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Abstract

A predator-prey model of Gause type is an extension of the classical

Lotka-Volterra predator-prey model. In this work, we study a predator-

prey model of Gause type, where the prey growth rate is subject to an

Allee effect and the action of the predator over the prey is given by

a square-root functional response, which is non-differentiable at the y-

axis. This kind of functional response appropriately models systems in

which the prey have a strong herd structure, as the predators mostly

interact with the prey on the boundary of the herd. Because of the

square root term in the functional response, studying the behavior of

the solutions near the origin is more subtle and interesting than other

standard models.

Our study is divided into two parts: the local classification of the equi-

librium points, and the behavior of the solutions in certain invariant

set when the model has a strong Allee effect. In one our main results

we prove, for a wide choice of parameters, that the solutions in certain

invariant set approach to the y-axis. Moreover, for a certain choice of

parameters, we show the existence of a separatrix curve dividing the in-

variant set in two regions, where in one region any solution approaches

the y-axis and in the other there is a globally asymptotically stable equi-

librium point. We also give conditions on the parameters to ensure the

existence of a center-type equilibrium, and show the existence of a Hopf

bifurcation.
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1. Introduction

A population model is a dynamical system, formed by one or several

differential equations, that tries to predict the temporal evolution of the

number of individuals for certain species. To do that, is necessary to

deal with models that represent the interaction between the species and

their relationship with the ecosystem where they live, in terms of the

resources available for their survival.

A predator-prey model of Gause type [7] (see also [2, § 4]) is an

extension of the well-known Lotka-Volterra predator-prey model. A ge-

neralized version of this model [6, § 4.1] is given by

dx

dt
= α(x)x− h(x)y,

dy

dt
= (ρh(x)− c)y.

In this work, we deal with the following predator-prey model of

Gause type,

Xµ :


dx

dt
= r

(
1− x

K

)
(x−m)x− q

√
x√

x+ a
y,

dy

dt
=

(
p
√
x√

x+ a
− c
)
y,

where x = x(t) and y = y(t) respectively represent the population sizes

(measured as number of individuals, biomass or density per unit area or

volume) of preys and predators for t ≥ 0. In this model, the growth of the

population of preys in the absence of predators is affected by the Allee

effect. The (demographic) Allee effect is commonly defined as a positive

relationship between the overall individual fitness and the population size

or density [11, 5]. This in particular means that the per capita growth

rate is an increasing function of the population density, for small values

of population density. There are two classes of Allee effects: weak and

strong. A weak Allee effect means that at low population density, the per

capita population growth rate is lower, although positive, than at higher
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densities. If the per capita population growth rate becomes negative

below certain threshold m > 0 (called Allee threshold) then we are under

a strong Allee effect.

The involved constants have the following ecologic meanings:

r: intrinsic prey growth rate,

K: prey environmental carrying capacity,

q: consuming rate per capita of the predators,

c: intrinsic predator growth rate.

In addition, the functions that appear on the system have the following

meanings:

1. The equation
dx

dt
= r

(
1− x

K

)
(x −m)x represents the growth of

the population of preys affected by the Allee effect, where the term

(x−m) affects the logistic equation
dx

dt
= rx(1− x/K). The Allee

effect is strong when 0 < m < K, and weak when −K < m ≤ 0.

2. The function g(y) = −cy represents the natural mortality of the

predators in absence of preys.

3. The function h(x) = q
√
x√

x+a
is a non-differentiable functional res-

ponse [3, 10]. The function h, which is non-differentiable at x = 0,

is called square root functional response [4], and represents a phe-

nomenon called “herd behavior” [12, 13].

Functional responses with square root terms were considered by [1] and [4].

Similarly to these references, we will show that, under a strong Allee ef-

fect, when the population of preys is below the Allee threshold, both the

preys and the predators become extinct. In particular, the predator-axis

behaves like an attractor.

This paper is organized as follows: In Section 2 we introduce an

equivalent model which will be our object of study. In Section 3, we
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determine the equilibrium points of the model introduced in Section 2,

and classify the equilibrium points located in the coordinate axes. In

section 4 we study the global behavior of the solutions, first under no

conditions over the parameters, and then when the model has a strong

Allee effect. Under the strong Allee effect, we study the existence of a

center-type equilibrium, and provide an explicit example for which exists

a supercritical Hopf bifurcation.

2. The model

Our object of study is the following predator-prey model of Gause type

with Allee effect and non-differentiable functional response, described

by the following system of nonlinear autonomous ODEs, defined on Ω =

{(x, y) ∈ R2 : x ≥ 0, y ≥ 0}:

Xµ :


dx

dt
= r

(
1− x

K

)
(x−m)x− q

√
x√

x+ a
y

dy

dt
=

(
p
√
x√

x+ a
− c
)
y,

(2.1)

where x = x(t) e y = y(t) respectively represent the population of preys

and predators, and t ≥ 0 . Because of ecologic reasons, we must assume

µ = (r,K, q, p, c, a,m) ∈ R5
++×]0,K[×]−K,K[.

In particular, the parameter a is positive.

As the functional response h(x) =

√
x√

x+ a
and system (2.1) are

non-differentiable when x = 0, it is required a non-usual analysis to

establish all properties of the proposed model.

To simplify our calculations, we will deal with an equivalent system

by making a change of variables and time rescaling. Consider the change

of coordinates and time rescaling given by Φ : R2 × R+ → R2 × R+,

defined as

(x, y, t) = Φ(u, v, τ) =
(
Ku,K2v, (

√
Ku+ a)τ/r

)
. (2.2)
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Using this change of variables, we can show that system (2.1) is topolo-

gically equivalent on Ω to the system

Yη :


du

dτ
= B[u(1− u)(u−M)(

√
u+A)−Q

√
uv],

dv

dτ
= (P

√
u− C)v,

(2.3)

where B = K3/2, Q = q/r, A = a/
√
K, M = m/K, P =

√
K(p − c)/r,

C = ac/r. See Proposition A.1 in Appendix A for more details.

Remark 2.1. In general, we have B > 0, C > 0, Q > 0, A ∈]0, 1[,

M ∈]− 1, 1[, P ∈ R.

3. Classification of the equilibrium points

From now on, we will consider the variables x, y and t instead of u, v

and τ in (2.3), that is

Yη :

{
x′ = B

[
x(1− x)(x−M)(

√
x+A)−Q

√
xy
]
,

y′ = (P
√
x− C)y,

(3.1)

The vector field Yη is thus defined on Ω = {(x, y) : x ≥ 0, y ≥ 0}. The

equilibrium points of system (3.1) satisfy

B[x(1− x)(x−M)(
√
x+A)−Q

√
xy] = 0, (3.2)

(P
√
x− C)y = 0. (3.3)

From (3.3), either y = 0 or P
√
x = C. If y = 0, the corresponding value

of x must be x = 0, x = 1 or x = M , giving the equilibrium points

(0, 0), (1, 0) and (M, 0), the last one only if M > 0. On the other hand,

P
√
x = C has a solution if, and only if, P > 0 (and this holds, whenever

p > c in the original parameters). When this is the case, the equilibrium

point Pe = (xe, ye) satisfies xe =
C2

P 2
and ye satisfies

ye =
xe(1− xe)(xe −M)(C + PA)

QC
= Hxe(1− xe)(xe −M),
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where H =
C + PA

QC
=

p

AQc
. When M ≤ 0, ye will be positive if,

and only if, C < P ; when M > 0, ye will be positive if, and only if,

P
√
M < C < P .

The following table summarizes our previous findings.

Equilibrium points

M ≤ 0
P ≤ 0 or P ≤ C (0, 0), (1, 0)

0 < C < P (0, 0), (1, 0), (xe, ye)

M > 0
P ≤ 0 or C ≤ P

√
M or 0 < P ≤ C (0, 0), (1, 0), (M, 0)

P
√
M < C < P (0, 0), (1, 0), (M, 0), (xe, ye)

The Jacobian matrix of system (3.1) is

DYη(x, y) =

BG(x, y) −BQ
√
x

Py

2
√
x

P
√
x− C

 (3.4)

whenever x > 0, where

G(x, y) =
1

2
(1−x)(x−M)

√
x− (M −2(1+M)x+3x2)(A+

√
x)− y

2
√
x
.

Like the original vector field Xµ, the vector field Yη is non-differentiable

at the y-axis.

We will show later that the equilibrium point Pe = (xe, ye) can be

neither a saddle nor degenerate. Moreover, depending on the parameters,

Pe can be of center type or be hyperbolic and have any other nature,

see Figure 1. We will further study under which conditions Pe can be of

center-type in Section 4.1, so we now will study the equilibrium points

in the x-axis.
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Figura 1: Possible behavior of the solutions around Pe = (xe, ye)

3.1. Equilibrium points in the x-axis

Proposition 3.1. The equilibrium point P1 = (1, 0) is

1. A hyperbolic saddle, when C < P .

2. A hyperbolic stable node, when P < C.

3. A saddle-node, when P = C.

Proof. Observe that

J1 = DYη(P1) =

[
−B(1−M)(A+ 1) −BQ

0 P − C

]
(3.5)
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whose eigenvalues are −B(1 −M)(A + 1) < 0 and P − C. Therefore,

when P > C such eigenvalues have opposite signs and P1 is a hyperbolic

saddle, and when P < C, both eigenvalues are negative, so P1 is a

hyperbolic stable node.

When P = C, the Jacobian of the system at P1 given in (3.5)

reduces to

J1 =

[
λ −BQ
0 0

]
=

[
Q 1

λ/B 0

] [
0 0

0 λ

] [
Q 1

λ/B 0

]−1
where λ = −B(1 − M)(A + 1) is the non-zero eigenvalue of J1. Now

consider the change of variables

(x̂, ŷ, τ) = ϕ(x, y, t) =

(
B

λ
y, x− 1− BQ

λ
y, λt

)
which transforms system (3.1) to

dx̂

dτ
= p2(x̂, ŷ)

dŷ

dτ
= ŷ + q2(x̂, ŷ)

where p2(x̂, ŷ) = a20x̂
2 + a11x̂ŷ + h.o.t., a20 =

CQ

2λ
6= 0, a11 =

C

2λ
, and

q2(x̂, ŷ) = b20x̂
2 + b11x̂ŷ + b02ŷ

2 + h.o.t, with

b20 =
Q2

2λ
((2 +A)BM − (4 + 3A)B − C),

b11 =
Q

2λ
((5 + 3A)BM − (9 + 7A)B − C),

b02 =
B

2λ
((3 + 2A)M − (5 + 4A)).

By the Implicit Function Theorem, there exists a function ŷ = φ(x̂) =

c1x̂+ c2x̂
2 + h.o.t., defined in a neighborhood of 0 such that

φ(x̂) + q2(x̂, φ(x̂)) = c1x̂+ (b20 + b11c1 + b02c
2
1 + c2)x̂2 + h.o.t. = 0,
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which in turn implies c1 = 0 and c2 = −b20, thus φ(x̂) = −b20x̂2 + h.o.t.

Replace ŷ = φ(x̂) on p2(x̂, ŷ) to obtain

p2(x̂, φ(x̂)) = a20x̂
2 + h.o.t.

We now refer to Theorem 1, Section 2.11, in [9], to conclude that P1 is

a saddle node. �

Remark 3.2. When P = C, P1 is a saddle node equilibrium of (3.1).

We will prove later (Proposition 4.1) that the x-axis is an invariant set

of (3.1) and that any solution on the x-axis near P1 converges to P1. This

implies that the x-axis contains two stable separatrices, which separate

the parabolic and hyperbolic sectors associated to P1. A straightforward

analysis of the sign of the components of Yη near P1 allows us to conclude

that the unstable separatrix associated to P1 cannot be in Ω (hence, it

must be in the fourth quadrant). Therefore, any solution near P1 in Ω

must converge to P1.

The proofs of Propositions 3.3 and 3.5 are similar to the previous

one, and can be found in Appendix A.

Proposition 3.3. The equilibrium point PM = (M, 0), whenever M >

0, is:

1. A hyperbolic saddle, when P
√
M < C.

2. A hyperbolic unstable node, when C < P
√
M .

3. A saddle node, when C = P
√
M . �

Remark 3.4. Similarly to Remark 3.2, when C = P
√
M , the x-axis

near PM contains two unstable separatrices, and the associated parabolic

region is unstable and contained in Ω, that is, any solution near PM must

get away from PM .

Recall that the vector field Yη associated to (3.1) is non-differentiable

at every point in the y-axis, so we cannot use the Grobman-Hartman

Theorem to study the behavior of the equilibrium point P0 = (0, 0). To
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deal with this issue, consider the homeomorphism h : Ω0 → Ω0 defined

as h(x, y) = (
√
x, y) = (u, v), where Ω0 = {(x, y) ∈ R2 : x > 0, y ≥ 0}.

Using this homeomorphism as a topological conjugation, system (3.1) is

equivalent to

Z :


du

dt
=
B

2
[u(1− u2)(u2 −M)(u+A)−Qv],

dv

dt
= (Pu− C)v.

(3.6)

Note that vector field Z has polynomial components, so it is C∞ on Ω.

Proposition 3.5. The equilibrium point P̂0 = (0, 0) of (3.6), is:

1. A hyperbolic saddle, when M < 0.

2. A hyperbolic stable node, when M > 0.

3. A topological saddle, when M = 0. �

Corollary 3.6. For system (3.6), when M ≤ 0, in a neighborhood of P̂0,

there exist two separatrices Σ̂s and Σ̂u, stable and unstable, respectively,

such that Σ̂u is contained in the u-axis and Σ̂s passes through the first

and third quadrants in the uv-plane.

Proof. From Proposition 3.5, P̂0 is a saddle when M ≤ 0, so there exist

stable and unstable separatrices Σ̂s and Σ̂u.

Note that the u-axis is an invariant line of (3.6) and, when u is

small enough,
du

dτ
has the same sign as u. Therefore, there is a small

neighborhood V̂0 of P̂0, where Σ̂u is contained in the u-axis.

On the other hand, from the proof of Proposition 3.5, λ̂ = −C is

the negative eigenvalue of the Jacobian matrix Ĵ0 of (3.6) at P̂0, with

associated eigenspace generated by v̂ = (QB, 2C − BMA). Since v̂ has

positive components, due to M ≤ 0, the tangent line of Σ̂s at P̂0 must

be the eigenspace of λ̂. Therefore, reducing V̂0 if necessary, Σ̂s must be

contained in the first and third quadrants in the uv-plane. The corollary

now follows. �

32 Pro Mathematica, XXXII, 63 (2022), 23-54, ISSN 2305-2430



On a class of predator-prey models of Gause type with Allee effect

Theorem 3.7. For system (3.1), we have the following possibilities for

the equilibrium point P0 = (0, 0):

1. When M ≤ 0, there exists a stable separatrix Σ passing through

P0 and a neighborhood V0 of P0 such that Σ divides W0 = V0 ∩Ω0

into two regions R1 and R2, where R2 is an hyperbolic sector and

every solution in R1 approaches the y-axis.

2. When M > 0, there exists a neighborhood V0 of P0 such that every

solution in W0 = V0 ∩ Ω0 approaches the y-axis.

Proof. First assume M ≤ 0. By Proposition 3.5 and Corollary 3.6, the

equilibrium point P̂0 of (3.6) is a saddle and there exist a neighborhood

V̂0 of P̂0, and stable and unstable separatrices Σ̂s and Σ̂u, with Σ̂u con-

tained in the u-axis and Σ̂s passing through the first and third quadrants

of the uv-plane. This implies that Σ̂s divides V̂0 ∩ Ω0 into two regions:

S1, where every solution in S1 exits Ω0 through the positive v-axis, and

S2, where every solution remains in Ω0.

We now recall that h : Ω0 → Ω0 is a topological conjugation bet-

ween (3.1) and (3.6). Define V0 as any neighborhood of P0 such that

W0 := V0 ∩ Ω0 = h−1(V̂0) and let Σ = h−1(Σ̂s). Thus, Σ divides W0 in

two regions: R1 = h−1(S1) and R2 = h−1(S2). Therefore, any solution

in R1 must approach the y-axis. Moreover, since P̂0 is a saddle of (3.6),

R2 is an hyperbolic sector.

Now assume that M > 0, so P̂0 is a stable node of (3.6). In this case,

there exists V̂0 such that every solution of (3.6) starting in V̂0 approaches

P̂0 in infinite time. We now can divide the solutions in two: solutions that

remain in Ω0, and solutions that escape Ω0. Since
du

dτ
< 0 when u = 0

and v > 0, then any solution that starts in V̂0 that escape Ω0 cannot

enter Ω0 again.

Finally, let V0 be any neighborhood of P0 such that W0 := V0∩Ω0 =

h−1(V̂0). Then, any solution of (3.1) must approach the y-axis. �

Remark 3.8. Theorem 3.7 implies that, when the population of preda-

tors and preys are small enough, under a strong Allee effect, both species
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become extinct. On the other hand, under a weak Allee effect, there are

three possibilities:

Both the predators and preys become extinct, but preys first and

then predators.

Both prey and predators extinct roughly simultaneously. This hap-

pens when the populations start at the separatrix Σ.

Both species cannot become extinct at the same time. In fact, the

preys cannot become extinct in any case.

4. Global behavior of the solutions

Throughout this section, we will use the notation Yη = (x′, y′) to specify

the components of Yη.

We begin this section by studying the solutions contained in the

coordinate axes.

Proposition 4.1. The coordinate axes are invariant sets of (3.1). Mo-

reover,

1. any solution starting at the y-axis converges to the origin;

2. when M ≤ 0, any solution on the x-axis with initial point (R, 0)

with R > 0 converges to P1; and

3. when M > 0, any solution on the x-axis with initial point (R, 0),

R 6= M , converges either to the origin, when 0 < R < M , or to

P1, when M < R.

Proof. Indeed, note that

Yη(x, 0) = (f(x), 0), Yη(0, y) = (0,−Cy),

where f(x) = Bx(1− x)(x−M)(
√
x+A). Hence, any solution starting

in an axis stays in such axis, both in forward and backward time. Items
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1, 2 and 3 are consequence of the signs that y′ and x′ take, respectively,

on the y and x axis. �

Remark 4.2. The previous proposition can be expressed in ecological

terms. Item 1 means that the predators in absence of preys become

extinct. Item 2 means that under a weak Allee effect, the population of

preys in absence of predators approaches to its carrying capacity. Finally,

item 3 means that under a strong Allee effect, preys become extinct when

their population is below the Allee threshold, otherwise their population

also approaches to its carrying capacity.

Theorem 4.3 (Boundedness of the solutions). The solutions of the sys-

tem (3.1) are bounded.

Proof. From Proposition 4.1, the coordinates axes are invariant, and any

solution contained in them is bounded.

Recall that the homeomorphism h : Ω0 → Ω0 defined as h(x, y) =

(
√
x, y) = (u, v), where Ω0 = {(x, y) ∈ R2 : x > 0, y ≥ 0}, serves as a

topological conjugation between (3.1) and (3.6), which is given by

Z :


du

dτ
=
B

2
[u(1− u2)(u2 −M)(u+A)−Qv],

dv

dτ
= (Pu− C)v.

(4.1)

To show that the solutions of (4.1) in Ω0 are bounded we apply

the Poincaré compactification technique to Z, by using the change of

coordinates,

(u, v) =

(
r

s
,

1

s

)
, r > 0, s > 0.

to obtain

Z∞ :


dr

dτ
= −Br6 −ABr5s+Br4s2 +BMr4s2 +AB(1 +M)r3s3

−BMr2s4 − 2Pr2 −BQs5 −ABMrs5

ds

dτ
= −2Prs5 + 2Cs6,

(4.2)
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which can extended to the coordinate axes rs. Thus, to show that the

solutions of (4.1) are bounded, we need to show that there are no stable

equilibrium points of (4.2) on the infinity line s = 0. First note that

the only equilibrium point of (4.2) in s = 0, is the origin P∞ = (0, 0),

whose associated Jacobian matrix is the null matrix. To deal with this,

consider the horizontal blow-up on P∞, given by the map,

(r, s) = (x1, x1x2),

so we obtain the system

X1 :



dx1
dτ

= −By1[Qx52 + x1 +Ax1y1 − x1y21 −Mx1y
2
1

−AMx1y
3
1 +Mx1y

4
1 +AMx1y

5
1 ],

dy1
dτ

= −x1[BQy51 +Bx1 +ABx1y1 −B(1 +M)x1y
2
1

−AB(1 +M)x1y
3
1 − (BM + 2p)x1y

4
1 + (AB − 2C)x1y

5
1 ].

(4.3)

System (4.3) has only a equilibrium point Q1 = (0, 0) on the line x1 = 0,

however, the Jacobian matrix of X1 at Q1 is again the null matrix. On

the other hand, the vertical blow-up (4.2) does not have equilibrium

points.

We now do a blow-up at Q1, to obtain that the horizontal blow-

up has a hyperbolic saddle and the vertical blow-up has a degenerate

equilibrium point. If we repeat this process three more times, we obtain

in each case two equilibrium points: a hyperbolic saddle in the horizontal

blow-up and a degenerate equilibrium in the vertical one. Finally, at the

fourth blow-up, we obtain two hyperbolic saddles and a third equilibrium

point outside the first quadrant. Therefore, no equilibrium points of (4.2)

at the infinity line s = 0 are stable and, in particular, the solutions

of (4.1) in Ω0 are bounded. The theorem follows due to the topological

conjugation between (3.1) and (4.1). �
From now on, given R > 0, ΩR will denote the set

ΩR = {(x, y) : 0 ≤ x ≤ R, y ≥ 0}.
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Lemma 4.4. Let R > 0 such that, x′ in (3.1) is negative when x = R

and y > 0, then the set ΩR is a positively invariant region of system (3.1).

Proof. Due to the continuity of Yη, x′ ≤ 0 at (R, 0). Since x′ < 0 when

x = R and y > 0, any solution with initial condition in ΩR, cannot

exit this set through this vertical line. This, along with the fact that the

coordinate axes are invariant, implies the lemma. �

Proposition 4.5. For any choice of parameters η, the set

Ω1 = {(x, y) : 0 ≤ x ≤ 1, y ≥ 0}.

is a positively invariant region of (3.1).

Proof. Note that Yη(1, y) = (−Qy, (P − C)y), hence x′ < 0 on the line

x = 1, y > 0. The proposition now follows from Lemma 4.4. �

4.1. Behavior of the solutions under a strong Allee

effect

In this section, we consider (2.1) under a strong Allee effect. This implies

that the parameter M is positive on system (3.1).

The following Lemma provides sufficient conditions to guarantee

that, when the population of preys is below the Allee threshold, both

the preys and the predators become extinct.

Lemma 4.6. Assume M > 0 and let 0 < R ≤ M such that y′ in (3.1)

is non-positive on the line x = R, y > 0. Then any solution of (3.1)

starting in ΩR \ PM approaches the y-axis.

Proof. Since M > 0 and the definition of Yη, x′ < 0 at any point in ΩR
minus the y-axis and possibly the equilibrium point PM , and y′ < 0 at

any point in ΩR minus the x-axis. Therefore, by Lemma 4.4, ΩR is a

positively invariant region.
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Let φ(t) = (x(t), y(t)) be a solution of (3.1), with initial point φ(0) =

(x0, y0) ∈ ΩR \PM and maximal domain ]β−, β+[. If φ(0) belongs to the

coordinate axes then it approaches the origin, by Proposition 4.1. If

x0 > 0 and y0 > 0 then x(t) and y(t) are strictly decreasing, due to x′

and y′ being negative on ΩR, hence, without loss of generality, we may

assume that x0 < M . Moreover, φ(t) is bounded. Therefore, there exists

x̄ and ȳ such that

ĺım
t→β+

x(t) = x̄ ≥ 0, ĺım
t→β+

y(t) = ȳ ≥ 0.

We now claim that x̄ = 0. Otherwise, φ([0, β+[) would be contained in

the compact set C̃ = [x̄, x0]× [0, y0], with Yη being C1 on some open set

containing C̃. By the Poincaré-Bendixson Theorem, the solution φ must

exit C̃, a contradiction. The lemma now follows. �

Lemma 4.7. Assume M > 0, P > 0 and C < P
√
M . Then, any

solution of (3.1) starting at (x0, y0), with C2

P 2 < x0 ≤ 1 and y0 > 0,

enters ΩC2/P 2 .

Proof. From Proposition 4.5, Ω1 is a positively invariant region (3.1).

Let φ(t) be a solution such that φ(0) = (x0, y0), and assume that x(t) ≥
C2/P 2 for all t > 0. Since φ(t) is bounded, there exists ŷ > 0 such

that φ([0,+∞[) is contained on the compact set Ĉ = [C2/P 2, 1]× [0, ŷ].

Note that the only equilibrium points in Ĉ are PM and P1 which are an

unstable node and a saddle point, respectively, and the stable manifold

of P1 is contained in the x-axis. Thus, since Yη is C1 on some open set

containing Ĉ, by the Poincaré-Bendixson Theorem, φ(t) must exit Ĉ.

This proves the lemma. �

Theorem 4.8. If M > 0 then any solution of (3.1) starting in ΩM \PM
approaches the y-axis.

Proof. If P ≤ 0 or 0 < P
√
M ≤ C, then y′ ≤ 0 on the line x = M and

y > 0 and the theorem follows from Lemma 4.6.
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Now assume that P > 0 and C < P
√
M . As y′ = 0 on the line

x = C2/P 2, y > 0, by Lemma 4.6, any solution starting in ΩC2/P 2

approaches the y-axis. We now use Lemma 4.7, and the theorem follows.

�
We now state the main theorem of this section.

Theorem 4.9. Assume M > 0.

1. If P ≤ C then M is a saddle and there exists a separatrix Σ, deter-

mined by the stable manifold of PM , that divides Ω1 in two regions

D1 and D2 such that, any solution starting at D1 approaches the

y-axis and any solution starting at D2 converges to P1.

2. If P > 0 and C ≤ P
√
M then any solution starting at Ω1 approa-

ches the y-axis.

3. If P > 0 and P
√
M < C < P then Pe is a center-type equilibrium

if, and only if, 4C3 + 3AC2P − 2CP 2 −AP 3 6= 0 and

0 <
C2(6C3 + 5AC2P − 4CP 2 − 3AP 3)

P 2(4C3 + 3AC2P − 2CP 2 −AP 3)
< 1

The proof of Theorem 4.9 will be divided in three separate propo-

sitions.

Proposition 4.10. When M > 0 and P ≤ C, PM is a saddle and there

exists a separatrix Σ that divides Ω1 in two regions D1 and D2, such

that, any solution starting at D1 approaches the y-axis and any solution

starting at D2 converges to P1.

Proof. Since M < 1, by Proposition 3.3, PM is a hyperbolic saddle. Let

Σ be the separatrix curve determined by the stable manifold W s(PM ).

Note that Theorem 4.8 implies that W s(PM ) cannot enter the region

ΩM .

We claim that Σ must intersect the vertical line x = 1, y > 0, by

Poincaré-Bendixson theorem, since Σ is bounded, P1 is a stable equili-

brium point (even when P = C, see Remark 3.2), there are not other
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equilibrium points in the interior of Ω1 \ ΩM and system (3.1) is C1 in

Ω1 \ ΩM . Thus, Σ divides Ω1 in two invariant regions: D1 and D2.

Using a similar argument, since PM is not stable, any solution star-

ting at the interior of D1 must reach ΩM and, by Theorem 4.8, we are

done. On the other hand, as (3.1) is C1 in an open set containing D2,

any solution starting at D2 must converge to P1, again by the Poincaré-

Bendixson Theorem. The proposition now follows. �

Remark 4.11. Condition P ≤ C implies that the population of pre-

dators must decrease, whenever the population of preys is saturated at

its carrying capacity. When this is the case, under a strong Allee effect,

depending on the initial population of predators, one of the following

conclusions hold:

Both the predators and the preys become extinct.

The predators become extinct and the preys survive, but their

population approaches to the Allee threshold. This occurs when

the populations start at the separatrix Σ.

The predators become extinct and the preys saturate again at its

carrying capacity.

See Figure 2 for a graphical representation of the conclusions of

Proposition 4.10. The separatrix Σ is represented by the blue curve.
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D1

D2

Σ

PM P1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figura 2: A = 1/4, B = Q = P = 1, M = 1/2, C = 2

Proposition 4.12. If P > 0 and C ≤ P
√
M , then any solution starting

at the interior of Ω1 approaches the y-axis.

Proof. Due to Lemma 4.7, it is enough to proof that any solution φ(t),

with starting point φ(0) = (x0, y0) satisfying M < x0 < 1, enters ΩM .

Assume otherwise, that is, x(t) > M , for all t > 0. Now, note that φ(t)

is bounded and Ω1 is an invariant region, so there exists ŷ > 0 such that

φ([0,+∞[) is contained in the compact set Ĉ = [M, 1] × [0, ŷ]. By the

Poincaré-Bendixson Theorem, φ(t) must converge to P1, a contradiction

since P1 is unstable. �

Remark 4.13. Conditions P > 0 and C ≤ P
√
M , imply that p > c and

c ≤ p
√
m

a+
√
m

. This means in particular that the population of predators

is non-decreasing when the population of preys is at the Allee threshold.

When this happens, Proposition 4.12 implies that both species become
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extinct, whenever the population of preys is smaller than its carrying

capacity.

See Figure 3 for a graphical representation of the conclusions of

Proposition 4.12.

PM P1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figura 3: A = 1/4, B = Q = P = 1, M = 4/9, C = 2/3

Proposition 4.14. If P > 0 and P
√
M < C < P then Pe is a center-

type equilibrium if, and only if, 4C3 + 3AC2P − 2CP 2 −AP 3 6= 0 and

0 <
C2(6C3 + 5AC2P − 4CP 2 − 3AP 3)

P 2(4C3 + 3AC2P − 2CP 2 −AP 3)
< 1

Proof. Since xe =
C2

P 2
, in (3.4) we obtain

DYη(Pe) =

BG(xe, ye) −BQ√xe
P

ye
2
√
xe

0

 .
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Hence, the determinant of DYη at Pe is det(DYη(Pe)) =
1

2
BQPye > 0.

Remains to prove that the trace of the Jacobian matrix at Pe is zero.

Indeed, again from (3.4), we obtain

tr(DYη(Pe)) = − B

2P 5

[
6C5 + 5AC4P − 4C3(1 +M)P 2

− 3AC2(1 +M)P 3 + 2CMP 4 +AMP 5
]
,

which is zero if we choose

M =
C2(6C3 + 5AC2P − 4CP 2 − 3AP 3)

P 2(4C3 + 3AC2P − 2CP 2 −AP 3)
(4.4)

The proposition now follows. �
In view of Proposition 4.14, we obtain conditions to guarantee when

the equilibrium Pe is of center-type. This motivates us to apply a linear

perturbation on the model under these conditions in order to obtain a

Hopf perturbation. In the next section, we follow the steps of [8, Sec-

tion 3.5] in an specific example, to guarantee the existence of a limit

cycle.

Example and Hopf Bifurcation Consider the following choice of

parameters:

A =
1

16
, P = 6, C = 5, B = Q = 1.

Using (4.4), we choose M =
925

4764
, so

Pe =

(
25

36
,

2556125

18522432

)
≈ (0,694, 0,138)

is a center-type equilibrium. Using the parameters above, we now per-

turb (3.1) considering P = 6 + α, where α is a perturbation parameter,

so we obtain

x′ =

(
1

4
+
√
x

)
(1− x)x

(
− 925

4764
+ x

)
−
√
x y,

y′ =
(
(6 + α)

√
x− 5

)
y.
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Note that the above system has equilibrium points

xe(α) =
25

(6 + α)2
,

ye(α) = −125(1 + α)(11 + α)(26 + α)(37α2 + 444α− 3432)

19056(6 + α)6
.

We consider the change of coordinates (x, y) = (u+ xe(α), v+ ye(α)) to

obtain the following system

u′ = a(α)u+ b(α)v + f(u, v, α),

v′ = c(α)u+ d(α)v + g(u, v, α),
(4.5)

where

a(α) = −25α(−5190696− 362726α+ 31773α2 + 2590α3 + 37α4

38112(6 + α)5

c(α) = −25(1 + α)(11 + α)(26 + α)(−3432 + 444α+ 37α2)

38112(6 + α)4

b(α) = − 5

6 + α
, d(α) = 0,

and f, g are smooth functions which have Taylor expansions in (u, v)

starting with at least quadratic terms. Let

A(α) =

[
a(α) b(α)

c(α) d(α)

]
, F (u, v, α) = (f, g),

so system (4.5) can be rewritten as

~x ′ = A(α)~x+ F (~x, α), ~x = (u, v).

Note that the eigenvalues of A(α) take the form

λ1(α) = λ(α), λ2(α) = λ(α)
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where λ(α) = µ(α) + ω(α)i,

µ(α) = −25α(37α4 + 2590α3 + 31773α2 − 362726α− 5190696)

76224(6 + α)5

ω(α) =
1

2

√
4 det(A(α))− tr(A(α))2 =

5
√

5

76224(6 + α)5)

[
1163566731165696 + 2133205673803776α+ 1130185096986816α2

+ 304862575757472α3 + 24309457093660α4 − 6637949269140α5

− 1991153106709α6 − 234121358224α7 − 14407575038α8

− 452204380α9 − 5647421α10
]1/2

.

Note that µ′(0) =
600775

2744064
6= 0. We now follow the steps given in [8,

Section 3.5] and apply Theorem 3.3. For this, remains to verify that the

first Lyapunov coefficient, called l1(0) in [8], is non-null.

Let q(α) ∈ C2 be the eigenvector of A(α) associated to the eigenva-

lue λ(α) and let p(α) ∈ C2 be the eigenvector of A(α)> associated to the

eigenvalue λ(α), and assume, by rescaling p(α), that 〈p(α), q(α)〉 = 1,

where 〈·, ·〉 is the usual inner product of C2. We may now define

g(z, z̄, α) = 〈p(α), F (zq(α) + z̄q(α))〉 =
∑
k+l≥2

gkl(α)

k!l!
zkz̄l,

that is gkl(α) =
∂k+l

∂zk∂z̄l
g(z, z̄, α)

∣∣∣∣
z=0

. Denote ω0 = ω(0) and ĝkl =

gkl(0), then, from [8, Equation 3.20], the first Lyapunov coefficient is

given by:

l1(0) =
1

2ω2
0

Re(iĝ20ĝ11 + ω0ĝ21).
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In our example, we obtained the following values:

ω0 =
715

72

√
5

1191
, ĝ11 =

17667936√
5

− 371134764

√
3

397
i,

ĝ20 =
17667936√

5
− 5207546916

5

√
3

397
i,

ĝ21 = −897806862453676032

125
+

628677742657536

25

√
1191

5
i,

hence,

l1(0) = −35713462758285312

125

√
1191

5
6= 0.

Thus, in virtue of Theorems 3.3 and 3.4 and Section 3.4 in [8], we obtain

a supercritical Hopf bifurcation. In particular, for α > 0 small enough,

we can guarantee the existence of limit cycles, see Figure 4. This implies

that, under this choice of parameters, there is coexistence between the

predators and the preys.

PM P1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

Figura 4: Limit cycle when A =
1

16
, P = 6, C = 5, B = Q = 1 and

α = 0,1
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5. Further comments and conclusions

In this work we studied a predator-prey model of Gause type, where the

preys have a non-differentiable square root functional response and are

affected by an Allee effect. We discovered that the dynamic around the

origin is similar to that the works of Braza [4] and Ajraldi [1]: when the

population of predators and preys are small enough, either both species

become extinct, or the preys always survives.

Moreover, under a strong Allee effect, for an wide choice of para-

meters, the predators are doomed to extinction. This extinction in fact

happens for all parameters, whenever the population of preys is below

the Allee threshold. We provide necessary conditions for the survival of

both species, and under these conditions, we characterized the existen-

ce of a type-center equilibrium. Finally, we provide an explicit example

when both species coexist, proving the existence of a limit cycle by means

of a Hopf bifurcation.
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A. Complementary results and proofs

Proposition A.1. The vector field associated to system (2.1) is topolo-

gically equivalent to the system

Yη :


du

dτ
= B[u(1− u)(u−M)(

√
u+A)−Q

√
uv]

dv

dτ
= (P

√
u− C)v,

where B = K3/2, Q = q/r, A = a/
√
K, M = m/K, P =

√
K(p− c)/r,

C = ac/r.
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Proof. Consider the change of variables and time rescaling defined as

in (2.2):

(x, y, t) = Φ(u, v, τ) =
(
Ku,K2v, (

√
Ku+ a)τ/r

)
.

Note that Φ is a diffeomorphism and the Jacobian matrix of Φ is

DΦ(u, v, τ) =


K 0 0

0 K2 0√
Kτ

2r
√
u

0

√
Ku+ a

r

 ,

whose determinant is det(DΦ(u, v, τ)) =
K3

r
(
√
Ku+ a) 6= 0. Moreover,

du

dx
=

1

K
,
dv

dy
=

1

K2
,
dt

dτ
= (
√
Ku+ a)/r, thus

du

dτ
=
du

dx

dx

dt

dt

dτ

=
1

K

[
r(1− u)(Ku−m)Ku− q

√
Ku√

Ku+ a
K2v

] √
Ku+ a

r

= (1− u)(Ku−m)u(
√
Ku+ a)− q

√
Ku

r
Kv

= K3/2[u(1− u)(u−m/K)(
√
u+ a/

√
K)− q

r

√
uv]

= B[u(1− u)(u−M)(
√
u+A)−Q

√
uv].
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In the same way

dv

dτ
=
dv

dy

dy

dt

dt

dτ
=

1

K2

[
p
√
x√

x+ a
− c
]
y

√
Ku+ a

r

=
1

K2

[
p
√
Ku√

Ku+ a
− c

]
K2v

√
Ku+ a

r

=
[p
r

√
Ku− c

r
(
√
Ku+ a)

]
v

=

[
p− c
r

√
Ku− ca

r

]
v

= [P
√
u− C]v.

�
Proof of Proposition 3.3. We will follow the same steps done in the proof

of Proposition 3.1. The Jacobian matrix at PM is

JM = DYη(PM ) =

[
B(1−M)M(A+

√
M) −BQ

√
M

0 P
√
M − C

]
, (A.1)

with eigenvalues B(1 −M)M(A +
√
M) > 0 and P

√
M − C. Items 1

and 2 in the proposition follow from here. On the other hand, when√
MP = C, (3.5) reduces to

JM =

[
λ −BQ

√
M

0 0

]
=

[
BQ
√
M 1

λ 0

] [
0 0

0 λ

] [
BQ
√
M 1

λ 0

]−1
where λ = B(1−M)M(A+

√
M) is the non-zero eigenvalue of JM . Now

consider the change of variables

(x̂, ŷ, τ) = ϕ(x, y, t) =

(
y

λ
, x−M − B

√
MQ

λ
y, λt

)
which transforms system (3.1) to

dx̂

dt
= p2(x̂, ŷ)

dŷ

dt
= ŷ + q2(x̂, ŷ)
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where p2(x̂, ŷ) = a20x̂
2 + a11x̂ŷ + h.o.t., a20 6= 0, and q2(x̂, ŷ) = b20x̂

2 +

b11x̂ŷ + b02ŷ
2 + h.o.t. We again use the Implicit Function Theorem, to

conclude that there exists a function ŷ = φ(x̂) = c2x̂
2 + h.o.t, defined in

a neighborhood of 0 such that

φ(x̂) + q2(x̂, φ(x̂)) = 0,

and

p2(x̂, φ(x̂)) = a20x̂
2 + h.o.t.

As in the proof of Proposition 3.1, we now refer again to Theorem 1,

Section 2.11, in [9], to conclude that PM is a saddle node. �

Proof of Proposition 3.5. The Jacobian matrix of system (3.6) at the

origin is

Ĵ0 = DZ(P̂0) =

[
− 1

2BMA − 1
2QB

0 −C

]
.

The eigenvalues of Ĵ0 are −C < 0 and − 1
2BMA. Thus, if M < 0 then

P̂0 is a hyperbolic saddle, and if M > 0 then it is a hyperbolic stable

node.

When M = 0, Ĵ0 reduces to

Ĵ0 =

[
0 − 1

2BQ

0 −C

]
=

[
1 QB

0 2C

] [
0 0

0 −C

] [
1 BQ

0 2C

]−1
.

Now consider the change of variables

(x̂, ŷ, τ) = ϕ(u, v, t) =

(
u− BQ

2C
v,

v

2C
,−Ct

)
which transforms system (3.1) into

dx̂

dτ
= p2(x̂, ŷ),

dŷ

dτ
= ŷ + q2(x̂, ŷ),
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where p2(x̂, ŷ) = a11x̂ŷ + a02ŷ
2 + h.o.t. and

q2(x̂, ŷ) = −P
C
x̂ŷ − BPQ

C
ŷ2.

Since ŷ divides ŷ + q2(x̂, ŷ), the function φ(x̂) = 0, defined in a neigh-

borhood of 0, satisfies

φ(x̂) + q2(x̂, φ(x̂)) = 0.

Replace ŷ = φ(x̂) = 0 on p2(x̂, ŷ) to obtain

p2(x̂, φ(x̂)) = −AB
2C

x̂3 + h.o.t.

We now refer to Theorem 1, Section 2.11 in [9], to conclude that P̂0 is a

topological saddle. �

Referencias

[1] V. Ajraldi, M. Pittavino, and E. Venturino. Modeling herd beha-

vior in population systems. Nonlinear Analysis: Real World Appli-

cations, 12(4):2319–2338, Aug. 2011.

[2] A. D. Bazykin, A. I. Khibnik, and B. Krauskopf. Nonlinear Dy-

namics of Interacting Populations, volume 11 of World Scientific

Series on Nonlinear Science Series A. World Scientific, May 1998.

[3] J. L. Bravo, M. Fernández, M. Gámez, B. Granados, and A. Ti-
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Resumen: Un modelo depredador-presa de tipo Gause es una extensión

del clásico modelo depredador-presa de Lotka-Volterra. En este trabajo

estudiamos un modelo depredador-presa de tipo Gause, donde el creci-

miento de las presas es sujeto a un efecto Allee y la acción del depredador

sobre la presa es dada por una funcional de respuesta de ráız cuadrada,

la cual no es diferenciable en el eje y. Este tipo de respuesta funcional

modela apropiadamente sistemas en los cuales la presa posee un fuerte

comportamiento de rebaño, pues los depredadores interactúan con las

presas mayormente en la frontera del rebaño. Debido al término de ráız

cuadrada en la respuesta funcional, el estudio del comportamiento de las

soluciones cerca al origen es más sutil e interesante que en otros modelos.

Nuestro estudio es dividido en dos partes: la clasificación local de los

puntos de equilibrio, y el comportamiento de las soluciones en cierto con-

junto invariante cuando el modelo tiene un efecto Allee fuerte. En uno

de nuestros resultados principales probamos, para una amplia selección

de parámetros, que las soluciones en cierto conjunto invariante se apro-

ximan al eje y. Además, para cierta elección de parámetros, probamos la

existencia de una curva separatriz que divide el conjunto invariante en

dos regiones: una donde toda solución se aproxima al eje y, y otra donde

hay un punto de equilibrio global y asintóticamente estable. También

damos condiciones para asegurar la existencia de un equilibrio de tipo

centro, y mostramos la existencia de una bifurcación de Hopf.

Palabras claves: Modelos depredador-presa, Modelos de Gause, Efecto Allee,

Funcional de respuesta de ráız cuadrada.

Liliana Puchuri

Departamento de Ciencias

Sección Matemáticas
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