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Abstract

We show that every pair of longest paths in a k-connected graph on n
vertices intersect each other in at least min{n, (8k − n + 2)/5} vertices.
We also show that, in a 4-connected graph, every pair of longest paths
intersect each other in at least four vertices. This confirms a conjecture
of Hippchen for k-connected graphs when k ≤ 4 or k ≥ (n− 2)/3.
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1. Introduction

It is known that every pair of longest paths in a connected graph intersect

each other in at least a vertex. Hippchen [5, Conjecture 2.2.4] conjectured

that, for k-connected graphs, every pair of longest paths intersect each

other in at least k vertices. A similar conjecture, for cycles instead

of paths, was proposed by Grötschel and attributed to Scott Smith [4,

Conjecture 5.2].

Smith’s conjecture has been verified up to k = 6 [4], and for a

general k, it was proved that every pair of longest cycles intersect in at

least ck3/5 vertices, for a constant c ≈ 0.2615 [2]. However, for Hippchen’s

conjecture, the only nontrivial result is for k = 3 and was proved by

Hippchen himself [5, Lemma 2.2.3]. In this paper, we verify Hippchen’s

conjecture for k = 4.

For k ≥ 5, Hippchen’s conjecture seems hard to prove. Hence, it is

natural to ask for lower bounds on the intersection of two longest paths

in k-connected graphs. Note that, if the graph has a Hamiltonian path,

then it is clear that we have a lower bound of k. As Hamiltonian paths

appear in highly connected graphs, this motivates us to study cases in

which k is a fraction of n. In this paper, we show that any two longest

paths intersect in at least min{n, (8k − n + 2)/5} vertices.

Finally, we exhibit, for any k, an infinite family of graphs that make

Hippchen’s conjecture tight.

2. Preliminaries

In this paper all graphs are simple (without loops or parallel edges) and

the notation and terminology are standard. When we refer to paths, we

mean simple paths (without repetitions of edges or vertices). The length

of a path P is the number of edges it has, and it is denoted by |P |. A

longest path in a graph is a path with maximum length among all paths.

Given a path P and two vertices x and y in P , we denote by P [x, y]

the subpath of P with extremes x and y. Also, we denote the length
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of P [x, y] by distP (x, y).

Given two set of vertices S and T in a graph G, an S-T path is a

path with one extreme in S, the other extreme in T , and whose internal

vertices are neither in S nor T . If S = {v}, we also say that an S-T path

is a v-T path. When we refer to the intersection of two paths in a graph,

we mean vertex-intersection, that is, the set of vertices the paths share.

Two paths are internally disjoint if they have no internal vertices in

common.

A graph G is k-connected if, for any two distinct vertices u and v

in G, there exists a set of k u-v internally disjoint paths. It is easy to see

that for a k-connected graph on n vertices, we have k ≤ n− 1.

Our proofs rely in two well-known facts, that we state in the following

propositions. The first proposition is also known as Fan lemma.

Proposition 2.1 ([1, Proposition 9.5]). Let G be a k-connected graph.

Let v ∈ V (G) and S ⊆ V (G) \ {v}. If |S| ≥ k, then there exists a set

of k v-S internally disjoint paths. Moreover, every two paths in this set

have {v} as their intersection.

The second proposition is an easy corollary of the following result of

Dirac.

Theorem 2.2 ([3, Theorems 3 and 4]). If G is a 2-connected graph on n

vertices with minimum degree k, then G has a longest cycle of length at

least min{2k, n}.

Proposition 2.3. The length of a longest path in a k-connected graph

on n vertices is at least min{2k, n− 1}.

Proof. If k = 1 then the proof is trivial, so let us assume k ≥ 2. As G

is k-connected, every vertex in G has degree at least k. Hence, by

Theorem 2.2, there exists a cycle C in G with length at least min{2k, n}.
If |C| = n, then, by removing an edge from C, we obtain a path of

length n− 1. If |C| < n, then, as G is connected, there exists an edge uv

such that u ∈ V (C) and v ∈ V (G− C). Let w be a vertex adjacent to u
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in C. Then C − uw + uv is a path in G of length |C| ≥ min{2k, n} ≥
min{2k, n− 1}.

3. High connectivity

In this section we show an interesting result for k-connected graphs. We

begin with a simple observation.

Proposition 3.1. Let G be a k-connected graph on n vertices. Let L be

the length of a longest path in G. If P and Q are two longest paths in G,

then |V (P ) ∩ V (Q)| ≥ 2L + 2− n.

Proof. It suffices to note

|V (P ) ∩ V (Q)| = |V (P )|+ |V (Q)| − |V (P ) ∪ V (Q)| ≥ 2L + 2− n,

as we want.

Proposition 3.1 together with Proposition 2.3 are enough to give a

nontrivial result on Hippchen’s conjecture.

Corollary 3.2. Let G be a k-connected graph on n vertices. If k ≥
(n− 2)/3, then every two longest paths intersect in at least k vertices.

Moreover, a stronger result can be derived from these two proposi-

tions: every pair of longest paths intersect in at least min{n, 4k + 2− n}
vertices. The rest of this section is devoted to improve this result when

k < n−2
3 . The improvement relies in the following lemma. Its proof is

given after Theorem 3.4.

Lemma 3.3. Let G be a k-connected graph with k < (n− 1)/2. Let L

be the length of a longest path in G. If P and Q are two longest paths

in G, then |V (P ) ∩ V (Q)| ≥ 2k − L/2.

With that lemma at hand, it is easy to settle the main result of this

section.
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Theorem 3.4. Let G be a k-connected graph on n vertices. If P and Q

are two longest paths in G, then |V (P )∩V (Q)| ≥ min{n, (8k−n+2)/5}.
Proof. Let L be the length of a longest path in G. If k ≥ (n − 1)/2

then, by Proposition 2.3, we have L ≥ n− 1. So, |V (P ) ∩ V (Q)| = n ≥
min{n, (8k − n + 2)/5}. Hence, we may assume k < (n− 1)/2.

By Proposition 3.1 and Lemma 3.3, we have

|V (P ) ∩ V (Q)| ≥ max{2L + 2− n, 2k − L/2}

≥ 1

5
· (2L + 2− n) +

4

5
· (2k − L/2)

= (8k − n + 2)/5,

as we want.

We now proceed with the proof of Lemma 3.3.

Proof of Lemma 3.3. Let X = V (P ) ∩ V (Q). Let q be an extreme of Q.

Suppose for a moment that we have q ∈ X. As G is k-connected, q has at

least k neighbors in Q. Let X ′ be the set of vertices of Q that are next to a

vertex in X considering the order of the path starting at q. That is, X ′ =

{x′ ∈ V (Q) : there exists a vertex x ∈ X with Q[q, x′] = Q[q, x] + xx′}.
If every neighbor of q is in X ′, then, as L ≥ min{n − 1, 2k} = 2k by

Proposition 2.3, we have |X| ≥ |X ′| ≥ k ≥ 2k − L/2 and we are done.

Hence, there exists a neighbor r of q in V (Q) \X ′. Let q′ be the

vertex adjacent to r in Q that is closer to q in Q. In that situation, the

path Q′ = Q + rq − rq′ is a longest path, with q′ as one of its extremes

(this interchange is known as Pósa’s rotation [6]). Since r /∈ X ′, we

have q′ /∈ X. Hence, as V (Q′) = V (Q), from now on, we may assume

q /∈ X.

By Proposition 2.1, as |V (P )| ≥ k, there exists a set, say R, of k q-

V (P ) internally disjoint paths that end at different vertices of P . Let RA

be the set of paths in R that have an extreme in X. That is, RA =

{R ∈ R : V (R) ∩ X 6= ∅}. Let RB = R \ RA. Let A and B be

the set of corresponding extremes of RA and RB, respectively; that is,

A = {a ∈ V (P )∩V (R) : R ∈ RA} and B = {b ∈ V (P )∩V (R) : R ∈ RB}.
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Claim 1. If R ∈ RB, then |R| ≥ 2.

Proof. Suppose by contradiction that |R| = 1. Let b be the extreme

of R different from q. As b /∈ V (Q), the path Q + qb is longer than Q, a

contradiction.

Let p1 and p2 be the two extremes of P . Put R = {R1, R2, . . . , Rk},
and, for 1 ≤ i ≤ k, let vi be the corresponding extreme of Ri that is in P .

Moreover, we may assume that distP (p1, vi) < distP (p1, vi+1) holds for

1 ≤ i ≤ k − 1.

Claim 2. We have distP (p1, v1) ≥ |R1| and distP (vk, p2) ≥ |Rk|.

Proof. It suffices to note that P − P [p1, v1] + R1 and P − P [vk, p2] + Rk

are paths.

Claim 3. For 1 ≤ i ≤ k − 1, we have distP (vi, vi+1) ≥ |Ri|+ |Ri+1|.

Proof. It suffices to note that P − P [vi, vi+1] + Ri + Ri+1 is a path.

By Claims 1, 2 and 3, we have

L = |E(P )|

= distP (p1, v1) +

k−1∑
i=1

distP (vi, vi+1) + distP (vk, p2)

≥ |R1|+
k−1∑
i=1

(|Ri|+ |Ri+1|) + |Rk|

= 2

k∑
i=1

|Ri|

= 2
∑

R∈RA

|RA|+ 2
∑

R∈RB

|RB |

≥ 2|A|+ 4|B|
= 4k − 2|A|
= 4k − 2|X|.

16 Pro Mathematica, XXXI, 62 (2021), 11-23, ISSN 2305-2430



On the intersection of two longest paths in k-connected graphs

Hence, we conclude

|V (P ) ∩ V (Q)| = |X| ≥ 2k − L/2,

as we want.

4. Low connectivity

In this section, we show Hippchen’s conjecture for k = 4. We begin with

a useful lemma.

Lemma 4.1. Let P and Q be two longest paths in a graph G. Let u ∈
V (P ) ∩ V (Q), v ∈ V (P ) \ V (Q), and w ∈ V (Q) \ V (P ). If P [u, v] is

internally disjoint from Q and Q[u,w] is internally disjoint from P , then

there is no vw-path internally disjoint from both P and Q.

Proof. Suppose by contradiction that there is a vw-path R internally

disjoint from P and Q. If, for instance, P has an extreme x in R, then

P + R[x,w] is a path longer than P , a contradiction. Hence, we may

assume that R has no vertices in neither P nor Q apart from v and w.

Note that P − P [u, v] + R + Q[u,w] and Q−Q[u,w] + R + P [u, v] are

both paths, whose lengths sum |P |+ |Q|+ 2|R|, a contradiction.

We now proceed to prove the main result of this section. An inde-

pendent set in a graph is a set of pairwise non-adjacent vertices.

Theorem 4.2. Every pair of longest paths in a 4-connected graph inter-

sect in at least four vertices.

Proof. Let G be a 4-connected graph and let P and Q be two longest

paths in G. Suppose by contradiction that P and Q do not intersect in

at least four vertices. As G is 3-connected, P and Q intersect in at least

three vertices [5, Lemma 2.2.3]. Hence, P and Q intersect in exactly three

vertices, say a, b and c. Let p1 and p2 be the extremes of P . Suppose,

without loss of generality, that abc is a subsequence in P considering the

ordering from p1. That is, distP (p1, a) < distP (p1, b) < distP (p1, c).
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For simplicity of notation, we set Pa = P [p1, a], Pab = P [a, b], Pbc =

P [b, c] and Pc = P [c, p2]. We also let S = {a, b, c}, G′ = G−S, P ′ = P−S,

P ′a = Pa − S, P ′ab = Pab − S, P ′bc = Pbc − S and P ′c = Pc − S. Without

loss of generality, we have two cases, depending on the order in which a, b

and c appear in Q. In each of these cases, we assume similar notation to

the subpaths of Q and Q− S as we did for P .

Case 1: abc is a subsequence in Q.

It is easy to see that |Pa| = |Qa|, |Pab| = |Qab|, |Pbc| = |Qbc|, and

|Pc| = |Qc|. Hence, P−Pa+Qa, Q−Qa+Pa, P−Pab+Qab, Q−Qab+Pab,

P − Pbc + Qbc, Q−Qbc + Pbc, P − Pc + Qc and Q−Qc + Pc are longest

paths.

Let H be an auxiliary graph given by V (H) = {P ′a, P ′ab, P ′bc, P ′c, Q′a,
Q′ab, Q

′
bc, Q

′
c} and E(H) = {XY : there is a X-Y path in G′ with no

internal vertex in V (P ) ∪ V (Q)}. By Lemma 4.1, the sets {P ′a, Q′a, P ′ab,
Q′ab}, {P ′ab, Q′ab, P ′bc, Q′bc}, and {P ′bc, Q′bc, P ′c, Q′c} are independent in H.

As G is 4-connected, the graph G′ is connected, which implies that H is

connected.

Suppose for a moment that every element of {P ′a, Q′a, P ′bc, Q′bc} is

empty. In that situation, a is an extreme of P . This implies that Q′ab is

empty; indeed, otherwise we can extend P by adding an edge aa′ with

a′ ∈ Q′ab. Analogously, P ′ab is also empty. Hence, as P ′c is not adjacent

to Q′c, the graph H will be either empty or disconnected, a contradiction.

Thus, the set {P ′a, Q′a, P ′bc, Q′bc} has at least one nonempty element.

And, analogously, the same is true for the set {P ′ab, Q′ab, P ′c, Q′c}. Then,

in H, there is a {P ′a, Q′a, P ′bc, Q′bc}-{P ′ab, Q′ab, P ′c, Q′c} path. Hence, one

of {P ′aP ′c, P ′aQ′c, Q′aP ′c, Q′aQ′c} is an edge of H. Without loss of generality,

we may assume P ′aP
′
c ∈ E(H).

This implies that there exists a P ′a-P ′c path with no internal vertices

in V (P ) ∪ V (Q), say R, in G′. Let {x} = V (R) ∩ V (P ′a) and {y} =

V (R) ∩ V (P ′c). Let Px and Pxa be the corresponding subpaths of Pa.

Let Py and Pyc be the corresponding subpaths of Pc. Then P − Pxa −
Py + R + Qa and Q−Qa + Pxa + R + Py are both paths, whose lengths

sum |P |+ |Q|+ 2|R|, a contradiction (see Figure 1(a)).
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a b c

P

Q

x y

R

(a)

a b c

P

Q

x y

R

(b)

Figure 1: Cases in the proof of Theorem 4.2.

Case 2: acb is a subsequence in Q.

It is easy to see that |Pa| = |Qa| and |Pbc| = |Qbc|. Hence, P − Pa +

Qa, Q−Qa + Pa, P − Pbc + Qbc, and Q−Qbc + Pbc are longest paths.

Let H be an auxiliary graph given by V (H) = {P ′a, P ′ab, P ′bc, P ′c, Q′a, Q′ac,
Q′cb, Q

′
b} and E(H) = {XY : there is a X-Y path in G′ with no internal

vertex in V (P ) ∪ V (Q)}. By Lemma 4.1, the sets {P ′a, Q′a, P ′ab, Q′ac},
{P ′ab, Q′b, P ′bc, Q′bc}, and {P ′bc, Q′bc, P ′c, Q′ac} are independent in H.

Suppose for a moment that every element of {P ′ab, Q′ac, P ′c, Q′b} is

empty. In this situation, c is an extreme of P . This implies that Q′bc is

empty; indeed, otherwise we can extend P by adding an edge cc′ with

c′ ∈ Q′bc. Analogously, P ′bc is also empty. Hence, as P ′a is not adjacent

to Q′a, the graph H will be either empty or disconnected, a contradiction.

Suppose now that every element of {P ′a, Q′a, P ′bc, Q′bc} is empty. By a

similar reasoning to the previous paragraph, P ′ab and Q′ac are also empty.
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If Q′b is empty, then P ′c is also empty, which implies that H is empty, a

contradiction. Otherwise, P − Pbc + Qac + Qb is a path longer than P ,

again a contradiction.

Therefore, in H, there is a {P ′ab, Q′ac, P ′c, Q′b}-{P ′a, Q′a, P ′bc, Q′bc} path.

Without loss of generality, we may assume P ′aP
′
c ∈ E(H). This implies

that there exists a P ′a-P ′c path with no internal vertices in V (P ) ∪ V (Q),

say R, in G′. Let {x} = V (R) ∩ V (P ′a) and {y} = V (R) ∩ V (P ′c).

Let Px and Pxa be the corresponding subpaths of Pa. Let Py and Pyc

be the corresponding subpaths of Pc. Then P − Pxa − Py + R + Qa and

Q−Qa +Pxa +R+Py are both paths, whose lengths sum |P |+ |Q|+2|R|,
a contradiction (see Figure 1(b)).

With that, we conclude the proof of Theorem 4.2.

5. Tight families

As mentioned by Hippchen [5, Figure 2.5], the graph Kk,2k+2 (the com-

plete bipartite graph with partitions of sizes k and 2k + 2) makes the

conjecture tight. In this section, we show that in fact, for every k, there

is an infinite family of graphs that make Hippchen’s conjecture tight.

Theorem 5.1. For every k, there is an infinite family of k-connected

graphs with a pair of longest paths intersecting each other in exactly k

vertices.

Proof. For any natural number n, we denote the set {1, . . . , n} by [n].

Fix an arbitrary positive integer `. Let S = {s1, s2, . . . , sk}, and, for

every i ∈ [k + 1], let Xi = {ai1, ai2, . . . , ai`} and Yi = {bi1, bi2, . . . , bi`}.
We define a graph G by V (G) = S ∪ {Xi : i ∈ [k + 1]} ∪ {Yi : i ∈ [k + 1]},
and E(G) = {sv : s ∈ S, v ∈ V (G) \ S} ∪ {aijai(j+1) : i ∈ [k + 1], j ∈
[`− 1]} ∪ {bijbi(j+1) : i ∈ [k + 1], j ∈ [`− 1]} (see Figure 2).

Note that every component of G − S has size `. Hence, any path

in G has at most k + `(k + 1) vertices. Then

a11 · · · a1`s1a21 · · · a2`s2 · · · ak1 · · · ak`ska(k+1)1 · · · a(k+1)`
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s1 s2 s3 sk

a11
a(k+1)2

b(k+1)2
b11

a12 a(k+1)1

b12 b(k+1)1

a21 a22

b21 b22

a31 a32

b31 b32

Figure 2: The graph used in the construction of Theorem 5.1 when ` = 2.

and

b11 · · · b1`s1b21 · · · b2`s2 · · · bk1 · · · bk`skb(k+1)1 · · · b(k+1)`

are both longest paths, intersecting each other in exactly k vertices.

To finish the proof, we show that G is k-connected. Suppose by

contradiction that G has a set of vertices S′ of cardinality at most k − 1

such that G−S′ is disconnected. Set A = S \S′ and B = (V (G)\S)\S′.
As |S| and |V (G) \ S| are at least k, both A and B are nonempty. Note

that the complete bipartite graph with partitions A and B is an spanning

subgraph of G− S′. Thus, G− S′ is connected, a contradiction.

6. Conclusions and future work

In this paper, we show that every pair of longest paths in a k-connected

graph intersect each other in at least min{n, (8k − n + 2)/5} vertices. A

direct corollary of this result is that, if k ≥ n/3, then every pair of longest

paths intersect in at least k + 1 vertices and, if k ≥ n/4, then every pair

of longest paths intersect in at least 4k+2
5 vertices; in general, if k ≥ n/r,

then every pair of longest paths intersect in at least ((8 − r)k + 2)/5

vertices. Thus, for every r, we propose the following conjecture.

Conjecture CHC(r). Let G be a k-connected graph on n vertices.

If k ≥ n/r, then every pair of longest paths intersect in at least k vertices.

In this paper, we also showed that, in a 4-connected graph, every
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pair of longest paths intersect in at least 4 vertices. We believe that

CHC(r), for some r > 3, and the inconditional Hippchen conjecture for

k = 5 can be approached with similar techniques as the ones presented

here.

We also think the techniques presented here can be adapted to

show similar results for cycles instead of paths; and, conversely, that the

techniques used by Chen et al. [2] can be adapted to show similar or

stronger results for paths.
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Resumen: Mostramos que cada par de caminos máximos en un grafo

k-conexo con n vértices se intersecan uno al otro en por lo menos

mı́n{n, (8k − n + 2)/5} vértices. También mostramos que en un grafo

4-conexo cada par de caminos máximos se interseca uno al otro en por

lo menos cuatro vértices. Ello confirma una conjetura de Hippchen en

grafos k-conexos cuando k ≤ 4 o k ≥ (n− 2)/3.

Palabras clave: camino máximo, grafo k-conexo
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