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Abstract

It is shown that if the integral operator (Hilbert-Schmidt, non nuclear

and non-normal) on L2(0, 1), (Aρf)(θ) =

∫ 1

0

ρ

(
θ

x

)
f(x)dx, where ρ is

the fractional part function, belongs to a geometrically stable ideal J ,

then τ(Aρ) = 0 for every non-trivial singular trace τ on J .
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1. Introduction

Let B(H) denote the algebra of all bounded linear operator on a sepa-

rable complex Hilbert Space H. The adjoint of an operator T ∈ B(H) is

denoted by T ∗. Denote by {sn(T )}n≥1 the sequence of singular values of

a compact operator T ∈ B(H). By an ideal we mean a two-sided ideal

in B(H). A linear functional τ from the ideal J into C is said to be a

trace, if:

i) τ(U∗TU) = τ(T ) for every T ∈ J and U ∈ B(H) unitary,

ii) τ(T ) ≥ 0 for every T ∈ J with T a non-negative operator. We

denote by T ≥ 0 when T is a non-negative operator.

Therefore a trace is a positive unitary invariant linear functional.

Obviously, the usual trace is an example of a trace on the ideal S1(H)

of nuclear operators.

A trace τ on an ideal J will be call singular if it vanishes on the

set F(H) of finite rank operators. This definition makes sense, since by

the Calkin Theorem [7], each proper ideal in B(H) contains the finite

rank operators and is contained in the ideal K(H) of the compact linear

operators on H.

In 1966, J. Dixmier proved the existence of singular traces [10].

These traces are called Dixmier traces, and its importance is due to their

applications in noncommutative geometry [9]. Other examples of singular

traces were given by N. Kalton [13]. J. Varga [20] and S. Albeverio et al.

[1].

The condition (i) of trace coincides with the notion that a trace

vanishes on the commutator subspace of J ,

Com(J) = span{[A,B] : A ∈ J,B ∈ B(H)},

where [A,B] = AB −BA. The commutator subspace has been

characterizes in terms of arithmetic means of monotone sequences by N.

Kalton [14]; note that N. Kalton works with the special case of geome-

trically stable ideals.
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In order to study the asymptotic distribution of prime numbers

among the natural ones, Riemann introduced the function

ζ(s) =

∞∑

n=1

n−s, s = σ + it, σ > 1, t ∈ R

afterwards known as the Riemann zeta function. He proved that the

analytic continuation of this function, defined on C\{1}, has an infinite

number of zeros in the strip {s : 0 ≤ σ ≤ 1}, all of them being non-real

and symmetrically distributed with respect to the lines {s : t = 0} and

{s : σ = 1
2}. Concerning the distribution of these zeros he formulated

the famous Riemann Hypothesis: All the zeros of ζ in the strip {s : 0 ≤
σ ≤ 1} lie on the line {s : σ = 1

2}.
In [2], J. Alcántara-Bode has reformulated the Riemann Hypothesis

as a problem of functional analysis by means of the following theorem.

Theorem 1.1. Let (Aρf)(θ) =

∫ 1

0

ρ

(
θ

x

)
f(x)dx, where ρ(x) = x− [x],

x ∈ R, [x] ∈ Z, [x] ≤ x < [x] + 1, be considered as an operator on

L2(0, 1). Then the Riemann Hypothesis holds if and only if ker(Aρ) =

{0}, or if and only if h /∈ Ran(Aρ) where h(x) = x. �

The aim of this paper is to show that if Aρ ∈ J , where J is a

geometrically stable ideal (see Definition 2.10) of L2(0, 1), then τ(Aρ) =

0 for every τ non-trivial singular trace on J .

2. Singular traces and the commutator

subspace

Let `∞ the space of all bounded sequences of complex numbers and w a

dilation invariant extended limit on `∞, that is, w is an extended limit

on `∞ [18] and

w({x1, x2, · · · }) = w({x1, x1, x2, x2, · · · }) for all x = {x1, x2, · · · } ∈ `∞.
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The Dixmier trace of T ∈M1,∞(H) with T ≥ 0 is the number

Trw(T ) := w

({
1

log(n+ 1)

n∑

k=1

sk(T )

})
,

where

M1,∞(H) =

{
T ∈ K(H) : ‖T‖1,∞ := sup

n≥1

{
1

log(n+ 1)

n∑

k=1

sk(T )

}
<∞

}
.

It was shown in [16, Theorem 10.22] that the weight Trw defines a po-

sitive, unitarily invariant, additive and positive homogeneous function

on the positive cone of M1,∞(H), that can uniquely be extended to a

singular trace on all of M1,∞(H), i.e., for an arbitrary T ∈ M1,∞(H),

its Dixmier trace is defined by

Trw(T ) := w

({
1

log(n+ 1)

n∑

k=1

sk(T1)− sk(T2) + isk(T3)− isk(T4)

})
,

where T = T1 − T2 + iT3 − iT4, 0 ≤ Tj ∈ M1,∞(H), j = 1, 2, 3, 4. In

addition to this, the Dixmier trace vanishes on the ideal S1(H) and it is

continuous in the norm ‖ · ‖1,∞, more precisely,

|Trw(T )| ≤ ‖T‖1,∞ for all T ∈M1,∞(H).

A smaller subclass of Dixmier traces was suggested by A. Connes

in [9]. He observed that for any extended limit γ on `∞ the functional

w := γ ◦M is a dilation invariant extended limit. Here, the operator

M : `∞ → `∞ is defined by

M({x1, x2, · · · }) =

{
1

log(n+ 1)

n∑

k=1

xk
k

}
.

The Dixmier trace associated to this dilation invariant extended limit w

is called a Connes-Dixmier trace.

The notion of measurable operators was introduced by A. Connes

[9] and is the following.
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Definition 2.1. An operator T ∈ M1,∞(H) is called Dixmier measu-

rable if Trw(T ) is independent of the choice of the dilation invariant

extended limit w on `∞.

Definition 2.2. An operator T ∈ M1,∞(H) is called Connes-Dixmier

measurable if Trw(T ) is independent of the choice of the dilation inva-

riant extended limit w = γ ◦M , where γ is an extended limit on `∞.

Evidently, every Dixmier measurable operator is Connes- Dixmier

measurable. For positive operators, by [8, Theorems 6.6 and 6.7] a

characterization of Dixmier measurable operators and Connes-Dixmier

measurable operators is given by the following.

Theorem 2.3. For a positive operator T in M1,∞(H), the following

statements are equivalent:

a) T is Dixmier measurable;

b) T is Connes-Dixmier measurable;

c) the limit ĺım
n→+∞

1

log(n+ 1)

n∑

k=1

sk(T ) exists. �

In general, for an arbitrary T ∈ M1,∞(H), the next theorem [18,

Theorem 4] gives a characterization of Dixmier measurability.

Theorem 2.4. An operator T ∈M1,∞(H) is Dixmier measurable if and

only if the limit

ĺım
n→+∞

1

log(n+ 1)

n∑

k=1

1

k log(k + 1)

k∑

i=1

s̃[αi](T )

exists uniformly in α ≥ 1, here

s̃k(T ) := sk(T1)− sk(T2) + isk(T3)− isk(T4),

with T = T1 − T2 + iT3 − iT4, 0 ≤ Tj ∈M1,∞(H), j = 1, 2, 3, 4. �
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The Theorem 2.3 tell us that on the positive cone of M1,∞(H) the

notions of Dixmier and Connes-Dixmier measurable coincide. In Addi-

tion to this, according to [19, Theorem 7.7], these notions are the same

on the ideal L 1,∞(H) ⊂M1,∞(H), where

L 1,∞(H) =

{
T ∈ K(H) : sup

n≥1
{nsn(T )} <∞

}
;

and by [15, Theorem 9.7.5], a characterization of Dixmier measurable

elements is given in the following theorem.

Theorem 2.5. An operator T ∈ L 1,∞(H) is Dixmier measurable if and

only if the limit ĺım
n→+∞

1

log(n+ 1)

n∑

k=1

λk(T ) exists. Here, {λn(T )}n≥1 is

the sequence of nonzero eigenvalues of T , ordered in such a way that

|λn(T )| ≥ |λn+1(T )| ∀n ∈ N. �

Observe that the previous limit is equal to the Dixmier trace of T

[15, Theorem 7.3.1].

The existence of a singular trace which is non-trivial on a compact

operator T , i.e., on the two-sided ideal generated by T ,

(T ) = ∪∞r=1{
r∑

i=1

XiTYi; Xi, Yi ∈ B(H)},

was studied by J. Varga [20], and it has been completely characterized

in [1]. For this reason, the notion of irregular, eccentric and generalized

eccentric operator arises.

Definition 2.6. We say that a compact operator T ∈ B(H) is

a) regular if

n∑

k=1

sk(T ) = O(nsn(T )) (n→∞)

b) irregular if it is not regular

c) eccentric if it is irregular but not nuclear
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d) generalized eccentric if 1 is a limit point of the sequence

{
S2n(T )

Sn(T )

}
,

where

Sn(T ) =





n∑

k=1

sk(T ) , T /∈ S1(H)

n∑

k=1

sk(T )− Tr(|T |), T ∈ S1(H)

.

Remark 2.7. By [20, Lemma 1], the class of generalized eccentric opera-

tors which are not nuclear coincides with the class of eccentric operators.

By [1, Lemma 2.6], that an operator is generalized eccentric can be

reformulated as follows.

Lemma 2.8. Let T ∈ B(H) be a compact operator. Then T is generali-

zed eccentric if and only if there exists an increasing sequence of natural

numbers {pn} such that ĺım
k→+∞

Skpk(T )

Spk(T )
= 1. �

In this context, the main result in [1] is the following.

Theorem 2.9. Let T ∈ B(H) be a compact operator. Then the following

are equivalent:

a) There exists a singular trace τ such that 0 < τ(|T |) < +∞.

b) T is generalized eccentric. �

The process to construct the singular trace given by (a) is as follows:

We introduce a triple Ω = (T,w, {nk}), where T is a generalized

eccentric operator, w is an extended limit and nk = npk, k ∈ N, where

{pn} is the sequence given in Lemma 2.8. Associated with the triple Ω,

on the positive part of the ideal (T ), we defined the functional

τΩ(A) := w

({
Snk(A)

Snk(T )

})
, A ∈ (T )+,

and by [1, Theorem 2.11] this functional extends linearly to a singular

trace on the ideal (T ).
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Now we concentrate on the commutator subspace of symmetrically

normed ideals and geometrically stable ideals, terminologies used in [15]

and [14] respectively.

Definition 2.10. An ideal J of B(H) is called a symmetrically normed

ideal if it is a Banach space for a norm ‖ ·‖J with the following property:

‖BAC‖J ≤ ‖B‖‖A‖J‖C‖ for all A ∈ J and B,C ∈ B(H).

Definition 2.11. An ideal J of B(H) is called geometrically stable if a

diagonal operator diag{s1, s2, · · · } ∈ J , where s1 ≥ s2 ≥ · · · ≥ 0, then

we have diag{u1, u2, · · · } ∈ J , where un = (s1 · · · s2 · · · sn)1/n.

Remark 2.12. By [15, Lemma 5.5.9], every symmetrically normed ideal

is a geometrically stable ideal.

The following theorem [14, Theorem 3.3] characterizes the commu-

tator subspace for the special case of geometrically stable ideals.

Theorem 2.13. Suppose that J is a geometrically stable ideal of B(H).

Then the following conditions are equivalent:

a) S ∈ Com(J);

b) diag

{
1

n
(λ1(S) + · · ·+ λn(S))

}
∈ J ;

c) there exists T ∈ J so that
1

n
|λ1(S) + · · · + λn(S)| ≤ sn(T ) for each

n ∈ N. �

Example 2.14. Let V : L2(0, 1) → L2(0, 1) be the integral operator

(V f)(t) = 2i

∫ t

0

f(s)ds. Is known that the operator V is Volterra, it

means that V is compact and V has no eigenvalues. An easy calcula-

tion shows that sn(V ) =
4

(2n− 1)π
, n ∈ N. Then, by Remark 2.7, V

is a generalized eccentric operator. Finally, V ∈ M1,∞(L2(0, 1)) and by

the Theorem 2.13, V ∈ Com(M1,∞(L2(0, 1))). Hence V is Dixmier mea-

surable and Trw(V ) = 0 for all w dilation invariant extended limit on

`∞.

62 Pro Mathematica, XXXII, 63 (2022), 55-71, ISSN 2305-2430



Singular traces of an integral operator related to the Riemann Hypothesis

3. The integral operador Aρ

To study the Riemann Hypothesis, J. Alcántara-Bode introduced the in-

tegral operator Aρ : L2(0, 1) → L2(0, 1), (Aρf)(θ) =

∫ 1

0

ρ

(
θ

x

)
f(x)dx.

By [2], the Riemann Hypothesis holds if and only if ker(Aρ) = {0}, or if

and only if h /∈ Ran(Aρ) where h(x) = x for all x ∈ [0, 1].

The problem of verifying that h ∈ Ran(Aρ) leads to an ill posed

problem [12], for this reason, J. Alcántara-Bode regularizes this problem

replacing Aρ by

(Aρ(α)f)(θ) =

∫ 1

0

ρ

(
αθ

x

)
f(x)dx, 0 < α ≤ 1, f ∈ L2(0, 1).

Note that Aρ = Aρ(1). The symbol I stands for identity maps. The

operator Vα ∈ B(L2(0, 1)) defined by (Vαf)(x) = f
(x
α

)
ξ[0,α](x), where

ξC denotes the characteristic function of C, was introduced in [3], and

we have the relations

(V ∗α f)(x) = αf(αx), V ∗αVα = αI,

VαV
∗
α = αξ[0,α], V

∗
αAρVα = α2Aρ

Aρ(α) =
1

α
V ∗αAρ, Aρ(α)Vα = αAρ.

We briefly summarize properties of Aρ(α) established in [2, 3, 4]:

i) Aρ(α), 0 < α ≤ 1, is Hilbert-Schmidt, but neither nuclear, nor

normal, nor monotone (or accretivo).

ii) λ ∈ σ(Aρ(α))\{0} (σ(Aρ(α)) is the spectrum of Aρ(α)), 0 < α ≤ 1,

if and only if Tα(λ−1) = 0 where

Tα(u) = 1− αu+

+∞∑

r=1

(−1)r+1 α(r+1)(r+2)/2

(r + 1)!(r + 1)

r∏

`=1

ζ(`+ 1)ur+1

is an entire function with an infinite number of zeros; moreover the

multiplicity of a zero of Tα coincides with the algebraic multiplicity

of the corresponding eigenvalue.
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iii) T1(u) is an entire function of order one and type one. For 0 < α < 1,

Tα(u) is an entire function of order zero.

iv) For 0 < α < 1,

+∞∑

n=1

|λn(Aρ(α))|r <∞, ∀r > 0. Moreover,

+∞∑

n=1

|λn(Aρ)| = +∞ and

|λn(Aρ)| ≤
e

n
, ∀n ∈ N. (3.1)

4. Results

The following result is thanks to Julio Alcántara-Bode (private

communication).

Theorem 4.1. If 0 < α ≤ β ≤ 1 then

Aρ(α) = Aρ(β)V ∗α
β

+ α

〈
·, ξ[αβ ,1]

1

h

〉
h. (4.1)

Proof. By the Müntz-Szasz Theorem [6], it is sufficient to verify (4.1) for

hr with r ∈ N, where h(x) = x. To this end, we use the identity [5],

∫ 1

0

ρ

(
θ

x

)
xrdx =

θ

r
− ζ(r + 1)

r + 1
θr+1, Re(r) > −1. (4.2)

Evaluating the right-hand side of (4.1) we have

Aρ(β)V ∗α
β

(hr)(θ) + α

(∫ 1

0

hr(x)ξ[αβ ,1]
1

h(x)
dx

)
h(θ)

=
αr+1

βr+1

∫ 1

0

ρ

(
βθ

x

)
xrdx+

α

r

(
1− αr

βr

)
θ.
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It follows from (4.2) that

αr+1

βr+1

∫ 1

0

ρ

(
βθ

x

)
xrdx+

α

r

(
1− αr

βr

)
θ =

αr+1

βr+1

(
βθ

r
− ζ(r + 1)

r + 1
(βθ)r+1

)

+
α

r

(
1− αr

βr

)
θ = (Aρ(α))(hr)(θ).

Hence, (4.1) is true in hr with r ∈ N. �

Remark 4.2. If 0 < α, β ≤ 1 and λ > 0 with λα, λβ ∈ 〈0, 1], we get

from (4.1) that

Aρ(λα) = Aρ(λβ)V ∗α
β

+ λα

〈
·, ξ[αβ ,1]

1

h

〉
h.

For a given operator T /∈ S1(H), where H is a separable complex

Hilbert space, the following theorem shows the existence of a non-trivial

singular trace defined on a geometrically stable ideal taking the value of

zero on T .

Theorem 4.3. For every operator T /∈ S1(H) there exists a geometri-

cally stable ideal J and a non-trivial singular trace τ defined on J , such

that T ∈ J and τ(T ) = 0.

Proof. By [11, Theorem 3.1], there exists a generalized eccentric operator

B such that T ∈ (B)0 ⊂ (B). Here (B)0 is called the kernel of (B) (see

[11]). As we explained in the construction of the singular trace in the

Theorem 2.9, we can take the triple Ω = (B,w, {nk}). Associated with

Ω, on the positive part of (B), we have the functional

tΩ(A) := w








Snk(A)
nk∑

i=1

si(B)








= w








nk∑

i=1

si(A)

nk∑

i=1

si(B)








;A ∈ (B)+

that extends linearly to a singular trace on the ideal (B). We also denote

this extension by tΩ. Clearly, tΩ(|B|) = 1. It is easy to see that tΩ is
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bounded with the norm ‖ · ‖B , where

‖A‖B = sup
n∈N





n∑

k=1

sk(A)

n∑

k=1

sk(B)




,

so it extends by continuity to a singular trace t̃Ω : (B)
‖·‖B → C. By

Remark 2.12, the ideal (B)
‖·‖B

is geometrically stable. Finally, by [11,

Proposition 2.7], we get that t̃Ω(T ) = 0. �
Finally, we have the main result.

Theorem 4.4. If Aρ ∈ J , where J is a geometrically stable ideal of

L2(0, 1), then τ(Aρ) = 0 for every τ non-trivial singular trace on J .

Proof. Firstly, we prove that for 0 < α, β ≤ 1 the compact operators
1
αAρ(α)− 1

βAρ(β) have no eigenvalues, it means that they are Volterra

(J. Alcántara-Bode, private communication). Indeed, similar to the proof

[3, Theorem 3], it can be shown that the eigenfunctions ϕα,β associated to

the non-zero eigenvalues λα,β of
1

α
Aρ(α)− 1

β
Aρ(β) are analytic in [0, 1],

and they can be extended to entire functions with ϕα,β(x) =

+∞∑

r=1

crx
r,

where cr = cr(λ
α,β). Substituting this series into

(
1

α
Aρ(α)− 1

β
Aρ(β)

)
ϕα,β = λα,βϕα,β , (4.3)

we get from (4.2) that

+∞∑

r=1

ζ(r + 1)

r + 1
cr(β

r − αr)xr+1 =

+∞∑

r=1

λα,βcrx
r.

It gives that cr = 0 for all r ≥ 1 and then ϕα,β = 0. Hence, the operators
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1

α
Aρ(α)− 1

β
Aρ(β) are Volterra. Taking β = 1 in (4.1) give us

Aρ(α) =
1

α
V ∗αAρ = AρV

∗
α + α

〈
·, ξ[α,1]

1

h

〉
. (4.4)

Let τ a non-trivial singular trace on J (the existence of J and a non-

trivial singular trace on J is guaranteed by the Theorem 4.2). Applying

τ in (4.4), we obtain

1

α
τ(V ∗αAρ) = τ(AρV

∗
α ) = τ(V ∗αAρ).

It implies that for 0 < α < 1 we have that τ(V ∗αAρ) = 0 and therefore

τ(Aρ(α)) = 0. Since Aρ − 1
αAρ(α), 0 < α < 1 is Volterra, it follows

from the Theorem 2.13 that Aρ− 1
αAρ(α) ∈ Com(J), and hence τ(Aρ−

1
αAρ(α)) = τ(Aρ) − 1

ατ(Aρ(α)) = 0. From this equality, we conclude

that τ(Aρ) = 0. �
Taking J = L 1,∞(L2(0, 1)) and J = M1,∞(L2(0, 1)) in the previous

theorem, we have the following corollaries.

Corollary 4.5. If Aρ ∈ L 1,∞(L2(0, 1)) then Aρ is Dixmier measurable

and ĺım
n→+∞

1

log(n+ 1)

n∑

k=1

λk(Aρ) = 0.

Proof. Since L 1,∞(L2(0, 1)) is a quasi-Banach ideal, by [14, Proposition

3.2], L 1,∞(L2(0, 1)) is geometrically stable. Therefore, the corollary fo-

llows from the Theorems 2.5 and 4.4. �

Corollary 4.6. If Aρ ∈M1,∞(L2[0, 1]) then Aρ is Dixmier measurable

and the limit

ĺım
n→+∞

1

log(n+ 1)

n∑

k=1

1

k log(k + 1)

k∑

i=1

s̃[αi](Aρ)

exists uniformly in α ≥ 1.

Proof. It follows from the Theorems 2.4, 4.4 and the Remark 2.12. �
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Remark 4.7.

i) We known that for 0 < α, β ≤ 1 the operators 1
αAρ(α) − 1

βAρ(β)

are Volterra. Similarly, it can be show that for 0 < α + β ≤ 1 the

operators Aρ(α+ β)−Aρ(α)−Aρ(β) are Volterra.

ii) It is not difficult to show that for each n ∈ N we have

(
α

β

)1/2

≤ sn(Aρ(α))

sn(Aρ(β))
≤
(
α

β

)−1/2

, 0 < α ≤ β ≤ 1.

Therefore, from this inequality and the Remark 2.7, we obtain

that Aρ is a generalized eccentric operator if and only if Aρ(α) is

a generalized eccentric operator for some α ∈ 〈0, 1].

iii) By [17], if H is a separable complex Hilbert space and A ∈ K(H),

then there exists a compact normal operator N and a Volterra

operator Q such that A = N + Q and {λn(A)} = {λn(N)}.
We call this decomposition, the Ringrose decomposition of A. If

Aρ = N +Q is the Ringrose decomposition of Aρ, by (3.1) and the

Remark 2.7, N is a generalized eccentric operator and it belongs

to L 1,∞(L2(0, 1)). Therefore, by the Theorem 2.9, there exists a

singular trace τ on (N) such that τ(|Aρ −Q|) = 1.
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Resumen: Se ha probado que si el operador integral Hilbert-Schmidt,

no nuclear y no normal en L2(0, 1), (Aρf)(θ) =

∫ 1

0

ρ

(
θ

x

)
f(x)dx, donde

ρ es la función parte fraccionaria, pertenece a un ideal geométricamente

estable J , entonces τ(Aρ) = 0 para toda traza singular no trivial τ en I.

Palabras claves: traza singular, operador exéntrico generalizado, operador

Volterra.
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asotelop@unac.edu.pe

Pro Mathematica, XXXII, 63 (2022), 55-71, ISSN 2305-2430 71




