fixed point is relocated now at infinity. Let
SR = S(V✏) = {|w| > R, |Arg(w)| < 3⇡/4}, where R = 1/✏. Then we see
that U i,g and Uo,g can be chosen as SR and �SR, respectively.

We first start with a lemma as preparation.

Lemma 3.2. Let g(w) = w + 1 +
↵

w
+ O(1/w1+�), where ↵ 2 C and

� > 0, be a holomorphic map defined on a neighbourhood of infinity.
Take U i,g and Uo,g as, respectively, attracting and repelling basins for g.
Define L↵(w) = w+↵ log(w). Then ⇢ = L�↵ � g � (L�↵)�1 is defined on
W = L�↵(U i,g) and sastifies ⇢(W ) ⇢ W and ⇢(w) = w+1+O(1/w1+�).
Similarly, for ⌧ = (L↵)�1 � g �L↵ defined on V = (L↵)�1(Uo,g) we have
⌧(V ) � V and ⌧(w) = w + 1 +O(1/w1+�).

Proof. Note that L↵ and L�↵ are one-to-one maps on U i,g and Uo,g.
The rest of the assertions are immediate.

Now consider the maps �i,⇢(w) = limn!1 ⇢n(w) � n. We see that
this map is well defined on all of W (since ⇢(W ) ⇢ W ) and from the
estimate

|⇢n+1(w)� ⇢n(w)� 1| = |O(1/(⇢n(w))1+�| = O(1/n1+�)

we deduce that {⇢n(w) � n} forms a Cauchy sequence. Hence the con-
vergence is uniform on compact subsets of U i,g.

Similarly �o,⌧ (w) = limn!1 ⌧n(w � n) is well defined on the open
subset of C where it converges. Using the relations �i,g = �i,⇢ �L�↵ and
�o,g = L↵ � �o,⌧ we can establish the following.

Proposition 3.3. Let g(w) = w+1+
↵

w
+O

✓

1

w2

◆

be a germ at infinity.

Then we take the incoming Fatou coordinate �i,g : U i,g ! C of g as the
limit

�i,g(w) = lim
n!1

L�↵(g
n(w))� n. (3.1)
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Similarly, we can find an outgoing Fatou coordinate �i,g : Uo,g ! C by
means of the formula

�o,g(w) = lim
n!1

gn(L↵(w � n)) (3.2)

(recall the definition L↵(w) = w + ↵ log(w)).

4 Fatou coordinates in two dimensions

Let us recall our results from [26] for skew parabolic maps of the partic-
ular form

F (z, w) =

✓

z

1 + z
, fz(w)

◆

=

✓

z

1 + z
, w � w2 + w3 +O(w4, zw4)

◆

.

(4.1)

As usual, set V✏ = {⇣ 2 C, |⇣| < ✏, |Arg(⇣)| < 3⇡/4}. In dimension
one, the union V✏[(�V✏) forms a punctured neighbourhood of the origin.
In dimension two, we use the four subsets

U i = V✏ ⇥ V✏,

Uo = (�V✏)⇥ (�V✏),

Ua = (�V✏)⇥ V✏,

Ub = V✏ ⇥ (�V✏). (4.2)

Note that their union covers a full neighbourhood of the origin with the
exception of the two axis {zw = 0}. (Anyway, since we have F (0, w) =
(0, f

0

(w))) and F (z, 0) = ( z
1+z , 0), the orbits of F on both axis are fully

understood.)
As in the one dimensional case, we change variables so that the fixed

point is at infinity by using the conjugation map S(z, w) = (1/z, 1/w).
In this way G = S � F � S can be explicitly written as

G(u, v) = (u+ 1, gu(v)) =

✓

u+ 1, v + 1 +O

✓

1

v2
,

1

uv2

◆◆

. (4.3)
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Let SR = {|⇣| > R, |Arg(⇣)| < 3⇡/4} with R = 1/✏ (so that we have
I(±V✏) = ±SR). We focus our attention on the sets

W i = SR ⇥ SR,

W o = �SR ⇥�SR,

W a = �SR ⇥ SR,

W b = SR ⇥�SR. (4.4)

Let T
(a,b) : C2 ! C2 be defined as T

(a,b)(z, w) = (z + a,w + b).

Theorem 4.1. Let G be as in (4.3).
(a) For any p 2 W i, the iterates Gn(p) converge to infinity. We have
a Fatou coordinate given by �i,G = limn!1 T

(�n,�n) � Gn so that the
diagram

W i

G����! W i

�

i,G

?

?

y

�

i,G

?

?

y

C2

T
(1,1)����! C2

commutes.
(b) For any p 2 W o, the backward iterates G�n(p) converges to infinity.
We have a Fatou coordinate given by �o,G = limn!1 Gn � T

(�n,�n) so
that the diagram

G�1(W o)
G����! W o

�

o,G

x

?

?

�

o,G

x

?

?

N ⇢ C2

T
(1,1)����! T

(1,1)(N) ⇢ C2

commutes. Here we have N = (�o,G)�1(G�1(W o)) and T
(1,1)(N) =

(�o,G)�1(W o).

Proof. We prove first the existence of �i,G. Then we will apply this same
result to prove the analogue for �o,G.

Let (u, v) 2 W i, that is u 2 SR and v 2 SR, and write (un, vn) =
Gn(u, v). We have u + 1 2 SR and |v

1

� v � 1| < 1/10 for R large
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enough. In this way we have (u
1

, v
1

) 2 W i and therefore, by induction,
also (un, vn) 2 W i for positive n. In fact we have un = u

0

+ n and
|vn � v

0

| = O(n).
For �i,G

n = T
(�n,�n) �Gn, a simple computation yields

|�i,G
n+1

� �i,G
n | = |Gn+1(u, v)�Gn(u, v)� (1, 1)|

= |G(un, vn)� (un, vn)� (1, 1)|
= |(0, O(1/v2n, 1/(unv

2

n)))|.

As un and vn are of growth O(n) when (u, v) 2 W i, we conclude that
�i,G

n converges uniformly in compact sets of W i.
For the outgoing coordinate we write �o,G

n = Gn � T
(�n,�n). Then

we have the relation

�o,G
n � ⌘ � �i,H

n � ⌘ = Id, (4.5)

here H = ⌘ �G�1 � ⌘ and ⌘(u, v) = (�u,�v). Since we have H(u, v) =
(u+1, v+1+O(1/v2)), we note that �i,H

n converges, and therefore �o,G
n

does also. Finally, as ⌘(W i) = W o and H(W i) ⇢ W i hold, we conclude
W o ⇢ �o,G(W o).

We also have the following.

Theorem 4.2. Let G be as in (4.3).
(a) The map  a,G = limn!1 T

(n,�n) �Gn �T
(�2n,0) converges uniformly

on compact subsets of W a and fits into the commutative diagram

W a

(�1,g1)�����! W a

 

a,G

?

?

y

 

a,G

?

?

y

C2

T
(�1,1)����! C2.

(b) The map  b,G = limn!1 T
(�2n,0) �Gn �T

(n,�n) converges uniformly

on compact sets of W b and we have the diagram

L�1(W b)
L=(�1,g1)�������! W b

 

b,G

x

?

?

 

b,G

x

?

?

E ⇢ C2

T
(�1,1)����! T

(�1,1)(E) ⇢ C2.
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Proof. Define  a,G
n = T

(n,�n) �Gn � T
(�2n,0) and  

b,G
n = T

(�2n,0) �Gn �
T
(n,�n). Unraveling the definition we arrive to

 b,G
n (u, v) = (u, gu+2n�1

� . . . � gu+n+1

� gu+n(v � n)).

In [26] it is proven that the sequence of functions

 o
n(v) = g�v+↵+2n�1

� . . . � g�v+↵+n+1

� g�v+↵+n(v � n)

converges for any ↵ 2 C and v 2 �SR with limit  o(v+1) = g1( o(v)).
Applying this result for ↵ = u � v, we obtain the convergence of the
sequence  b,G

n (u, v) ! (u, o(v)), where  o(v + 1) = g1( o(v)).

For the other coordinate we use the identity

 a,G
n � ⌘ � b,H

n � ⌘ = Id, (4.6)

where H = ⌘ �G�1 � ⌘ and ⌘(u, v) = (�u,�v). Since we have H(u, v) =
(u+1, v+1+Ou(1/v2)), we conclude that  b,H

n converges, and therefore
 a,G

n also does.

We sumarize the results thus obtained for our map F . We name
(0, w) the invariant fiber of F .

Theorem 4.3. Let F be as in (4.1) and U i, Uo, Ua and Ub be defined
as in (4.2).

(a) The union of U i, Uo, Ua and Ub together with the axes form a neigh-
bourhood of the origin in C2.

(b) For any q 2 U i we have Fn(q) 2 U i. Furthermore Fn converges to
the origin uniformly in compact sets of U i.

(c) For any q 2 Uo we have F�n(q) 2 Uo. Furthermore F�n converges
to the origin uniformly in compact sets of Uo.

(d) For any q 2 Ua we have that F�n(q) converges to the w-axis, the
invariant fiber of the map F .

(e) For any p 2 Ub we have that Fn(p) converges to the w-axis, the
invariant fiber of the map F .
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5 The general case

We are ready to tackle the general case. Consider now the map

F (z, w) = (�(z), fz(w)), (5.1)

where �(z) = z +O(z2) and fz(w) = w +O(|(z, w)|2). We focus on the
particular case

F (z, w) = (z + a
2

z2 +O(z3), w + b
2

w2 +O(|(z, w)|3)),

with a
2

6= 0 and b
2

6= 0.
By a change of coordinates we can even assume a

2

= �1 and b
2

=
�1. Using a shear polynomial as a further change of coordinates, we can
increase the power of z on the second term. Similarly by using another
polynomial change of variables we can increase the degree of the z term
that is multiplied by w. Therefore we can assume F takes the form

F (z, w) = (z � z2 +O(z3), w � w2 +O(w3, zw2, zM+1w, zM+1)),
(5.2)

with M as large as we wish.
As we still have F (0, w) = (0, w � w2 +O(w3)), we can again refer

to the w-axis as an invariant fiber of F . However, this time we have
F (z, 0) = (z�z2+O(z3), O(zM+1)), so the z-axis is no longer invariant.
To work around this issue we use the main result of [8] which states
that on V✏ there exists an analytic function �

1

(z) subject to �
1

(�(z)) =
fz(�1

(z)). Similarly on �V✏ there exists an analytic function �
2

(z) such
that �

2

(�(z)) = fz(�2

(z)).
We can therefore change coordinates on V✏ ⇥ {|w| < ✏} by means of

(z, w) 7! (z, w � �
1

(z)), and on the set (�V✏) ⇥ {|w| < ✏} by (z, w) 7!
(z, w � �

2

(z)). On these new coordinates we read

F (z, w) = (z � z2 +O(z3), w � w2 +O(w3, zw2, zM+1w)). (5.3)

The next step is to linearize the first coordinate. As we know from
the one dimensional theory, there exist two maps, ⇢

1

on V✏ and ⇢
2

on
�V✏, that conjugate �(z) to the translation u ! u+1 on V✏ and �V✏. We
have for both the estimate ⇢(z) = z +O(z2 log(z)) (see [15] for details).
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One more time we use the change of coordinate (u,w) 7! (u, v) =
(u, 1/w). On the new system we have

G(u, v) =

✓

u+ 1, v + 1 +O

✓

1

u
,
1

v
,
log(u)

u2

,
v

uM+1

,
v log(u)

uM+2

◆◆

. (5.4)

Now, as before, we divide a punctured neighbourhood of infinity in
several sets:

W i = SR ⇥ SR, W b = SR ⇥ (�SR)

W a = (�SR)⇥ SR, W o = (�SR)⇥ (�SR).

From now on, when we refer to a region W , we mean one of the four
possible W i,W b,W a or W o.

Consider the class of maps ⇥(u, v) = (u, v + ↵ log(u) + � log(v)).
It is immediate that after choosing R large enough ⇥ is injective in
each region W . So, by conjugating Gj by ⇥ and choosing ↵ and �
appropriately, we can get rid of the linear terms O(1/u, 1/v).

To emphasize that each of these maps is a di↵erent conjugation of
G on each set W : we use ✓

i

for the change of coordinates on W i, ✓
o

on W o, ✓
a

on W a and ✓
b

on W b. We write G
i

= (✓
i

)�1 � G
1

� ✓
i

, the
corresponding map defined on W i, and G

o

= (✓
o

)�1 � G
2

� ✓
o

on W o,
and G

a

= (✓
a

)�1 � G
2

� ✓
a

on W a, and G
b

= (✓
b

)�1 � G
1

� ✓
b

on W b.
Now, the composition ⇥�1 �Gj �⇥(u, v) equals

✓

u+ 1, v + 1 +O

✓

1

u2

,
1

v2
,
log(v)

v2
,
log(u)

v2
,

v

uM+1

,
v log(u)

uM+2

◆◆

.

Note the similarity with the special map on last section where we have

G(u, v) = (u+ 1, gu(v)) =

✓

u+ 1, v + 1 +O

✓

1

v1+�
,

1

uv1+�

◆◆

.

In order to control the mixed terms in u and v on our maps G we
define

fW i = {(u, v) 2 SR ⇥ SR, |u|M�1 > |v|}, (5.5)

gW o = {(u, v) 2 (�SR)⇥ (�SR), |u|M�1 > |v|}.
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For (u, v) 2 fW i we have Gn
i

(u, v) = (u + n, v + O(n)). Therefore,

eventually we reach Gn
i

(u, v) 2 fW i. Using results from the last section,

it is possible to conjugate G
i

to a translation on fW i by means of the limit

�i,G
i = limn!1 T

(�n,�n) �Gn
i

, with �i,G
i : fW i ! C2. If we unravel for

G, we obtain a formula for the Fatou coordinate on the incoming basin
for G as

�i,G(u,w) = lim
n!1

T
(�n,�n) � ✓�1

i

� �1

1

�Gn, (5.6)

where  
1

is the composition of the change of coordinates from above

and W i,G =  
1

(fW i).

Similarly, we obtain G
o

(gW o) � G
o

. By our work on the last sec-

tion we achieve a conjugation �o,G
o : gW o ! C2 of G on W o,G to the

translation

�o,G
o = lim

n!1
Gn

o

� T
(�n,�n).

Rewritting for G we obtain the Fatou coordinate �o,G : W o,G ! C2 on
the outgoing basin for G as

�o,G(u,w) = lim
n!1

Gn � 
2

� ✓
o

� T
(�n,�n). (5.7)

We have therefore established the following result.

Theorem 5.1. Given G as in (5.4), we can find incoming and outgo-
ing Fatou coordinates for the respective incoming and outgoing basins at
infinity. ⇤

We also obtain information on the behavior of G on the regions
W a and W b, since we can apply Theorem 4.2 to the maps G

a

and G
b

respectively.
In Theorem 4.2 we proved that on the region W a the map  a =

limn!1 T
(n,�n)�Gn

a

�T
(�2n,0) satisfies  

a�(�1, g1) = T
(�1,1)� a. Since

G
a

= (✓
a

)�1 �G
2

� ✓
a

holds, we get Gn
a

= (✓
a

)�1 � ( 
2

)�1 �Gn � 
2

� ✓
a

,
and so  a = limn!1 T

(n,�n) � (✓a)�1 � ( 
2

)�1 � Gn �  
2

� ✓
a

� T
(�2n,0)

converges and fits into a corresponding commutative diagram.
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Similarly, on the region W b, the map  b = limn!1 T
(�2n,0) �Gn

b

�
T
(n,�n) satisfies  

b � (�1, g1) = T
(�1,1) � b. From G

b

= (✓
b

)�1 �G
1

�
✓
b

, we obtain Gn
b

= (✓
b

)�1 � ( 
1

)�1 � Gn �  
1

� ✓
b

, and thus  b =
limn!1 T

(�2n,0) � (✓b)�1 � ( 
1

)�1 �Gn � 
1

� ✓
b

� T
(n,�n) converges and

fits again into the corresponding commutative diagram.
We have thus settle the following.

Theorem 5.2. For G as in (5.4), on the regions

gW a = {(u, v) 2 �SR ⇥ SR, |u|M�1 > |v|}, (5.8)

gW b = {(u, v) 2 SR ⇥ (�SR), |u|M�1 > |v|},

the limits:  a = limn!1 T
(n,�n) �(✓a)�1 �( 

2

)�1 �Gn � 
2

�✓
a

�T
(�2n,0)

and  b = limn!1 T
(�2n,0) � (✓b)�1 � ( 

1

)�1 �Gn � 
1

� ✓
b

�T
(n,�n) exist.

Furthermore, the second coordinate conjugates g1 to the translation T
1

,
that is, the diagram

]W a,b
(�1,g1)�����! ]W a,b

 

a,b

?

?

y

 

a,b

?

?

y

C2

T
(�1,1)����! C2

commutes for each case gW a and gW b. ⇤
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Resumen

La dinámica local en torno a vecindades de un punto fijo ha sido ampli-
amente estudiada tanto para gérmenes de una como de varias variables
complejas. En dimensión uno disponemos de un cuadro casi completo
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de la trayectoria de las órbitas en torno a una vecindad del punto fijo.
No obstante, en dimensiones más altas, apenas se cuenta con resulta-
dos parciales. En este trabajo analizamos un caso intermedio entre las
dinámicas de una y varias variables. Consideramos aplicaciones de pro-
ductos trenzados de la forma F (z, w) = (�(z), f(z, w)) y tratamos el
caso parabólico, es decir, cuando DF (0, 0) = Id. Describimos el com-
portamiento de órbitas en torno a vecindades del origen. Además, es-
tablecemos fórmulas para las aplicaciones de conjugación en diferentes
regiones.

Palabras clave: Aplicaciones de productos trenzados, coordenadas de Fatou.
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