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Abstract

Let SL(2, R) be the special linear group and sl(2,R) its Lie algebra. We

study geometric properties associated to the adjoint orbits. In particular,

we show that just three possibilities arise: either the adjoint orbit is a

one-sheeted hyperboloid, or a two-sheeted hyperboloid, or else a cone. In

addition, we introduce a specific potential and study the corresponding

gradient vector field and its dynamics when we restrict to the adjoint

orbit. We also describe the symplectic structure on these adjoint orbits

coming from the well known Kirillov-Kostant-Souriau symplectic form

on coadjoint orbits.
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1 Introduction

This text is of expository nature. We carry out the exercise of explicitly
describing adjoint orbits of sl(2,R) together with the equations defin-
ing them as real a�ne algebraic varieties, over which we also describe
symplectic structures.

We then focus on a single orbit that has the shape of a one-sheeted
hyperboloid, presenting it as a doubly ruled surface whose tangent bundle
we describe explicitly. We add a potential carefully chosen to be a
Morse function, and study the orbits of the corresponding gradient
flow. For the case of compact manifolds the classical Morse–Smale
theorem states that the trajectories of the gradient flow converge to
critical points of the potential. Here, in contrast, we show that some
trajectories are not complete, thus highlighting the importance of the
hypothesis of compactness in the Morse–Smale theory. For applications
to mathematical physics it is essential to consider examples where some
trajectories are not complete in time.

Even though our calculations are straightforward, we believe it is
useful to have the results readily available in the literature. The study
of the geometry of adjoint orbits is a classical topic in Geometry and
Lie theory. However, the literature is mainly presented following an
abstract approach, so, in this paper, we exhibit most of the details. Some
references that focus in specific cases of adjoint and coadjoint orbits are
[3], for classical compact Lie groups, and [1], where there is an excellent
explanation of the geometry of flag manifolds arising from the adjoint
representation of compact semisimple Lie groups.

We study the geometry of those adjoint orbits which arise from
the adjoint representation Ad: SL(2,R) ! gl(sl(2,R)), where for each
g 2 SL(2,R) and H 2 sl(2,R) the adjoint action is Adg(H) = gHg�1.
Let A,B,C be the basis of sl(2,R) given by

A =


0 1
1 0

�
, B =


1 0
0 �1

�
, C =


0 1
�1 0

�
. (1.1)

We decompose H = xA+ yB + zC and then find out that the adjoint
orbits are of one of the following three types:
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• a one–sheeted hyperboloid, given by the equation

O : x2 + y2 � z2 = �2, � 6= 0;

• a two–sheeted hyperboloid, given by

O+
1 : x2 + y2 � z2 = ��2, z > 0,� 6= 0,

O�
1 : x2 + y2 � z2 = ��2, z < 0,� 6= 0;

• a cone, given by

O+
2 : x2 + y2 � z2 = 0, z > 0,

O�
2 : x2 + y2 � z2 = 0, z < 0,

O0
2 = {0}.

We endow the adjoint orbit O with the symplectic structure arising
from a coadjoint orbit, thus realizing it as a symplectic manifold. Namely,
we use the isomorphism between adjoint and coadjoint orbits provided
by the Killing form to give this adjoint orbit the symplectic structure
pulled-back from the well known Kirillov–Kostant–Souriau form on the
corresponding coadjoint orbit.

We then consider the function f(x, y, z) = yz over sl(2,R) and
regard its restriction to the orbit O as a Morse function, calculating the
trajectories of its gradient vector field. We analyse the limit points of
the gradient flow, and compare the results obtained here to well known
results about Morse flows for the compact case.

We observe that every orbit of the adjoint action on sl(2,R) is of one
of the three types presented here, hence we have a complete description.

In general, understanding details of the family of all adjoint orbits
for a given Lie algebra is a deep question with applications to non trivial
aspects of the theory. Some such research areas, among many, are: the
theory of Slodowy slices, the Springer theory, and the Fukaya categories
in homological mirror aymmetry. Therefore, the calculations we present
here may be regarded as a warm up exercise in preparation to the study
of more advanced topics.
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2 Preliminaries

We start by recalling some basic definitions of Lie theory. For further
details, we suggest [6, 11].

A Lie group is a smooth manifold G with a smooth map from
G⇥G ! G that makes G into a group and such that the inverse map
g 7! g�1 is also smooth.

Let M(n,R) be the set of n ⇥ n matrices with entries in the real
numbers.

The general linear group GL(n,R) is the subset of M(n,R) of
non-singular matrices with matrix multiplication as group operation.

By definition a matrix Lie group is a closed subgroup of GL(n,R).
For example, the special linear group SL(n,R) is the subgroup

of GL(n,R) of non-singular matrices of determinant 1.
A Lie algebra is a vector space g over a field F together with a Lie

bracket, that is, a bilinear map

g⇥ g ! g, (x, y) 7! [x, y] ,

satisfying

• [x, x] = 0 for each x 2 g,

• Jacobi identity: [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for every x, y, z 2
g.

Remark 2.1. If the characteristic of the F is not 2, then the first
condition is equivalent to anticommutativity

[x, y] = � [y, x] for each x, y 2 g.

The centre of a Lie algebra consists of all those elements x in g,
subject to [x, y] = 0 for all y in g.

Let g1, g2 be two Lie algebras over a field F. A map ' : g1 ! g2 is a
Lie algebra homomorphism if ' is linear and satisfies

'([x, y]) = ['(x),'(y)] ,

for each x, y 2 g1. If ' is bijective, we call it an isomorphism.

76 Pro Mathematica, XXXI, 61 (2020), 73-107, ISSN 2305-2430



Adjoint orbits of sl(2,R) and their geometry

There are several ways to understand the Lie algebra of a Lie group.
Here we consider it as the tangent space at the identity element of the
group, that is, if G is a Lie group, then its Lie algebra g corresponds to
TeG.

For instance, SL(n,R) is a matrix Lie group with Lie algebra sl(n,R).
In terms of matrices, sl(n,R) is the Lie algebra of n⇥nmatrices with trace
0 and coe�cients in R, where the Lie bracket is the usual commutator
[X,Y ] = XY � Y X.

Let A be a n⇥ n matrix over R or C. The exponential of A is the
n⇥ n matrix

exp(A) =
1X

k=0

Ak

k!
.

An important result in Lie theory is that if G is a matrix Lie group
with algebra g, then exp(A) 2 G holds for each A 2 g. Below we provide
a direct proof when G = SL(n,R).

Proposition 2.2. For any A 2 sl(n,R), we have exp(A) 2 SL(n,R).

Proof. Consider the Jordan form of A. If {�i}li=1 are the eigenvalues of
A, then we have

exp(A) =
1X

k=0

Ak

k!
=

2

66664

P1
k=0

�k
1

k! ⇤ ⇤ ⇤
0

P1
k=0

�k
2

k! ⇤ ⇤
...

...
. . .

...

0 0 0
P1

k=0
�k
l

k!

3

77775

=

2

6664

e�1 ⇤ ⇤ ⇤
0 e�2 ⇤ ⇤
...

...
. . .

...
0 0 0 e�l

3

7775
.

We get immediately the equality

det(exp(A)) =
lY

i=1

e�i = e
Pl

i=1 �i = etr(A) = e0 = 1,

and so exp(A) 2 SL(n,R).
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Let G be a Lie group with Lie algebra g. The adjoint representa-

tion of G on g is the group homomorphism

Ad: G ! Aut(g)
g 7! Adg.

For example, for G = SL(n,R) and g = sl(n,R), the group homo-
morphism is given by

Ad: SL(n,R) ! Aut(sl(n,R))
g 7! Adg,

where Adg(X) = gXg�1 for every X 2 sl(n,R).
Given H 2 sl(n,R), its adjoint orbit is

O(H) = {gHg�1 : g 2 SL(n,R)}.
We will see that the geometric structure on adjoint orbits depends

strongly on the element H 2 sl(2,R). We will give a complete characteri-
zation of those orbits.

The adjoint representation of the Lie algebra g in gl(g) is the
homomorphism

ad: g ! gl(g)
x 7! adx,

here adx(y) = [x, y] for each x, y 2 g.
It follows by bilinearity of the Lie bracket that adx is linear for each

x 2 g; the same is true for the correspondence x 7! adx. In order to prove
that adx is a homomorphism we just have to check that adx satisfies the
identity

ad([x, y]) = adx � ady � ady � adx, for every x, y 2 g.

The above equality holds precisely because of the Jacobi identity. The
kernel of ad is the centre of g.

3 Adjoint orbits of sl(2,R)
Here we study the geometry of orbits of sl(2,R) given by the adjoint action,
namely, the action induced by the adjoint representation of SL(2,R) in
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its associated Lie algebra sl(2,R). We will classify them into three classes:
either the adjoint orbit is a one–sheeted hyperboloid, or a two–sheeted
hyperboloid, or else a cone, depending on the choice of the element that
we take in the Lie algebra sl(2,R). Recall the basis of sl(2,R) introduced
in (1.1), namely

A =


0 1
1 0

�
, B =


1 0
0 �1

�
, C =


0 1

�1 0

�
.

3.1 The one–sheeted hyperboloid

Here we study the orbit of �A in sl(2,R) for � 2 R\{0}.

Let be H in sl(2,R) and consider the decomposition

H = xA+ yB + zC; x, y, z 2 R.

Proposition 3.1. For fixed � 6= 0, the adjoint orbit O(�A) is the set of
matrices H = xA+ yB + zC in sl(2,R) that satisfy

x2 + y2 � z2 = �2.

Proof. First we prove that if H belongs to such orbit, then x2+y2�z2 =
�2. The adjoint orbit of �A is by definition

O(�A) = {g�Ag�1 : g 2 SL(2,R)}.

Hence, if H 2 O(�A), there exists M 2 SL(2,R) such that H =
M�AM�1. Since the determinant of a matrix is invariant under conjuga-
tion, we have

det(H) = det(�A).

Thus, we obtain

det(H) = det

✓
y x+ z

x� z �y

�◆
= z2 � x2 � y2,

det(�A) = det

✓
0 �
� 0

�◆
= ��2,
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which implies
x2 + y2 � z2 = �2. (3.1)

Thus we conclude the first part of the proof. It is a well known fact
that Equation (3.1) defines a surface in R3 called a one–sheeted hy-

perboloid.

Now we show that, reciprocally, if H = xA + yB + zC satisfies
Equation (3.1), then H belongs to O(�A). Given any matrix N 2 sl(2,R),
its characteristic polynomial is completely determined by its determinant.
Indeed, if ⇢N denotes the characteristic polynomial of N , we have

⇢N (t) = t2 + det(N).

Thus, once H satisfies Equation (3.1), we get det(H) = ��2 and therefore

⇢H(t) = t2 � �2 = (t� �)(t+ �).

As soon as � is assumed to be di↵erent than zero, we know that H has
two distinct eigenvalues, and so H is diagonalizable. Let

D =


� 0
0 ��

�

and P 2 GL(2,R) be such that PHP�1 = D. Note that we can assume
P 2 SL(2,R) by multiplying its first column by 1

det(P ) if necessary. By

the same argument, we find P0 2 SL(2,R) such that P0�AP�1
0 = D.

Thus, we get
(P�1

0 P )H(P�1
0 P )�1 = �A

with P�1
0 P 2 SL(2,R). We conclude that if H = xA+ yB + zC satisfies

Equation (3.1), then H belongs to the orbit O(�A) and we are done.

Remark 3.2. Since det(�B) satisfies Equation (3.1), the above argument
implies O(�A) = O(�B).

Remark 3.3. In the complex case, i.e., for sl(2,C), if we consider

H0 =


1 0
0 �1

�
,
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then we get that its adjoint orbit O(H0) is di↵eomorphic to T ⇤P1, specif-
ically, the cotangent bundle of the complex projective line. So, the
geometric structure of the adjoint orbit is quite di↵erent. Moreover, in
[7], Gasparim, Grama, and San Martin gave a complete description of the
di↵eomorphism type of adjoint orbits for diagonal matrices in sl(n,C).

3.2 The two–sheeted hyperboloid

Now we turn to the geometric structure of the adjoint orbit of �C.

Proposition 3.4. Fix � 2 R\{0}. The adjoint orbit O(�C) is the set
of matrices H = xA+ yB + zC in sl(2,R) subject to

x2 + y2 � z2 = ��2.

Proof. For H 2 O(�C) there exists N 2 SL(2,R) such that N�CN�1 =
H. Therefore we have

det(�C) = det(NHN�1) = det(H),

and so we get

det(H) = det

✓
y x+ z

x� z �y

�◆
= z2 � x2 � y2,

det(�C) = det

✓
0 �
�� 0

�◆
= �2,

which implies
x2 + y2 � z2 = ��2. (3.2)

For the reciprocal, we start by showing that there is no M 2 SL(n,R)
such that M(�C)M�1 = ��C. Without loss of generality take � > 0.
Then, for

M =


u v
s t

�

we reach

M(�C)M�1 = �

 �us� tv u2 + v2

�s2 � t2 us+ tv

�
.

Pro Mathematica, XXXI, 61 (2020), 73-107, ISSN 2305-2430 81



F. Rubilar, L. Schultz

As u2 + v2 � 0, we easily conclude that there is no M 2 SL(n,R) such
that M(�C)M�1 = ��C. The bottom line is that we have �C 2 O+

1 if
� > 0 and �C 2 O�

1 if � < 0.
Next we show that if H = xA+ yB + zC is such that x, y, z satisfy

(3.2), then H belongs to O+
1 or O�

1 . To verify this, we use an argument
similar to the one we used in the previous subsection. Once H is such
that Equation (3.2) holds, its characteristic polynomial is given by

⇢H(t) = t2 + �2 = (t+ i�)(t� i�).

So, we can write H in its real Jordan form in either of two di↵erent ways

PHP�1 =


0 �
�� 0

�

or

RHR�1 =


0 ��
� 0

�
,

always with R,P 2 GL(2,R). The structural di↵erence between these
two cases is that if det(R) > 0 then det(P ) < 0, and vice versa. Assume
det(P ) > 0. Then we can define P̃ = 1p

det(P )
P in order to get

P̃HP̃�1 = �C,

where P̃ 2 SL(2,R) and we conclude that H belongs to the orbit O(�C).
In the case when det(P ) < 0, we repeat the same construction for R in
order to get

R̃HR̃�1 = �C.

Remark 3.5. Equation (3.2) defines a two–sheeted hyperboloid. In
this case, we have two situations. Either z > 0 (the upper half part of the
hyperboloid) or z < 0 (the lower half), which respectivelly correspond to

O+
1 : x2 + y2 � z2 = ��2, z > 0,� 6= 0,

O�
1 : x2 + y2 � z2 = ��2, z < 0,� 6= 0.
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3.3 The cone

Note that we have analysed adjoint orbits of matrices with determinant
either positive or negative. In this section we study the remaining
situation, namely, adjoint orbits of matrices with zero determinant. In
order to do this, define D = A+C and consider its adjoint orbit O(�D).
The main result reads as follows.

Proposition 3.6. The adjoint orbit O(�D) corresponds to matrices
H = xA+ yB + zC 2 sl(2,R) subject to x2 + y2 � z2 = 0.

Proof. If H = xA + yB + zC belongs to O(�D), we can write down
H = L�DL�1 where L 2 SL(2,R). As before we get

det(H) = det

✓
y x+ z

x� z �y

�◆
= z2 � x2 � y2 and

det(�D) = det

✓
0 2�
0 0

�◆
= 0.

We conclude that if H = xA+ yB + zC belongs to O(�D), then x, y, z
satisfy the relation

x2 + y2 � z2 = 0. (3.3)

Next we show that if H = xA+ yB + zC is such that x, y, z satisfy
(3.3), then H belongs either to O+

2 , O�
2 or O0

2. To prove this, we look
again to the Jordan form of H. Now, once we know ⇢H(t) = t2, we have
two cases: whether H = 0 or H has as Jordan form


0 1
0 0

�
.

If H = 0, we have H 2 O0
2. So assume H 6= 0 and let P 2 GL(2,R)

be such that

PHP�1 =


0 1
0 0

�
.

If det(P ) > 0, define P̃ = 1p
det(P )

P 2 SL(2,R) in order to obtain

H 2 O+
2 . On the other hand, if det(P ) < 0, we can define P̃ 2 SL(2,R)
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as the matrix that we obtain from P by multiplying its first column by
1

det(P )
. And so, we reach

P̃HP̃�1 =


0 det(P )
0 0

�
.

Therefore, in this case we obtain H 2 O�
2 . Note that if � > 0, then we

get always x+ z > 0 and x� z < 0, hence we have z > 0 and therefore

O+
2 = {H = xA+ yB + zC 2 sl(2,R) : x2 + y2 � z2 = 0, z > 0}.

When � < 0, we have x+ z < 0 and x� z > 0 so we get z < 0 and thus

O�
2 = {H = xA+ yB + zC 2 sl(2,R) : x2 + y2 � z2 = 0, z < 0}.

Finally, for � = 0 we have
O0

2 = {0}.
Equation (3.3) defines a cone. We distinguish three situations; either

z > 0 (upper half of the cone), or z < 0 (lower half), or else z = 0 (origin);
which are determined by three di↵erent orbits denoted by O+

2 , O�
2 and

O0
2, respectively. We claim that we have

• �D 2 O+
2 if � > 0,

• �D 2 O�
2 if � < 0, and

• �D 2 O0
2 if � = 0.

To see this, take M 2 SL(n,R) and write

M =


u v
s t

�
.

We have then

M(�D)M�1 = �

 �2su 2u2

�2s2 2us

�
.

So, if � > 0, we have 2�u2 � 0; while if u = 0, necessarily s 6= 0, otherwise
must have det(M) = 0. So, we conclude that there are three exclusive
orbits associated with Equation (3.3), depending on whether � is positive,
negative or zero.
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Remark 3.7. Now it is trivial to see that these objects comprise the
adjoint orbits of sl(2,R). In fact, given a non-zero matrix H 2 sl(2,R)
subject to H = xA+ yB + zC, we have x2 + y2 � z2 = ↵ 2 R. In this
way, if ↵ 2 R+ then H 2 O(�A). If ↵ 2 R� then H 2 O+

1 or H 2 O�
1 ,

while for ↵ = 0 we have H 2 O+
2 or H 2 O�

2 . If H is the zero matrix, of
course we get H 2 O0

2. Thus, every element in sl(2,R) is contained in
one and only one of these orbits.

Figure 1: Orbits of sl(2,R).
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4 The geometry of the one–sheeted hyper-

boloid

Here we show that the one–sheeted hyperboloid is a ruled surface. Next
we use this result to study the dynamics of a gradient field restricted to
this surface.

Recall that a surface S is called ruled if it is the union of a one
parameter family of lines {r↵}↵2A. More precisely, there is a family
of lines {r↵}↵2A and a parametrization r of S satisfying the following
properties.

• The parametrization r is of the form r(u, v) = c(u) + vb(u), for a
given v 2 R, where c and b are smooth functions.

• For each u, there is ↵u 2 A, such that ru(v) = r(u, v) is the
parametric equation of the line r↵u 2 {r↵}↵2A.

• The association u 7! ↵u is a one to one correspondence.

In this case, we say that S is ruled by the family {r↵}↵2A.
Similarly, S is called doubly ruled if it can be ruled in di↵erent

ways by two disjoint families of lines.
For now on, denote by S the one–sheeted hyperboloid given by the

equation x2 + y2 � z2 = �2, with fixed � 6= 0. In order to show that S is
doubly ruled, we will construct explicitly such families.

Lemma 4.1. Let S be the one–sheeted hyperboloid given by equation
x2 + y2 � z2 = �2, with � 6= 0. There exist two disjoint families of lines
F1, F2 contained in S.

Proof. Consider the cylinder C : x2 + y2 = �2 which intersect S in the
plane z = 0. Let (x0, y0) be a point in the circle C \ S. Think of
y = f(x) = ±p

�2 � x2 as describing the cylinder. Notice that the
tangent space to C at (x0, y0) is given by

y � y0 =
@f

@x
(x0)(x� x0) +

@f

@z
(x0)(z � 0).
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In particular for y0 > 0, we get

y +

 
x0p

�2 � x2
0

!
x =

�2

p
�2 � x2

0

, (4.1)

while, for y0 < 0 the equation is

y �
 

x0p
�2 � x2

0

!
x =

��2

p
�2 � x2

0

. (4.2)

Let us analyze each case separately.
Case y0 > 0. We describe the intersection of the tangent space with

S. Rewriting Equation (4.1) as

y =
�2

p
�2 � x2

0

�
 

x0p
�2 � x2

0

!
x,

squaring both sides, and substituting y2 by �2 + z2 � x2, we find

(x� x0)
2 =

✓
�2 � x2

0

�2

◆
z2.

The above equation gives two planes containing (x0, y0, 0), namely

8
>>>><

>>>>:

x�
✓p

�2�x2
0

�

◆
z = x0

x+

✓p
�2�x2

0

�

◆
z = x0.

Once again, considering the intersection with the plane (4.1), we get two
sets of systems of equations

8
>>>><

>>>>:

y �
✓

x0p
�2�x2

0

◆
x = ��2p

�2�x2
0

x�
✓p

�2�x2
0

�

◆
z = x0,

(4.3)
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8
>>>><

>>>>:

y �
✓

x0p
�2�x2

0

◆
x = ��2p

�2�x2
0

x+

✓p
�2�x2

0

�

◆
z = x0.

(4.4)

Let us find the line determined by the planes in Equation (4.3). Note

that v1 =

✓
x0p
�2�x2

0

, 1, 0

◆
and v2 =

✓
1, 0,

�
p

�2�x2
0

�

◆
are normal vectors

to the planes. We need the explicit value

v1 ⇥ v2 =

 
�
p
�2 � x2

0

�
,
x0

�
,�1

!
.

In this way, the parametric equation of the intersection line determined
by (4.3) is

r1(t) = (x0, y0, 0) + t

 
�
p
�2 � x2

0

�
,
x0

�
,�1

!
.

We check now why r1 is contained in S. Using y0 =
p

�2 � x2
0, we get

 
x0 � t

p
�2 � x2

0

�

!2

+

✓
y0 +

tx0

�

◆2

� t2 = �2.

Similarly, fashion the line determined by the planes in Equation (4.4)
is

r2(t) = (x0, y0, 0) + t

 p
�2 � x2

0

�
,
�x0

�
,�1

!
.

Since y0 =
p
�2 � x2

0, for every t 2 R, we obtain

 
x0 +

t
p
�2 � x2

0

�

!2

+

✓
y0 +

tx0

�

◆2

� t2 = �2,

and hence r2 is contained in S.
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Case y0 < 0. Substituting Equation (4.2) in x2 + y2 � z2 = �2, we
reach 8

>>>><

>>>>:

y �
✓

x0p
�2�x2

0

◆
x = ��2p

�2�x2
0

x�
✓p

�2�x2
0

�

◆
z = x0,

(4.5)

8
>>>><

>>>>:

y �
✓

x0p
�2�x2

0

◆
x = ��2p

�2�x2
0

x+

✓p
�2�x2

0

�

◆
z = x0.

(4.6)

Working as in the previous case, the intersection plane is

s1(t) = (x0, y0, 0) + t

 
�
p
�2 � x2

0

�
,
�x0

�
,�1

!
,

which shows that s1 is contained in S.
Equation (4.6) yields

s2(t) = (x0, y0, 0) + t

 p
�2 � x2

0

�
,
x0

�
,�1

!
,

also contained in S.
For (�, 0, 0) and (��, 0, 0), namely the point when y0 = 0, the

tangent spaces are given by the equations x = � and x = ��, respectively.
When x = � both

l1(t) =(�, 0, 0) + t(0, 1,�1),

l2(t) =(�, 0, 0) + t(0,�1,�1).
(4.7)

are contained in S.
For x = ��, the same is true for

l01(t) =(��, 0, 0) + t(0,�1,�1),

l02(t) =(��, 0, 0) + t(0, 1,�1).
(4.8)
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Observe that we can equally well get the lines from Equation (4.6)
by a rotation of ⇡ radians of the lines obtained in Equation (4.3) around
z–axis, which is to be expected since we are looking at diametrically
opposite points in the cylinder. In fact, rotating r1(t) we achieve

2

4
cos⇡ � sin⇡ 0
sin⇡ cos⇡ 0
0 0 1

3

5

2

64
x0 � t

p
�2�x2

0

�
y0 +

tx0
��t

3

75 =

2

64
�x0 +

t
p

�2�x2
0

��y0 � tx0
��t

3

75 ,

which is exactly s2(t). For r2(t) rotated by ⇡ radians around of z–axis
we get

2

4
cos⇡ � sin⇡ 0
sin⇡ cos⇡ 0
0 0 1

3

5

2

64
x0 +

t
p

�2�x2
0

�
y0 � tx0

��t

3

75 =

2

64
�x0 � t

p
�2�x2

0

��y0 +
tx0
��t

3

75 ,

exactly s1(t). By the same argument, we see that l01(t) is a rotation of
l1(t) and l02(t), a rotation of l2(t).

Let us define F1 as the union of the lines obtained from (4.3) and
(4.6) together with l1(t) and l01(t). Similarly, let F2 be the union of the
families of the lines obtained from (4.4) together with (4.5), this time
appending l2(t) and l02(t). These families are disjoint since they come
from di↵erent linearly independent systems of equations.

Proposition 4.2. The families Fi, for i = 1, 2, satisfy the following
properties.

• For any two lines a, b 2 Fi, there exists a rotation R✓ around the
z–axis such that R✓a = b.

• If a 2 Fi and b is such that there exists a rotation R✓ around the
z–axis such that R✓a = b, then b 2 Fi.

Proof. We prove the proposition just for F1, the case F2 is completely
analogous.
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Figure 2: The intersection of the plane in (4.1) with the one–sheeted
hyperboloid.

By Lemma 4.1, if a, b 2 F1, then the lines pass through a point
(x0, y0, 0) 2 S, so they have the shape

r1(t) = (x0, y0, 0) + t

 
�
p
�2 � x2

0

�
,
x0

�
,�1

!
, y0 > 0,

s2(t) = (x0, y0, 0) + t

 p
�2 � x2

0

�
,
x0

�
,�1

!
, y0 < 0.

Note that it is enough to show that for each a 2 F1 there exists a rotation
R✓ such that R✓l1 = a. This is so because R�l1 = b implies R�R

�1
✓ a = b.

The case a = l02 was the content of Lemma 4.1, so we suppose a 6= l02.
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Direct calculation yields then
2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

2

4
�
t
�t

3

5 =

2

4
� cos ✓ � t sin ✓
� sin ✓ + t cos ✓

�t

3

5 . (4.9)

If a passes through (x, y, 0) 2 S, we choose ✓ so that x = � cos ✓ and
y = � sin ✓ (this is possible given that for each (x0, y0, 0) 2 S we have
x2
0 + y20 = �2). By using y =

p
�2 � x2 whenever y > 0, we get

2

4
x+ t

p
�2�x2

�
y + tx0

��t

3

5 ;

while for y < 0, we use y = �p
�2 � x2 and obtain

2

4
x� t

p
�2�x2

�
y + tx0

��t

3

5 .

To verify the second statement it is enough to show that if there
exists a rotation R✓ such that R✓l1 = b, then b 2 F1, since by Item 4.2
there exists R� such that R�l1 = a. If this is so, there exists ↵ such that
R↵a = b if and only if there exists � such that R�R↵l1 = b. By changing
variables on Equation (4.9), with x0 = � cos ✓ and y0 = � sin ✓, we reach

2

4
x0 ± t

p
�2�x2

�
y0 +

tx0
��t

3

5 ;

which is exactly the expression of the lines given by the planes (4.3) and
(4.6). Finally, by definition of F1, we have R✓l1 2 F1.

Proposition 4.3. The one–sheeted hyperboloid S is a doubly ruled sur-
face.

Proof. Fix (x0, y0, z0) 2 S. We look again at the line l1 2 F1, where
l1(t) = (�, 0, 0)+ t(0, 1,�1). We will show that there exists a rotation R✓

around z–axis such that R✓l1(t) = (x0, y0, z0) for some t 2 R (observe that
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by the second item in the above proposition, we already have R✓l1 2 F1).
By Equation (4.9), we get

R✓l1(t) = (� cos ✓ � t sin ✓,� sin ✓ + t cos ✓,�t),

and by letting t = �z0, we obtain

R✓l1(�z0) = (� cos ✓ + z0 sin ✓,� sin ✓ � z0 cos ✓, z0). (4.10)

Varying ✓ in Equation (4.10) ables us to trace the entire level curve S at
z = z0, which is a circle of radius �2�z20 . Therefore, since (x0, y0, z0) 2 S
holds, there exist ✓ subject to � cos ✓+z0 sin ✓ = x0 and � sin ✓�z0 cos ✓ =
y0. Thus R✓l1 is a line in F1 subject to (x0, y0, z0) 2 R✓l1. In the same
way, it is not hard to show that there exists a rotation R� such that R�l2
contains the point (x0, y0, z0). We conclude that r(✓, t) = R✓l1(t) and
s(✓, t) = R✓l2(t) are parametric equations for S. Hence, S is ruled by
both F1 and F2.

5 The tangent spaces to O(�A)

The adjoint orbit O(�A) is a surface in R3. The goal of this section is
to depict the tangent space to O(�A) and determine its relation with
the image of the adjoint representation of the Lie algebra sl(2,R). Our
starting point is the following proposition, which provides an identification
of said tangent space.

Proposition 5.1. Let ad be the adjoint representation of g. For H 2
O(�A) we have

Im(ad(H)) = THO(�A).

Proof. Notice that every curve passing through H in O(�A) has the form
gtHg�1

t , where g : [�✏, ✏] ! SL(2,R) smoothly satisfies g0 = Id. Thus,
every tangent vector v 2 THO(�A) can be written as

v =
d

dt
gtHg�1

t

����
t=0

,
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for some smooth curve gt. However, if d
dtgt

����
t=0

= X 2 sl(2,R), then

d

dt
gtHg�1

t

����
t=0

=
d

dt
AdgtH

����
t=0

= d(AdId)(X)H = ad(X)H = [X,H].

(5.1)
Hence we get v 2 Im(ad(H)), which forces the inclusion THO(�A) ⇢
Im(ad(H)).

Conversely, given X0 = [X,H], just take some smooth curve gt
subject to

d

dt
gt

����
t=0

= X0 with, g0 = Id 2 SL(2,R),

and plug it into Equation (5.1): we obtain the desired result.

Let A,B,C be the basis of sl(2,R) given in (1.1). Since they satisfy
the relations [B,A] = C, [C,A] = B, and [B,C] = A, for any H 2 g
written as H = xA+ yB + zC we get

ad(H) =

2

4
0 �z �y
z 0 x
y �x 0

3

5 .

Since dimker ad(H) = 1, by taking any two column vectors in ad(H) we
have

THO(�A) = span{zB + yC, xB � yA},
whenever H 2 O(�A). As H = xA+ yB + zC implies that x, y, z satisfy
x2 + y2 � z2 = �2, we get

THO(�A) = span{zB + yC, xB � yA : x2 + y2 � z2 = �2}.

6 Morse theory on the adjoint orbit O(A)

We use the adjoint orbit O(�A) to construct an example which shows
how the compactness hypothesis is essential to the Morse-Smale theorem.
We take � = 1 to ease computations.
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Let M be a manifold and f : M ! R a smooth function. A critical
point p of f is non-degenerate if the Hessian matrix of f in p is non-
degenerate. If all critical points of f are non-degenerate, we say f is a
Morse function.

Theorem 6.1 (Morse–Smale). [10, Lem. 2.23]. Let M be a compact
manifold without boundary and f : M ! R a Morse function. If �p(t) is
the trajectory of the gradient vector field rf at p, then both limits

lim
t!1�p(t) and lim

t!�1�p(t)

exist, in fact, they are critical points of f . ⇤
Dynamics of the gradient vector field We study the behaviour of

a gradient vector field restricted to O(A). For that, we consider the
function f(x, y, z) = yz. The gradient of f (with respect to the canonical
inner product) is

rf(x, y, z) =
@f

@x
(x, y, z)e1 +

@f

@y
(x, y, z)e2 +

@f

@z
(x, y, z)e3 = ze2 + ye3.

Therefore, the gradient matrix of f in the canonical basis is

rf =

0

@
0
z
y

1

A .

Proposition 6.2. The gradient vector field rf is tangent to O(A).

Proof. Let us consider the relation g(x, y) = ±
p

x2 + y2 � 1 which de-
scribes the one–sheeted hyperboloid. We look first at the case z0 � 0
(hence g(x, y) =

p
x2 + y2 � 1). The normal vector to the surface at a

given point (x0, y0, z0) is

~n =

 
x0p

x2
0 + y20 � 1

,
y0p

x2
0 + y20 � 1

,�1

!
.

Thus, taking the inner product between ~n andrf(x0, y0, z0) = (0, z0, y0)T ,
yields

h~n,rf(x0, y0, z0)i = y0z0p
x2
0 + y20 � 1

� y0;
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and after using z0 =
p
x2
0 + y20 � 1 we reach

h~n,rf(x0, y0, z0)i = 0.

Hence, rf takes the point (x0, y0, z0) to a vector tangent to the surface,
and so, rf is tangent to O(A) for z0 � 0.

Similarly for z0  0, we use g(x, y) = �
p

x2 + y2 � 1 instead and
get

~n =

 
� x0p

x2
0 + y20 � 1

,� y0p
x2
0 + y20 � 1

,�1

!
.

With z0 = �
p

x2
0 + y20 � 1, we obtain

h~n,rf(x0, y0, z0)i = � y0z0p
x2
0 + y20 � 1

� y0 = 0.

In either case, we conclude that the gradient vector field rf is
tangent to O(A).

Proposition 6.3. The function f(x, y, z) = yz restricted to O(A) is a
Morse function.

Proof. Notice that (1, 0, 0) and (�1, 0, 0) are the singularities of the
restriction gradient vector field to the orbit O(A). Let Hess(f) be the
Hessian matrix of f , namely,

Hess(f) =

2

4
0 0 0
0 0 1
0 1 0

3

5 .

Note that the restriction of Hess(f) to each of the tangent spaces at
(1, 0, 0) and (�1, 0, 0) is non-degenerate. In fact, using the results of
Section 5 and identifying (1, 0, 0) and (�1, 0, 0) with the matrices A and
�A in O(A), respectively, we get TAO(A) = span{(0, 0, 1), (0, 1, 0)} and
T�AO(A) = span{(0, 0,�1), (0,�1, 0)}. It is not hard to conclude the
equalities

TAO(A) \ kerHess(f) = 0,

T�AO(A) \ kerHess(f) = 0,

which implies that f |O(A) is a Morse function.
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Figure 3: The vector field restricted to O(A).

Using the dynamics above, we obtain trajectories of rf which are
not complete, thus showing that the hypothesis of compactness in Theo-
rem 6.1 is fundamental.

The trajectories of the gradient rf restricted to TAO(A) are solu-
tions of the following linear system of di↵erential equations


y0(t)
z0(t)

�
=


0 1
1 0

� 
y(t)
z(t)

�
.

Since 1 and 1 are eigenvalues of the linear part, with eigenvectors v1 =

Pro Mathematica, XXXI, 61 (2020), 73-107, ISSN 2305-2430 97



F. Rubilar, L. Schultz

(�1, 1) and v2 = (1, 1), respectively, it follows that the general solution
has the form 

y(t)
z(t)

�
= c1e

�tv1 + c2e
tv2.

Setting c1 = 0 and c2 = 1, we obtain �1(t) = et(1, 1). Note that
limt!�1 �1(t) = (0, 0) but the limit when t ! 1 does not make sense
in O(A).

On the other hand, taking c2 = 0 and c1 = 1, we get �2(t) =
e�t(�1, 1). Where limt!1 �2(t) = (0, 0) but the limit when t ! �1
does not exist.

Considering �1 and �2 in the tangent space TAO(A), we have that
these are the lines (1, t, t) and (1,�t, t). Moreover, they correspond to the
lines l1 and l2 as described in Equation (4.7) in Lemma 4.1 of Section 4.
So they are contained in O(A). Summarizing, we obtain two trajectories
�1(t) and �2(t) of the gradient rf whose limit points do not belong to
the orbit, namely, do not satisfy the conclusions of Theorem 6.1. This
happens because the one–sheeted hyperboloid O(A) is a non-compact
submanifold of R3.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 4: The gradient rf restricted on TAO(A) at A = (1, 0, 0).
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7 A symplectic structure in O(A)

Here we realize the adjoint orbit O(A) as a symplectic manifold. We
follow the construction by Kirillov–Kostant–Souriau [8, 9]. First we
construct the symplectic form on the coadjoint orbit and then, using the
Killing form, we induce the symplectic structure on the adjoint orbit
O(A). For a more general study of symplectic geometry on adjoint orbits
we refer the reader to [2] and [7].

In order to perform the construction, we start by recalling some
basic definitions of symplectic geometry.

Let V be a real vector space and ! : V ⇥ V ! R a skew–symmetric
bilinear form. We say that ! is a symplectic form if it is non-degenerate,
that is, !(u, v) = 0 for all v implies u = 0. In this case, we say that (V,!)
is a symplectic vector space.

Let M be a manifold. We say that a 2–form ! 2 ⌦2(M) is non-

degenerate if the 1–form !x = !(x, ·) is non-degenerate for each x 2 M .
Thus, for every x 2 M , the tangent space TxM is a symplectic vector
space.

A symplectic structure on M is a 2–form ! 2 ⌦2(M) which
is non-degenerate and closed. In this case, we say that (M,!) is a
symplectic manifold.

Now we define the coadjoint representation, which is the dual of the
adjoint representation and will allow us to define coadjoint orbits. First,
let us consider the natural pairing between g⇤ and g given by

h , i : g⇤ ⇥ g ! R
(⇠, X) 7! h⇠, Xi = ⇠(X).

For ⇠ 2 g⇤, we define Ad⇤g⇠ by the rule

hAd⇤g⇠, Xi = h⇠,Adg�1Xi, X 2 g.

The coadjoint representation of G on g⇤ is by definition

Ad⇤ : G ! Aut(g⇤)
g 7! Ad⇤g.
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Similarly, we have a coadjoint representation of g on g⇤ given by

ad⇤ : g ! gl(g⇤)
u 7! ad⇤u.

To be more explicit, given u 2 g and ⇠ 2 g⇤, we have had⇤u(⇠), vi =
�⇠([u, v]). Here [ , ] is the Lie bracket on g.

Let us consider ⇠ 2 g⇤ and denote by

O⇤ = {' 2 g⇤ : there is u 2 G,Ad⇤u(⇠) = '}
the coadjoint orbit of ⇠. Since the vectors Ad⇤u(⇠) span the tangent
space T⇠O⇤ we have

T⇠O⇤ = {ad⇤u(⇠) : u 2 g}.
Note that for a fixed ⇠ 2 g⇤, the value of ⇠[u, v] depends just on ad⇤u and
ad⇤v at the point ⇠. In fact, if ad⇤u(⇠) = ad⇤u0(⇠), then

⇠(u� u0, v) = (ad⇤u � ad⇤u0)(⇠)(v) = 0,

for each v 2 g. Thus, the following definition of a skew-symmetric bilinear
form on T⇠O⇤ makes sense.

For ⇠ 2 g⇤ fixed, we define a skew-symmetric bilinear form on T⇠O⇤

by
!⇠(ad

⇤
u(⇠), ad

⇤
v(⇠)) = ⇠([u, v]).

Lemma 7.1. For each ⇠ 2 g⇤ the form !⇠ is non-degenerate.

Proof. Note that if
!⇠(ad

⇤
u(⇠), ad

⇤
v(⇠)) = 0,

for all v 2 g, then ⇠([u, v]) = 0 = �⇠([u, v]) and therefore ad⇤u(⇠) = 0.

Since we have [Adg(u),Adg(v)] = Adg([u, v]), we get the equality

Ad⇤g⇠([Adg(u),Adg(v)]) = Ad⇤g⇠(Adg([u, v])) = ⇠([u, v]).

Thus, !⇠ defines a point-wise form ! on O.

Lemma 7.2. The 2–form ! is closed, that is, satisfies d! = 0.
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Proof. We analyse ! point-wise. For any ⇠ 2 g⇤, given x, y and z in g
set X = ad⇤x(⇠), Y = ad⇤y(⇠) and Z = ad⇤z(⇠). We have then

d!⇠(X,Y, Z) =
1

3
(X!⇠(Y, Z)� Y !⇠(X,Z) + Z!⇠(X,Y ))+

+
1

3
(�!⇠([X,Y ], Z) + !⇠([X,Z], Y )� !⇠([Y, Z], X)).

Note that all the directional derivatives vanish, since !⇠ is constant
relative to ⇠. Thus using Jacobi identity, we reach

d!⇠(X,Y, Z) =
1

3
(�!⇠([X,Y ], Z) + !⇠([X,Z], Y )� !⇠([Y, Z], X)),

=
1

3
(�⇠([[x, y], z]) + ⇠([[x, z], y])� ⇠([[y, z], x])),

=
1

3
⇠(�[[x, y], z]) + [[x, z], y]� [[y, z], x],

=
1

3
⇠(0),

= 0.

Therefore ! is closed.

Theorem 7.3. Let O⇤ ⇢ g⇤ be a coadjoint orbit. Then !⇠ defines a
symplectic structure on O⇤.

Proof. This is a direct consequence of Lemmas 7.1 y 7.2.

Remark 7.4. This symplectic structure on the coadjoint orbit is canon-
ical and is called the Kirillov–Kostant–Souriau form.

Now we show below how to endow the adjoint orbit with a symplectic
structure which comes from the symplectic form constructed above.

Proposition 7.5. Suppose g admits an Ad–invariant inner product, that
is, one subject to

hAdg(u),Adg(v)i = hu, vi,
for each g 2 G. Then the identification g ⇠= g⇤ induced by this inner
product also provides an isomorphism between the adjoint and coadjoint
representations.
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Proof. The isomorphism of vector spaces g ⇠= g⇤ is given by

' : g ! g⇤

v 7! Iv,
(7.1)

where Iv(u) = hu, vi, for each u 2 g⇤. We want to show that ' is an
isomorphism of representations as well, namely, an isomorphism of Lie
algebras for which the following diagram

g
' //

Adg

✏✏

g⇤

Ad⇤
g

✏✏
g

'
// g⇤

is commutative.
Since ' is an isomorphism of vector spaces, whenever we get g ' V

as vector spaces endowed with Lie brackets, then we can make V ⇤ into a
Lie algebra by defining a Lie bracket as

[a, b]⇤ = '(['�1(a),'�1(b)]), for each a, b 2 V ⇤.

Thus, we get g⇤ ⇠= (V ⇤, [·, ·]⇤) and ' is a Lie algebra homomorphism. In
fact, it is easy to check the equality

'([a, b]) = ['(a),'(b)]⇤.

Next, let v 2 g be a fixed element. Since Adg is invertible, there exists
w 2 g such that Adg(w) = v. Using Ad–invariance for the inner product,
we obtain

'(Adg(u))(v) = hAdg(u), vi = hAdg(u),Adg(w)i = hu,wi.

In the same way, we get

Ad⇤g('(u))(v) = '(u)(Adg�1(v)) = hu,Adg�1(v)i = hu,wi.

Therefore, the diagram is commutative and ' is a representation isomor-
phism.
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Remark 7.6. Notice that the above result holds in a more general
context where the product is only non-degenerate and not necessarily
positive definite, and hence not a inner product. It follows from the fact
that the linear map induced by a non-degenerate product between g and
g⇤ is an isomophism. The proof of the above proposition also holds in
this case, since it only requires the existence of such isomorphism.

Let g be a Lie algebra over a field F. The Killing form on g is the
map

B : g⇥ g ! F
(x, y) 7! B(x, y) = tr(adx � ady).

Proposition 7.7. The Killing form is Ad-invariant.

Proof. In fact, we have

B(Adg(x),Adg(y)) = tr(g � adx � ady � g�1)

= tr(adx � ady)
= B(x, y).

Proposition 7.8. The Killing form is symmetric and bilinear.

Proof. Symmetry follows from the property tr(MN) = tr(NM). Thus,
we have

B(x, y) = tr(adx � ady) = tr(ady � adx) = B(y, x).

Since ad and trace are linear, we get

B(↵x+ �y, z) = tr(ad(↵x+ �y) � adz)
= tr((↵adx+ �ady) � adz)
= ↵tr(↵adx+ adz) + �tr(ady � adz)
= ↵B(x, z) + �B(y, z),

for each x, y, z 2 g. Thus, B is linear on the first entry. By the symmetry
we get the same for the second entry.
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Hanceforth, for simplicity we use the notation ha, bi = B(a, b).

Proposition 7.9. The Killing form is non-degenerate.

Proof. Since [B,A] = C, [C,A] = B, and [B,C] = A hold, we get

ad(A) =

2

4
0 0 0
0 0 �1
0 �1 0

3

5 , ad(B) =

2

4
0 0 1
0 0 0
1 0 0

3

5 , ad(C) =

2

4
0 �1 0
1 0 0
0 0 0

3

5 .

Direct computation yields

hA,Ai = tr(ad(A) � ad(A)) = tr

0

@

2

4
0 0 0
0 1 0
0 0 1

3

5

1

A = 2,

hB,Bi = tr(ad(B) � ad(B)) = tr

0

@

2

4
1 0 0
0 0 0
0 0 1

3

5

1

A = 2,

hC,Ci = tr(ad(C) � ad(C)) = tr

0

@

2

4
�1 0 0
0 �1 0
0 0 0

3

5

1

A = �2,

hB,Ai = tr(ad(B) � ad(A)) = tr

0

@

2

4
0 �1 0
0 0 0
0 0 0

3

5

1

A = 0,

hA,Ci = tr(ad(A) � ad(C)) = tr

0

@

2

4
0 0 0
0 0 0
�1 0 0

3

5

1

A = 0,

hB,Ci = tr(ad(B) � ad(C)) = tr

0

@

2

4
0 0 0
0 0 0
0 �1 0

3

5

1

A = 0.

Hence, if H = xA+ yB + zC, expressing the operator hH, ·i on its
matrix representation form we obtain

hH, ·i = ⇥
2x 2y �2z

⇤
.

Therefore, the map hH, ·i is zero if and only if H is zero.
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In this way, we identify the adjoint orbit O(A) with the coadjoint
orbit O⇤(A) = {f 2 g⇤ : 9u 2 G,Ad⇤u('(A)) = f}, where ' is the map
in (7.1). It follows that we can induce on O(A) the symplectic structure
built on O⇤(A) as

!0
p(adp(a), adp(b)) := !'(p)(ad

⇤
'(p)(a), ad

⇤
'(p)(b)) = hp, [a, b]i,

for each a, b, p 2 O(A).

Corollary 7.10. The pair (O(A),!0) is a symplectic manifold. ⇤

Remark 7.11. The Killing form is non-degenerate because we are work-
ing with a semisimple Lie algebra. This is essential to achieve the
identification between adjoint and coadjoint orbits and, consequently, to
perform the above construction.

In [7], the authors construct another symplectic form which does
not come from the Kirillov–Kostant–Souriau symplectic form. Their
method involves Lie theory and the construction is performed directly
on adjoint orbits of semisimple Lie groups. It remains to carry out a
complete classification of adjoint orbits in higher dimension.
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Resumen

Para el grupo especial lineal SL(2,R) y su álgebra de Lie sl(2,R) estu-
diamos propiedades geométricas asociadas a sus órbitas adjuntas. En
particular mostramos que se presentan apenas tres alternativas para la
órbita: o bien es un hiperboloide de una hoja, o un hiperboloide de
dos hojas o en su defecto un cono. Además, introducimos un potencial
espećıfico y estudiamos el correspondiente campo gradiente y su dinámica
al restringirnos a la órbita adjunta. También describimos la estructura
simpléctica de tales órbitas que provienen de la bien conocida forma
simpléctica de Kirillov–Kostant–Souriau en órbitas coadjuntas.

Palabras clave: Órbitas adjuntas, estructura simpléctica.
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