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Abstract

In this article we show several properties about multiply

Hölder functions. We study the Hölder class of a

composition of multiply Hölder functions and prove that a

map and its inverse belong — under certain hypotheses — to

the same Hölder class. We also prove some extension

properties of multiply Hölder functions; for example, we

show that a multiply Hölder functions always extends, in the

same Hölder class, to “exceptional” sets that are

codimension one manifolds.
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R. Rosas

1. Introduction

Hölder functions are a classic topic in analysis with many

applications in other areas, as the theory of partial differential equations

and dynamical systems. However, besides the restricted treatment given

in books of partial differential equations –see for example [2, 4]– a

systematic study of the subject is still incomplete; the best reference

in this sense is the book of R. Fiorenza [3].

Let α ∈ (0, 1] and U ⊂ Rm. A function f : U → Rn is called α-

Hölder if the set {
|f(x)− f(y)|
|x− y|α

: x, y ∈ U, x 6= y

}
is bounded. In this case the function f is uniformly continuous, so it

has a unique continuous extension to U . Observe that the 1-Hölder

functions are the Lipschitz functions and it is important to note that

these functions are also α-Hölder for any α ∈ (0, 1].

If U is open, if all partial derivatives of f up to order k ≥ 0 exist

and if the partial derivatives of order k of f are α-Hölder, then f is said

to be of class Ck,α: these functions are called multiply Hölder functions.

If U ′ ⊂ U and f |U ′ is of class Ck,α, we say that f is of class Ck,α on

U ′ and write f ∈ Ck,α(U ′). Clearly the functions of class C0,α are the

α-Hölder functions and a function of class Ck,α is necessarily of class Ck.

In this work we show several properties about multiply Hölder

functions. In Section 2 we introduce the special class of subconvex open

sets, which are specially adapted to the study of Ck,α functions (see

[6, 1]). In Section 3, given a subconvex open set U , we define the inner

distance to a boundary point of U . The main result of the section —

Theorem 3.1 — provides a condition for a differentiable function on U to

be α-Hölder continuous. In Section 4 we prove some general properties

of Ck,α functions. Among other basic facts, we study the Hölder classes

of compositions and inverses of Ck,α functions. Finally, in Section 5,

we study some extension properties of Ck,α functions. For example,

Theorem 5.2 shows that a Ck,α function defined around a C1 manifold
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of codimension ≥ 2 always extends to the manifold.

2. Subconvex Sets

Let U ⊂ Rn be an open connected set. Given x, y ∈ U , we define

distU (x, y) as the infimum of the lengths of the rectifiable curves in U

connecting x with y. The function

distU : U × U → [0,+∞)

defines a metric called the inner metric of U . This metric is the intrinsic

metric induced by the euclidean metric in U — for more details see [5].

The set U will be said subconvex if the inner metric distU is strongly

equivalent to the euclidean metric: this is equivalent to the existence of

a constant d > 0 such that

distU (x, y) < d|x− y|, x, y ∈ U.

In this case we say that U is subconvex of constant d > 0.

The following proposition establish some basic facts about

subconvex sets. In particular, the proposition gives several examples

of subconvex sets that are not convex sets.

Proposition 2.1.

1. A convex set is subconvex.

2. If U ⊂ Rm is subconvex and M ⊂ U is a smooth manifold of

codimension ≥ 2, then U\M is subconvex.

3. If U ⊂ Rm is open, bounded and connected, and its boundary ∂U

is a smooth hypersurface, then U is subconvex.

4. Let V ⊂ Rm be open and K ⊂ V be compact and connected. Then

there exists U ⊂ V open, bounded and subconvex such that K ⊂ U .
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5. If U ⊂ Rm is subconvex and f : U → Rn is bilipschitz, then f(U)

is subconvex.

6. Let U ⊂ Rm be subconvex and let f : U → Rn be differentiable such

that |df | is bounded on U . Then f is Lipschitz.

Proof. The first assertion is obvious.

Let U ⊂ Rm be subconvex of constant d and let M ⊂ U be a smooth

manifold of codimension ≥ 2. Let x, y ∈ U be distinct. Then

distU (x, y) < d|x− y|

and, from the definition of distU (x, y), we can find a curve γ in U

connecting x with y, such that

`(γ) < d|x− y|.

Since M has codimension ≥ 2, the curve γ can be deformed into a curve

γ′ in U avoiding the manifold M and being close to γ such that

`(γ′) < d|x− y|.

Therefore assertion (2) is proved.

Let U ⊂ Rm be open, bounded and connected, and suppose that

∂U is a smooth hypersurface. If S is a connected component of ∂U , let

dS : S × S → [0,+∞)

be the geodesic metric in S. Since S is a compact hypersurface, the

geodesic metric dS is equivalent to the euclidean metric, so there exists

c ≥ 1 such that

dS(x, y) ≤ c|x− y|, x, y ∈ S. (2.1)

Since ∂U has finitely many connected components, we can assume that

the constant c is independent of the component S. Let x, y ∈ U be
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distinct. Deforming the euclidean segment from x to y we find a smooth

simple curve γ connecting x with y, transverse to ∂U and such that

`(γ) < 2|x− y|. (2.2)

Regarded as a set, γ has a total order induced by its orientation such

that x < y. Thus, given p, q ∈ γ with p < q, we denote by [p, q] the

compact segment of γ from p to q, and by (p, q) the open segment

[p, q]\{p, q}. Recall that each connected component of ∂U , since it

is a compact hypersurface, separates the space Rm in two connected

components. Therefore, for some k ∈ N we find points

x = p1 < p2 < . . . < p2k = y

in γ with the following properties:

(p2j−1, p2j) ⊂ U , j = 1, . . . , k.

(p2j , p2j+1) ⊂ Rm\U , j = 1, . . . , k − 1.

For each j = 1, . . . , k − 1, the points p2j and p2j+1 belong to the

same component of ∂U .

It follows from the last property and (2.1) that

dS(p2j , p2j+1) ≤ c|p2j − p2j+1|, j = 1, . . . , k − 1.

Thus if αj is the minimal geodesic in ∂U connecting p2j with p2j+1, we

have

`(αj) ≤ c|p2j − p2j+1|, j = 1, . . . , k − 1.

Let γ′ be the curve obtained from γ by replacing each [p2j , p2j+1] by αj .
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Then

`(γ′) =

k∑
j=1

`([p2j−1, p2j ]) +

k−1∑
j=1

`(αj)

≤
k∑
j=1

`([p2j−1, p2j ]) +

k−1∑
j=1

c|p2j − p2j+1|

≤
k∑
j=1

`([p2j−1, p2j ]) + c

k−1∑
j=1

`([p2j , p2j+1])

≤ c`(γ),

so from (2.2),

`(γ′) < 2c|x− y|.

Then we can deform γ′ ⊂ U into a curve γ′′ ⊂ U connecting x with y,

such that we also have

`(γ′′) < 2c|x− y|,

which finishes the proof of assertion (3).

Assertion (4) is a consequence of assertion (3): we only have to take

U being open, bounded, connected, with

K ⊂ U ⊂ V,

such that ∂U is a smooth hypersurface. So (4) holds.

Now, let U ⊂ Rm be subconvex and let f : U → Rn be a bilipschitz

map. Then there are constants c1, c2 > 0 such that

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y|, x, y ∈ U. (2.3)

This guarantees that f is a homeomorphism, whence f(U) is open and

connected. Let u, v ∈ f(U) be distinct. Since U is subconvex there exists

d > 0 such that

distU (x, y) < d|x− y|, x, y ∈ U.
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Then, since f−1(u), f−1(v) ∈ U , from the definition of distU we can find

a rectifiable curve γ in U , connecting f−1(u) with f−1(v), such that

`(γ) < d
∣∣f−1(u)− f−1(v)

∣∣ . (2.4)

On the other hand, since f is Lipschitz of constant c2, the curve f(γ),

which connects u with v, is such that

`(f(γ)) ≤ c2`(γ).

From this, (2.4)and (2.3) we obtain

`(f(γ)) ≤ c2`(γ) ≤ c2d
∣∣f−1(u)− f−1(v)

∣∣
≤ c2d(1/c1)|u− v|,

which proves that f(U) is subconvex.

Finally, assume the hypotheses of assertion (6). Then there exists

a constant C > 0 such that

|df(x)| ≤ C, x ∈ U.

Given x, y ∈ U , since U is subconvex we can find a smooth curve

γ : [0, 1]→ U with γ(0) = x and γ(1) = y, such that

`(γ) < d|x− y|,

where d > 0 is a constant depending only on U . Then

|f(y)− f(x)| =

∣∣∣∣∣∣
1∫

0

(f(γ(t)))
′
dt

∣∣∣∣∣∣ ≤
1∫

0

|df(γ(t))| |γ′(t)| dt

≤ C
1∫

0

|γ′(t)| dt = C`(γ)

≤ Cd|x− y|,

so assertion (6) is proved.
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3. Differentiability and the Hölder

condition

Let U ⊂ Rn be a subconvex open set and consider a continuous

function f : U → Rn. It is well known that, if f is differentiable, the

Hölder property for f is strongly related with the geometry of ∂U and

the behavior of f in relation with ∂U . In this section we prove that, if f

extends continuously to a compact set K ⊂ ∂U , if f |K is α-Hölder and

df(x) is bounded in terms of the “inner” distance from x to K, then f

α-Hölder.

Inner distance to the boundary

Let U be an open subconvex proper subset of Rm. Given x0 ∈ U
and x∞ ∈ ∂U , we define the inner distance from x0 to x∞ as the infimum

of the lengths of the continuous rectifiable curves

γ : [0, 1)→ U, γ(0) = x0, lim
t→1

γ(t) = x∞. (3.1)

Let us see that this infimum is finite. Given

r > |x0 − x∞|,

we can take a sequence of points x1, x2, . . . in U with xj → x∞ as j →∞,

such that

|x0 − x1|+ |x1 − x2|+ |x2 − x3|+ . . . < r.

If U is subconvex of constant d > 0, for each j ∈ N we can take a

continuous rectifiable curve γj connecting xj−1 with xj , such that

`(γj) < d|xj−1 − xj |.

Then the infinite juxtaposition

γ : = γ1 ∗ γ2 ∗ · · ·
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defines a curve as in (3.1) such that

`(γ) < dr.

Therefore the infimum of the lengths of the curves in (3.1) is a finite

number. We keep the notation distU (x0, x∞) for the inner distance

between x0 ∈ U and x∞ ∈ ∂U . We note that, since the number

r > |x0 − x∞| above is arbitrarily chosen, we have

distU (x0, x∞) ≤ d|x0 − x∞|.

Now, let K ⊂ ∂U be nonempty. Given x ∈ U , we define the inner

distance from x to K as

δ(x) : = inf{distU (x, x∞) : x∞ ∈ K}.

Theorem 3.1. Let U be an open subconvex proper subset of Rm and

consider K ⊂ ∂U nonempty. Let f : U ∪K → Rn be continuous, such

that f |K is α-Hölder for some α ∈ (0, 1]. Given x ∈ U , let δ(x) denote

the inner distance in U from x to K. Suppose that f is differentiable in

U and such that, for some c > 0,

|df(x)| ≤ cδ(x)α−1, x ∈ U. (3.2)

Then f is α-Hölder.

We begin with an elementary lemma.

Lemma 3.2. Let g : [0, 1]→ Rn be continuous and such that, for some

c > 0 and α ∈ (0, 1], we have |g′(t)| ≤ ctα−1 for all t ∈ (0, 1). Then

|g(u)− g(v)| ≤ c

α
|u− v|α, u, v ∈ [0, 1].

Proof. Suppose that 1 > u ≥ v > 0. Given n ∈ N, let v = t0 <

t1 < . . . < tn = u be the regular partition of norm (u − v)/n. By

Pro Mathematica, 33, 65 (2024), 7-31, issn 1012-3938 15



R. Rosas

the Mean Value Theorem, there exists numbers sj ∈ [tj−1, tj ] such that

g(tj)− g(tj−1) = g′(sj)(u− v)/n. Then

|g(u)− g(v)| ≤
n∑
j=1

|g(tj)− g(tj−1)| ≤
n∑
j=1

|g′(sj)|(u− v)/n

≤
n∑
j=1

csα−1j (u− v)/n.

Thus, if n→∞, we obtains that

|g(u)− g(v)| ≤
u∫
v

ctα−1dt =
c

α
(uα − vα) ≤ c

α
(u− v)α,

so the result easily follows.

Proof of Theorem 3.1. It is enough to show that f |U is α-Hölder. Let

x, y ∈ U be arbitrary. Suppose that U is subconvex of constant d > 0.

Case 1 : Suppose that δ(x) < (d+ 1)|x− y| and δ(y) < (d+ 1)|x− y|. Since

δ(x) < (d+ 1)|x− y|,

there exist x∞ ∈ K and a smooth rectifiable curve

γ : (0, 1]→ U, γ(1) = x, lim
t→0

γ(t) = x∞

such that

`(γ) < (d+ 1)|x− y|.

Clearly we can continuously extend γ to [0, 1] defining γ(0) = x∞.

Moreover we can assume that γ has constant velocity, that is

|γ′(t)| = `(γ), t ∈ (0, 1].

Define the function

g(t) = f(γ(t)), t ∈ [0, 1].

16 Pro Mathematica, 33, 65 (2024), 7-31, issn 1012-3938



Multiply Hölder functions

Then, if t ∈ (0, 1],

|g′(t)| = |df(γ(t))||γ′(t)| ≤ c[δ(γ(t))]α−1`(γ). (3.3)

Since the curve γ|(0,t] connects x∞ ∈ K with γ(t) ∈ U , we have

δ(γ(t)) ≤ `
(
γ|(0,t]

)
= t`(γ),

so from (3.3) we obtain

|g′(t)| ≤ c`(γ)αtα−1. (3.4)

Then it follows from Lemma 3.2 that

|g(u)− g(v)| ≤ c

α
`(γ)α|u− v|α, u, v ∈ [0, 1].

In particular,

|f(x)− f(x∞)| = |g(1)− g(0)| ≤ c

α
`(γ)α

and so, since `(γ) < (d+ 1)|x− y|,

|f(x)− f(x∞)| ≤ (d+ 1)α
c

α
|x− y|α.

Analogously, we find y∞ ∈ K such that

|f(y)− f(y∞)| ≤ (d+ 1)α
c

α
|x− y|α.

On the other hand, since f |K is α–Hölder, there exists a constant

c∞ > 0 depending only on f such that

|f(x∞)− f(y∞)| ≤ c∞|x∞ − y∞|α.

Using the last three inequalities together we finally obtain

|f(x)− f(y)| ≤ |f(x)− f(x∞)|+ |f(y)− f(y∞)|+ |f(x∞)− f(y∞)|

≤ 2(d+ 1)α
c

α
|x− y|α + c∞|x∞ − y∞|α

≤ 2(d+ 1)α
c

α
|x− y|α + c∞

(
δ(x) + |x− y|+ δ(y)

)α
≤ 2(d+ 1)α

c

α
|x− y|α + c∞

(
(2d+ 3)|x− y|

)α
≤
(

2(d+ 1)α
c

α
+ c∞(2d+ 3)α

)
|x− y|α.
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Case 2 : If the first case does not happen, without loss of generality we can

assume that

δ(x) ≤ δ(y) and (d+ 1)|x− y| ≤ δ(y).

Then, since U is subconvex of constant d, we find a smooth curve

γ : [0, 1]→ U, γ(0) = x, γ(1) = y,

such that

`(γ) < d|x− y|.
We assume that γ has constant velocity:

|γ′(t)| = `(γ), t ∈ [0, 1].

From the definition of inner distance we see that, for any t ∈ [0, 1],

δ(y) ≤ distU (y, γ(t)) + δ(γ(t)).

Thus, since distU (y, γ(t)) ≤ `(γ),

δ(y) ≤ `(γ) + δ(γ(t)),

whence

δ(γ(t)) ≥ δ(y)− `(γ) ≥ (d+ 1)|x− y| − `(γ)

≥ (d+ 1)|x− y| − d|x− y|
≥ |x− y|.

Therefore

|f(y)− f(x)| =

∣∣∣∣∣∣
1∫

0

df
(
γ(t)

)
γ′(t)dt

∣∣∣∣∣∣ ≤
1∫

0

c [δ(γ(t))]
α−1 |γ′(t)|dt

≤
1∫

0

c|x− y|α−1`(γ)dt ≤
1∫

0

cd|x− y|αdt

≤ cd|x− y|α.
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4. Some general properties

In this section we prove some general properties of Ck,α functions.

For example, Theorem 4.2 gives the Hölder class of a composition of

multiply Hölder functions, and Theorem 4.3 gives conditions for the

inverse of a Ck,α function to be a Ck,α function. These theorems

complement some known similar results; see Proposition 1.2.7 and

Theorem 1.3.4 in [3]. We start with the following property summarizing

some elementary properties of multiply Hölder functions. Although these

properties can be founded in [3], we include a complete proof here for

the convenience of the reader.

Theorem 4.1. Let U ⊂ Rm be open, bounded and subconvex, and

consider f : U → Rn, g : U → Rp, k ∈ Z≥0 and α ∈ (0, 1].

1. If f ∈ Ck,α(U), then f is bounded.

2. If f ∈ Ck+1,α(U), then f ∈ Ck,1(U) — in particular f ∈ Ck,α(U).

3. If f ∈ Ck,α(U), then f extends to U as an α-Hölder function.

4. If n = p and f, g ∈ Ck,α(U), then f ± g ∈ Ck,α(U).

5. If H : Rn × Rp → Rq is bilinear and f, g ∈ Ck,α(U), then H(f, g)

is of class Ck,α.

6. If f extends as a Ck+1 function on a neighborhood of U , then

f ∈ Ck,α(U).

Proof. Suppose that f ∈ C0,α(U). Then there exists c > 0 such that

|f(y)− f(x)| ≤ c|y − x|α, x, y ∈ U.

Fix a ∈ U and let x ∈ U be arbitrary. Then, since |f(x) − f(a)| ≤
c|x− a|α,

|f(x)| ≤ |f(a)|+ c|x− a|α ≤ |f(a)|+ c(DiamU)α,
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which proves item (1) for k = 0. Then, item (1) will be proved if we

prove item (2): if f ∈ Ck,α(U), by successively applications of item (2)

we have f ∈ C0,α(U), whence — by item (1) for k = 0 — the function f

is bounded. Let us prove item (2). Suppose that f ∈ C1,α(U). Then any

partial derivative ∂f
∂xi

belongs to C0,α(U). Thus, by item (1) for k = 0

the functions ∂f
∂xi

are bounded. Then it follows from (6) of Proposition

2.1 that f is Lipschitz, which proves item (2) for k = 0. Suppose now

that f ∈ Ck+1,α(U). Then any partial derivative of order k of f belongs

to C1,α(U). So, by item (2) for k = 0, any partial derivative of order

k of f belongs to C0,1(U), which means that f ∈ Ck,1(U); item (2) is

proved.

If f ∈ Ck,α(U), it follows from item (2) that f ∈ C0,α(U), so f

extends to U as an α-Hölder function and item (3) is proved.

It suffices to prove item (4) for the sum of functions; the other case

is similar. Suppose that f, g ∈ C0,α(U). Then we can find c > 0 such

that

|f(x)− f(y)| ≤ c|x− y|α, |g(x)− g(y)| ≤ c|x− y|α, x, y ∈ U.

Therefore

|(f(x) + g(x))− (f(y) + g(y))| ≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ 2c|x− y|α,

which proves item (4) for k = 0. Suppose that item (4) is true for k = l,

and let f, g ∈ Cl+1,α(U). Then the partial derivatives

∂f

∂xi
,

∂g

∂xi
, i = 1, . . . ,m

belong to ∈ Cl,α(U). Thus, by the inductive hypothesis, the partial

derivatives
∂(f + g)

∂xi
=

∂f

∂xi
+

∂g

∂xi
, i = 1, . . . ,m

belong to Cl,α(U). Therefore f + g ∈ Cl+1,α(U), so item (4) is proved.
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Now, assume the hypotheses of item (5). Since H is bilinear there

is a constant cH > 0 such that

|H(u, v)| ≤ cH |u||v|, u ∈ Rn, v ∈ Rp.

Suppose first that k = 0. Then there exists c > 0 such that

|f(x)− f(y)| ≤ c|x− y|α, |g(x)− g(y)| ≤ c|x− y|α, x, y ∈ U.

Moreover, by item (1) there exist C > 0 such that

|f(x)| ≤ C, |g(x)| ≤ C, x ∈ U.

Thus, if x, y ∈ U ,

|H(f(x), g(x))−H(f(y), g(y))|
≤ |H(f(x), g(x))−H(f(x), g(y))|

+ |H(f(x), g(y))−H(f(y), g(y))|
≤ |H(f(x), g(x)− g(y))|+ |H(f(x)− f(y), g(y))|
≤ cH |f(x)||g(x)− g(y)|+ cH |f(x)− f(y)||g(y)|
≤ cHC (c|x− y|α) + cH (c|x− y|α)C

≤ 2cHCc|x− y|α,

which proves item (5) for k = 0. Suppose item (5) is true for k = l, and

let f, g ∈ Cl+1,α(U). Since f, g ∈ Cl+1,α(U), for any i ∈ {1, . . . ,m} we

have ∂f
xi
, ∂g∂xi

∈ Cl,α(U) and — by item (2) — we also have f, g ∈ Cl,α(U).

Then, by the inductive hypothesis, H
(
∂f
xi
, g
)

and H
(
f, ∂g∂xi

)
belong to

Cl,α(U), whence — by item (4) — the partial derivative

∂H(f, g)

∂xi
= H

(
∂f

xi
, g

)
+H

(
f,
∂g

∂xi

)
belongs to Cl+1,α(U). Therefore item (5) is proved.

Finally, assume that f extends as a Ck+1 function on a

neighborhood of U . Let f be a partial derivative of order k of f . Then,
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since f extends in the class Ck+1 to a neighborhood of the compact set

U , each partial derivative of f extends continuously to that neighborhood

of U , so the partial derivatives of f are bounded on U . It follows from

(6) of Proposition 2.1 that f is Lipschitz. That is, f ∈ C0,α(U), which

means that f ∈ Ck,α(U).

Theorem 4.2. Let U ⊂ Rm and V ⊂ Rn be open sets. Let f : U → V

be of class Ck,α and g : V → Rp of class Ck,β, where k ∈ Z≥0 and

α, β ∈ (0, 1]. Then, if U is bounded and subconvex, g◦f is of class Ck,αβ.

Proof. Suppose first that f ∈ C0,α(U) and g ∈ C0,β(V ). Thus there are

constants cf , cg > 0 such that

|f(x)− f(y)| ≤ cf |x− y|α, x, y ∈ U

and

|g(x)− g(y)| ≤ cg|x− y|β , x, y ∈ V.

Then, if x, y ∈ U ,

|g ◦ f(x)− g ◦ f(y)| ≤ cg|f(x)− f(y)|β ≤ cg (cf |x− y|α)
β

≤ cgcβf |x− y|
αβ ,

which proves the proposition for k = 0. Suppose as inductive hypothesis

that the proposition holds for some k ∈ Z≥0. Let f ∈ Ck+1,α(U) and

g ∈ Ck+1,β(V ). Then df ∈ Ck,α(U) and dg ∈ Ck,β(V ) and, by (2) of

Proposition 4.1, we also have f ∈ Ck,α(U). It follows from the inductive

hypothesis that dg(f) ∈ Ck,αβ(U). Then, since

df ∈ Ck,α(U) ⊂ Ck,αβ(U),

from (5) of Proposition 4.1 we see that

d(g ◦ f) = dg(f) · df

belongs to Ck,αβ(U), which means that g ◦ f ∈ Ck+1,αβ(U).
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Corollary 4.3. Let U ⊂ Rm be open, bounded and subconvex, and let

f : U → R be of class Ck,α, where k ∈ Z≥0 and α ∈ (0, 1]. If |f | > ε for

some ε > 0, then 1/f is of class Ck,α.

Proof. Since |f | > ε and f(U) is connected, without loss of generality

we can assume that

f(U) ⊂ (ε,+∞).

Furthermore, from (1) of Proposition 4.1 we find c > 0 such that

f(U) ⊂ V : = (ε, c).

Since (6) of Proposition 4.1 guarantees that g : V → R defined by

g(x) = 1/x is of class Ck,1, the corollary follows from Proposition 4.2

Theorem 4.4. Let U ⊂ Rm be a bounded subconvex open set and

let f : U → Rm be of class Ck,α for k ≥ 1 and α ∈ (0, 1]. From

Proposition 4.1 we see that f : U → Rm and df : U → L (Rm,Rm) extend

continuously to U . Suppose that the extension of f to U is univalent

and the extension of df to U takes values in GL(m,R). Then f(U) is a

bounded subconvex open set and f−1 : f(U)→ U is of class Ck,α.

Proof. We still denote by f and df the extensions of f and df to U . Since

k ≥ 1, from (1) and (2) of Proposition 4.1 the partial derivatives of f are

bounded. Then, it follows from (6) of Proposition 2.1 that f is Lipschitz.

Let us prove that f−1 : f(U)→ U is also Lipschitz. Otherwise, there are

points xn, yn ∈ U , n ∈ N such that

|f(xn)− f(yn)|
|xn − yn|

→ 0 as n→∞. (4.1)

Since U is bounded we can assume that, for some a, b ∈ U ,

xn → a, yn → b as n→∞.

Thus, if a 6= b we f(a) 6= f(b) and therefore

|f(xn)− f(yn)|
|xn − yn|

→ |f(a)− f(b)|
|a− b|

6= 0, (4.2)
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which contradicts (4.1). So we assume a = b. Since df(a) ∈ GL(n,R),

there exists a constant ca > 0 such that

|df(a) · v| ≥ 2ca|v|, v ∈ Rn\{0}.

On the other hand, suppose that U is subconvex of constant d. Then,

since df is continuous on U , there is a neighborhood Ω of a in U such

that

|df(x)− df(a)| ≤ ca/d, x ∈ Ω. (4.3)

Since U is subconvex of constant d, we can find a smooth curve

γ : [0, 1]→ U such that γ(0) = xn, γ(1) = yn and

`(γ) < d|xn − yn|.

We can assume xn and yn to be so close to a such that the curve γ is

contained in Ω. Then it follows from (4.3) that

|df(γ(t))− df(a)| ≤ ca/d, t ∈ [0, 1]. (4.4)

Thus, if we define

g(t) = f(γ(t)), t ∈ [0, 1],

we can write

g(t) = df(a) · γ(t) + δ(t),

where we have

|δ′(t)| = |df(γ(t)) · γ′(t)− df(a) · γ′(t)|
= | [df(γ(t))− df(a)] · γ′(t)|
≤ |df(γ(t))− df(a)| · |γ′(t)|
≤ (ca/d)|γ′(t)|.
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Therefore

|f(yn)− f(xn)| =

∣∣∣∣∣∣
1∫

0

g′(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1∫

0

(df(a) · γ′(t) + δ′(t))dt

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
1∫

0

df(a) · γ′(t)dt

∣∣∣∣∣∣−
∣∣∣∣∣∣

1∫
0

δ′(t)dt

∣∣∣∣∣∣
≥
∣∣∣df(a) · (yn − xn)

∣∣∣− (ca/d)

1∫
0

|γ′(t)|dt

≥ 2ca|yn − xn| − (ca/d)`(γ)

≥ 2ca|yn − xn| − (ca/d)(d|yn − xn|)
≥ ca|yn − xn|,

whence we conclude that

|f(yn)− f(xn)|
|yn − xn|

≥ ca

for n large enough, which contradicts (4.1).

Now, the fact of f being bilipschitz implies that f(U), like U , is

open, bounded and subconvex.

Since df extends continuously to U and takes values in GL(n,R),

the image of df is a compact connected set K ⊂ GL(n,R). Thus, from

(4) of Proposition 2.1 we can find an open bounded subconvex set U in

the space of n× n matrices, such that

K ⊂ U and U ⊂ GL(n,R).

It follows from (6) of Proposition 4.1 that the function

I : U → GL(n,R)

M 7→M−1
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is of class Cl,1 for all l ≥ 0. Since k ≥ 1, the derivative of f−1 can be

expressed as

df−1 = I ◦ df ◦ f−1. (4.5)

Suppose first that k = 1. Then df : U → GL(n,R) is of class C0,α. Thus,

since f−1 is of class C0,1, it follows from Theorem 4.2 that

df ◦ f−1 : f(U)→ U

is of class C0,α. Therefore, since I ∈ C0,1, it follows from (4.5) and

Theorem 4.2 that df−1 is of class C0,α. Then f−1 is of class C1,α, so

Theorem 4.4 holds true for k = 1. Suppose that Theorem 4.4 holds true

for k = l ≥ 1 and let f be satisfying the hypotheses of Theorem 4.4 for

k = l + 1. Since f is of class Cl+1,α, by (2) of Proposition 4.1 we have

f ∈ Cl,1(U) and therefore, by the inductive hypothesis, f−1 is also of

class Cl,1. Then, since df is of class Cl,α, it follows from Theorem 4.2

that df ◦ f−1 is of class Cl,α. Therefore, since I ∈ Cl,1, it follows from

(4.5) and Theorem 4.2 that df−1 is of class Cl,α, which means that f−1

is of class Cl+1,α.

5. Extension properties of multiply Hölder

functions

In this section we prove a couple of results about the extension

properties of Ck,α functions.

Proposition 5.1. Let U ⊂ Rm be a subconvex open set, let U1, U2 ⊂ U
be such that U ⊂ U1 ∪ U2, let f : U → Rn be continuous, and consider

k ∈ Z≥0 and α ∈ (0, 1]. Then the following properties hold:

1. If f |U1
and f |U2

are α-Hölder, then f is α-Hölder.

2. If f ∈ Ck, if the sets U1 and U2 are open, and if f |U1
and f |U2

are

of class Ck,α, then f is of class Ck,α.
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Proof. Suppose that f |U1 and f |U2 are α-Hölder. Then we find c > 0

such that

|f(x)− f(y)| ≤ c|x− y|α whenever x, y ∈ U1 or x, y ∈ U2. (5.1)

Then, since U ⊂ U1∪U2, it suffices to find an inequality like above when

x ∈ U1, y ∈ U2 and when x ∈ U2, y ∈ U1. We assume x ∈ U1, y ∈ U2 —

the other case is similar. Since U is subconvex, we find a smooth curve

γ in U connecting x with y such that

`(γ) < d|x− y|, (5.2)

where the constant d > 0 depends only on U . Since γ is connected,

γ ⊂ U1 ∪ U2 and γ meets both sets U1 and U2, we can find z ∈ γ such

that

z ∈ U1 ∩ U2.

Thus, from (5.1) we have

|f(x)− f(z)| ≤ c|x− z|α and |f(z)− f(y)| ≤ c|z − y|α,

whence

|f(x)− f(y)| ≤ c|x− z|α + c|z − y|α ≤c`(γ)α + c`(γ)α ≤ 2c`(γ)α,

and from (5.2),

|f(x)− f(y)| ≤ 2cdα|x− y|α.

Assertion (1) is proved.

Suppose now that U1 and U2 are open, f ∈ Ck and f |U1
and f |U2

are of class Ck,α. Let g be any partial derivative of order k of f . Since

f |U1
and f |U2

are of class Ck,α, we have that g|U1
and g|U2

are α-Hölder.

Then, since f ∈ Ck means that g is continuous, it follows from assertion

(1) that g is α-Hölder, which proves assertion (2).

Theorem 5.2. Let U be an open subset of Rm and let M ⊂ U be a

proper embedded C1 manifold of codimension ≥ 2. Let f : U\M → Rn

be of class Ck,α for some k ∈ Z≥0 and α ∈ (0, 1]. Then f extends to U

in the class Ck,α.
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We need the following lemma.

Lemma 5.3. Let U be an open subset of Rm and let M ⊂ U be a proper

embedded C1 manifold of codimension ≥ 1. Let f : U\M → Rn be of

class C1. Suppose that f and its partial derivatives extend continuously

to U . Then f extends to U in the class C1.

Proof. Let f̄ : U → Rn be the extension of f to U . In view of the

hypotheses, it is enough to prove that, given p ∈ M , we can find a C1

coordinate system (x1, . . . , xm) around p such that the partial derivatives

of f̄ at p exist and we have

∂f̄

∂xj
(p) = lim

x→p

∂f

∂xj
(x), j = 1, . . . ,m. (5.3)

Fix p ∈M . Consider affine coordinates such that the canonical unitary

vectors e1, . . . , em are transverse to M at p, and fix j ∈ {1, . . . ,m}. Since

ej is transverse to M at p, for t ∈ R∗ small enough the euclidean segment

[p, p+ tej ] intersects M only at p. Thus, if we set f = (f1, . . . , fm) and

f̄ = (f̄1, . . . , f̄m) , by the Mean Value Theorem we have

f̄(p+ tej)− f̄(p)

t
=

(
f̄1(p+ tej)− f̄1(p)

t
, . . . ,

f̄m(p+ tej)− f̄m(p)

t

)
=

(
∂f1
∂xj

(w1), . . . ,
∂fm
∂xj

(wm)

)
,

where w1, . . . , wm are points in the open segment

(p, p+ tej) ⊂ U\M.

Then, since the points w1, . . . , wm tend to p as t tends to 0, we have

lim
t→0

f̄(p+ tej)− f̄(p)

t
=

(
lim
x→p

∂f1
∂xj

(x), . . . , lim
x→p

∂fm
∂xj

(x)

)
= lim
x→p

∂f

∂xj
(x).
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Proof of Theorem 5.2. Suppose first that k = 0. Then f : U \M →
Rn is α-Hölder and therefore f extends as an α-Hölder function to

U\M ⊃ U,

which proves the proposition for k = 0. Suppose now that the

proposition holds true for k = l ∈ Z≥0 and let f : U\M → Rn be of

class Cl+1,α. Our intention is to apply Lemma 5.3 to f . Thus, let us

show that f and its partial derivatives extend continuously to U . To do

so it is enough to show that each p ∈ M has a neighborhood Ω in U

such that the restrictions of f and its derivatives to Ω\M are uniformly

continuous. Fix p ∈ M and let Ω ⊂ U be an open ball centered at p.

Since Ω is convex, by (1) and (2) of Proposition 2.1 we have that Ω\M
is subconvex. Thus, since f is of class Cl+1,α, it follows from (2) of

Proposition 4.1 that f and its derivatives are of class C0,α on Ω\M , so

they are uniformly continuous on Ω\M . Therefore, by Lemma 5.3, the

function f is the restriction to U\M of a C1 function f̄ : U → Rn. To

complete the induction, we shall prove that the partial derivatives of f̄

belong to Cl,α(U). Let g be a partial derivative of f̄ . Since g|U\M is a

partial derivative of f , we have that g|U\M is of class Cl,α. Therefore,

by the inductive hypothesis, g|U\M extends to U in the class Cl,α, which

means that g is of class Cl,α.
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Resumen

En este art́ıculo mostramos varias propiedades de las funciones Hölder

multiples. Estudiamos la clase Hölder de una composición de funciones

Hölder multiples y demostramos que una función y su inversa pertenecen

– bajo ciertas hipótesis – a la misma clase Hölder. También demostramos

algunas propiedades de extensión de las funciones Hölder multiples; por

ejemplo, demostramos que una función Hölder multiple siempre extiende,

en la misma clase Hölder, a ((conjuntos excepcionales)) que son variedades

de codimensión uno.

Palabras clave: Clases de Lipschitz (Hölder); Propiedades especiales de

funciones de varias variables, condiciones de Hölder.
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