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Abstract

We compute the Groebner basis of a system of polynomial
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Polynomial system related to the Jacobian Congecture

1. Introduction

Let K be a field of characteristic zero. The two-dimensional
Jacobian Conjecture (JC), formulated by Keller in [7], asserts that any
pair of polynomials P,@ € R := K|z, y] with

[P,Q] == 0,P0,Q — ,Q0,P € K*

defines an automorphism of R.

In [8], T. T. Moh investigated possible counterexamples (P, Q)
of total degree below 101, identifying four exceptional pairs (m,n) =
(48,64), (50,75), (56,84) and (66,99), where (n,m) = (deg P, deg@).
He then ruled out these cases by explicitly solving certain ad-hoc systems
of equations for the coeflicients of the potential counterexamples.

Motivated by Moh’s approach, in [5] the authors introduce a family
of polynomial systems

St(n,m, (\;), F1—n)

consisting of m +n — 2 equations in m +n — 2 variables with coefficients
in a commutative K-algebra D. Here (X\;)o<i<min—2 C K and
Fy_,, € D. Among other results, they prove that a specific instance
of this system (with D = KJy] and Fi_, = y) has a solution in
D™+n=2 if and only if there exists a counterexample (P,Q) to JC
with (n,m) = (deg P,deg@). The argument relies on an equivalent
formulation of JC due to Abhyankar in [1], which states that JC holds
provided that for every Jacobian pair (P, Q) either deg P | deg(@ or
deg@ | deg P. They also show that, when D is an integral domain,
the set of solutions of St(n,m, (\;), F1—,) is finite. Furthermore, they
examine in detail the “homogeneous” case A\; = 0 for ¢ > 0, giving an
explicit description of its solutions. The usefulness of this method is
shown in the last section of [5], where the method is illustrated with the
case (n,m) = (50, 75), showing—via a degree-reduction technique as in
[4]—that no counterexample arises.
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At the moment, there is no other method to discard small
possible counterexamples arising from the lists of families of possible
counterexamples given in [6] (see also [4]).

An advantage of this formulation is that the system of
equations remains canonical, even under the modifications needed for
computations as in [5]. This feature makes it suitable for algorithmic
implementation and, potentially, for discarding infinite families of
possible counterexamples rather than isolated cases.

In order to understand better the system, it could be helpful to
understand a Groebner basis of the system. In [9], an explicit Groebner
basis for the system St(2, m, (0), F1_,) is found. In the present paper we
will analyze the system St(3,m, (0), F1_,). We first find a Groebner basis
for a partial system, and then we manage to give a detailed description
of the solution set.

2. The Jacobian conjecture as a system of
equations
Let K be a characteristic zero field and let K[y]((z~!)) be the

algebra of Laurent series in 2! with coefficients in K[y]. We will start
from the following theorem, proved in [5, Theorem 1.9]

Theorem 2.1. The Jacobian conjecture in dimension two is false if and
only if there exist

- P,Q € K[x,y] and C, F € K[y]((z™1)),
- n,m € N such that ntm and m1{n,
-y, €K (1=0,...,m+n—2) withyy =1,
such that
- C has the form
C=x+C_ 127 +C oz %+ with each C_; € Klyl,
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- gr(C) =1 and gr(F) = 2 — n, where gr is the total degree,

- Fy = a7y, where F is the term of maximal degree in x of F,
m+n—2
-Ch=PandQ= > uC" '+ F.
i=0

Furthermore, under these conditions (P, Q) is a counterexzample to the
Jacobian conjecture.

In [5], the authors consider the following slightly more general
situation. Let D be a K-algebra (for example, in Theorem 2.1 we
have D = KJy]), n,m positive integers such that n t m and m { n,
(Vi)1<i<n+m—2 & family of elements in K with vy =1 and F1_, € D (in
Theorem 2.1 we take F;_,, = y). A Laurent series in 2! of the form

C=z+C_1z7 ' +C oz %+ with C_; € D,

is a solution of the system S(n,m, (v;), F1_,), if there exist P,Q € D|[z]
and F € D[[x~1]], such that

F=F_, 2" "+ F o "+, with Fy_,,F_,,... in D,
m+n—2
P=C" and Q= Z ;O™ 4+ F.
i=0

For example, if n = 3, then

P(x)=C%=x*+30_1 x+3C_5+ (3C%, +3C_3) x!
+ (6C_10_5 +4C_4) x 2
+(C3, +3C%, +6c_9C_3+3C_5) x°
+(3C%,C_2 4 6C_2C_346C_1C_4 +6C_¢) x4
+(3C_1C?, +3C%,C_3+3C%; +6C_oC_4 +6C_1C_5
+6C_7) x°
+...
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and the condition C® € KJz] translates into the following conditions
on C_y:

0=(C%_; =30, +3C_s,

0=(C%_y= 60 1C_9 +4C_y4,

0=(C?*_3=0C% +3C%, +6c_2C_3+3C_s,

0=(C3_ 4_30210 2 +6C_oC_3+6C_1C_4 +6C_g,

0= (C3%_5=3C_1C,+30C%,C_3+3C%*,+6C_C_4+6C_1C_5

+ 6C_~,

In the general case, the condition P(z) = C™ € K|[z] yields the equations

(C™)_ = 0, whereas the condition Q(z) = 2?246”_2 v;,C™ '+ F € K|x]

gives us the equations (Z;fg"iz v C™M 4 F) = 0, where we note
—k

that F_y=0fork=1,...,n—2.

It is easy to see (e.g. [5, Remark 1.13]) that the first m +n — 2
coefficients determine the others, i.e., the coefficients C_1,...,C__p12
determine univocally the coefficients C_ for k > m 4+ n — 2. Moreover,
the F_i for k > n—1 depend only on F}_, and C. Consequently, having
a solution C to the system S(n,m, (v;), F1_,) is the same as having a

solution (C_q,...,C_p_pt2) to the system
=(C")_r =0, fork=1,...,m—1,
m+n—2
Ep_ 14k = ( Z uiCm_’) =0, fork=1,...,n—2,
=0 —k
m+n—2
Em+n,2 = < Z uiCm_l) + Flfn = 0,
1=0 1-n

(2.1)
with m + n — 2 equations Ex = 0 and m + n — 2 unknowns C_j.
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In order to understand the solution set of this system, it would
be very helpful to find a Groebner basis for the ideal generated by the
polynomials Ej in D[C_q,...,Cptn—2]. In this paper we compute such
a Groebner basis of (2.1) in a very particular case: we assume n = 3,
m = 3r + 1 or m = 3r + 2 for some integer r > 0, and v; = 0 for ¢ > 0.
Moreover we consider D = Cly] and Fy_,, =y, as in Theorem 2.1.

3. Computation of a Groebner basis
for I,, 4

Assume n =3, 3tm > 3 and v; = 0 for i > 0. Set also D = CJy]
and Fi_, = .

Then the system (2.1) reads

(C?) s, i=1,...,m—1,
Ei = (Cm)_h = m, (31)
(Cm)*Q +ya Z:m+17

where (C?)_; denotes the coefficient of =% in the Laurent series C3.

Explicitly, the polynomials E; are given by

Ey = 3C%, +30C_3,

Ey, = 6C_1C_9+3C_4,

FEs Cil +3032 +6C_1C_35+3C_5,

30310_2 +6C_>C_3+6C_1C_4+ 3C_g,

Es = 3C_102,+3C2%,C_3+3C%3+6C_2C_4 +6C_1C_5+3C_7, (3.9)

I
[

Emo1 = (C¥ 1,
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Each E; is a polynomial in the ring C[C_1,C_a,...,Cny1,y], and
the m + 1 polynomials yield the ideal

I = <E17~--,Em7Em+1>-

Our goal is to find a Groebner basis for the ideal I, but we find it nearly
explicit only for I,,,_1 := (Ey,Ea,...,Ep_2,Eyp—1). For this we note
that the equations are homogeneous, for the weight obtained by setting

w(C_;))=i+1, and w(y)=m+n—1=m+2.
We consider y as a variable, so the equations remain homogeneous. Then
w(By) =k+3, fork=1,....m—1, w(E,)=m+1 w(En,s+1)=m+2.
Note that for k =1...,m — 1 we have
i)

Bei=3( ) CHC o) +6( > CLCy)  (33)

i=—1 0<i<y
3i#k itj=kt1
+6( 3 c_ic_jc_,)ﬂ(c_g)?’,

0<i<j<l
i+j+l=k

1, 3k
E =
0, 31k

Note that C; =1 and Cy = 0, and so

where

(5] (5]

3 ) C?C (po2i) =3Chi2+3 Y C?,C_(1_2). (3.4)

i=—1 i=1

56 Pro Mathematica, 33, 65 (2024), 50-67, 1SSN 1012-8938



Polynomial system related to the Jacobian Congecture

In order to compute a Groebner basis we will consider the degree
reverse lexicographic monomial order, but for the degree given by the
above mentioned weight. This means that the monomial order is given
by the matrix

m+2 m+1 m 4 3 2 m+4+2
0 0 0 0 0 0 -1
0 0 0 0o 0 -1 0
wmat = 0 0 0 0 -1 0 0 ’
0 0 -1 0 0 0 0
0 -1 0 0 0 0 0

on the variables C_ 41y, C—m, C_ (1), ...,C_3,C_3,C_1,y. We first
compute the reduced Groebner basis (El,Ez, . ,Em_l) for the ideal
Imfl = <E17 EQ, LR Em72; Em71>~

Proposition 3.1. The set {E1,..., Epn_1} is a Groebner basis of I,—1.
The reduced Groebner basis of I,—1 is given by polynomials Ej for
k=1,...,m—1, each of the form

Ej, = C_(kt+2) + Re(C-1,0_2),

where Ri(C_1,C_5) € Q[C_1,C_s] is an homogeneous polynomial in
the variables C_1 and C_o of weight w(Ey) = w(Ey) =k + 3.

Proof. By (3.3) and (3.4) we know that Ej is of the form
E,=3C_p 2+ T(C_q,...,C_y), fork=1,...,m—1,

where T is a polynomial in the variables C_q,...,C_x. Then by
Proposition 2.9.4 of [2], since
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LCM(LT(E;)/3, LT(E;)/3) = LCM(C—;_3,C—j_3) = C—_i_5C—; 5
= (LT(E;)/3)(LT(E;)/3)

we have S(E;, E;) — ¢ 0, and so, by Theorem 2.9.3 of [2], the set G =
{F1/3,...,Em-1/3} is a Groebner basis of I,,_1. One verifies directly
that it is a minimal Groebner basis, according to Definition 2.7.4 of [2].
If we apply the process described in the proof of [2, Proposition 2.7.6]
to the Groebner basis G = {F1/3, ..., Ey,—_1/3} we obtain that

G\{ 5} G\{ %)

Ey =FE{/3 = E,/3 and E,=FEy/3 = E,/3.

Moreover, for k =3,...,m — 1, set Gk:{E‘vl,...,E/';:l,Ek,...,Em,l}

and then

Ek _ EGk\Ek .

Clearly the remainder can have only the variables C_; and C_5, hence
E, is of the form

Ek = C,(kJrQ) + Rk(Cfl, 072);
as desired. O

Although we have no explicit formula for Ri(C_1,C_3), we can
compute it for small k.

Ey=C_3+C?%,,
Ey=C_4+2C_,C_,,

. 5
Es=C_54+C%, - gcil,
Ey=C_¢—5C?,C_,,

- 10
Es=C_7+ gcfl —5C_,C?%,.
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Dividing the polynomials F,, and E,,11 by the polynomials
{Em_1,...,E2, B}
with respect to the given order, we obtain
T O\
3

= Em = Rm(cfla 072)

and -
Eile\{%H} N
n; =FEnp1 =y + Rpn1(Co1,C9),

where R, (C_-1,C_3), Ry11(C-1,C_3) € Q[C_1,C_s] are homogeneous

polynomials such that w(E,;,) = w(E,) = m + 1 and w(E,4+1) =
w(Em+1) =m+ 2.

Although we don’t give an explicit description of the Groebner Basis
of the whole system, in the next section we show how to determine the
solution set of the polynomial system, using that

I= <E17E27' . '7EmaEm+1> = <E17EQ; H -7Em7Em+1>-

4. The solution set of the system of
polynomial equations

In this section we analyze the solutions of the system of equations.
Note that the partial system I,,,_; shows that the values of C_; and C'_4
determine univocally the values of C'_j for k > 2. Moreover, C_; and
C_5 can be computed using the following two equations:

Ep = R(C_1,0_3) =0 (4.1)

and

Em+1 =Y + Rm-{—l(c—la 0—2) = Oa (42)

where R, (C_1,C_3), R11(C-1,C_2) € Q[C_1,C_5] are homogeneous
polynomials with respect to the weight considered before, i.e. w(C_1) =
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2, };U(C_Q) = 3. Moreover w(E,,)) = m+n—2 = m+ 1 and
w(Emy1) =m+n—1=m+2. Then (4.1) and (4.2) read

En= > Nici,o, (4.3)
2i+3j=m+1
and - ‘
Empr=y+ Y, MN,CC%, (4.4)
2i+3j=m+2

for some constants A%, )\ifl 41 € K. By (4.4) the two variables cannot be

zero at the same time. We compute first the solutions in the cases where
one of the variables is zero.

FIRST CASE: C_; =0 and C_5 #0.

In this case the only term surviving in (4.3) is
0=E,, =\9¢7,,
with 3j = m + 1. So necessarily
A0mAD/3 — 0 if 3m + 1. (4.5)

Similarly, the only term surviving in the sum (4.4) has ¢ = 0, and so we
obtain ' _
0=Emn1=y+ A\, 07, with 3j =m+2.

Since y # 0, necessarily )‘%H # 0 for 35 = m + 2, and so 3|m + 2, i.e.
m =1 mod 3. This shows that the condition (4.7) is trivially satisfied.

Lemma 4.1. If3[m +2, and C_1 = 0, then Ao, # 0 for 3j = m + 2.

Proof. Tt is easy to check that P = 23 + 3C_», and then, by Newtons
binomial theorem we have

k
k=0
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Thus A\, ,C7, = (C™)_y is the coefficient of =2 = (2)% 7/, since

m = 3j — 2. Then
A%H = (mj/ )3] # 0,

as desired. O
Thus we have proved the following proposition.

Proposition 4.2. If (C_1,C_a,...,C_(;,41)) is a solution of the
system (3.1), with C_1 =0 and C_o # 0, then

= m=1 mod 3,
. /\%H;&Oforj:: mi2

= There are j solutions of the system (3.1) in K[y'/7], given by

C_1=0, C_yp= < Y ) and C_j = —Ry_o(C_1,C_s)

5
A1
for3<k<m+1.

SECOND CASE: C_; #0 and C_5 = 0.

In this case the only term surviving in (4.3) is
0=E, =",
with 2¢ = m 4+ 1. So necessarily
AmHD/20 — 0 if 2[m 4 1. (4.7)

Similarly, the only term surviving in the sum (4.4) has 7 = 0, and so we
obtain
0=Eps1 =y+ Ao, C"y  with 2i = m +2.

Since y # 0, necessarily )\Z,QH # 0 for 20 = m+ 2, and so 2|m + 2, i.e.
m is even. This shows that the condition (4.7) is trivially satisfied.
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Lemma 4.3. If2|m and C_y =0, then X, | # 0 for 2i = m + 2.

m

Proof. It is easy to check that P = 22 + 3zC_;, and then, by Newtons
binomial theorem we have

oo

cm=pm/t=3%" (mk/?’) (3zC_1)* (2?5 ~F, (4.8)

k=0
Thus A\, 0% = (C™)_ is the coefficient of 72 = (z)%(23) % ~*, since
m = 2i — 2. Then /
i m/3\ qi
)\'n2+1 = < i >3 7é 07
as desired. O

Thus we have proved the following proposition.

Proposition 4.4. If (C_1,C_3,...,C_(1n41)) is a solution of the
system (3.1), with C_1 # 0 and C_5 =0, then

= m=1 mod 3,
» A0 #£0 fori= T2

= There are i solutions of the system (3.1) in K[y'/?], given by

C_, = (A;y ) ' , Co=0 and C_p=—Rp_2(C_1,C_»)
m—+1

for3<k<m+1.
THIRD CASE: C_; # 0, C_5 # 0 and m even.

In this case we introduce a new auxiliary variable ¢ satisfying C?, =
tC3 . The equality (4.3) now reads

o § ij (Y ] § 0, 2r+1 i 2r+1
Em = )\%CilCiQ - )\’:n T+ C11072
2i4+3j=m+1 2i4+-6r4+3=m+1
o ,2r+1 ~i+3r r
S e Telit Yels
21+67r+2=m

62 Pro Mathematica, 33, 65 (2024), 50-67, 1SN 1012-8938



Polynomial system related to the Jacobian Congecture

since m even implies that the weight 2¢ +3j = m + 1 is odd, so j is odd
and can be written as 2r + 1. Moreover, for the terms in the sum we

have ¢ 4+ 3r = mT_Q, and so we arrive at

m—2 ..
0=C_7 Cp > Nit".
2i4+6r=m—2
j=2r+1

Thus t is a root of the polynomial

\'mgﬂ m—2—6r
,2r+1

f(t) = Z art’r, Where Ay = )\'rn 2 (4‘9)
r=0

Let {ti,...,ts} be the roots of the polynomial f(t). Note that in
the equality (4.4) the power j has to be even, since m is even and
2i 4+ 3j = m + 2. Hence, if we replace C2, by t;C3, in (4.4), we obtain

I~ _ ij i J 4,21 ~i+3ryr
E7n+1 =Y + Z )‘m+1C—10—2 =Y + Z )‘7n+1c—1 tl .
2i4+3j=m+2 2i4-6r=m+2

Jj=2r

Note that for each of the terms in the last sum we have i + 3r = mTJrQ,
and so

m+2

m+2 L5

0=y+C_2 g(t;), whereg(t) = Z bt",
r=0

m+2—6

with b, = X, .3 =% 1t follows that

C = (%)T

Thus we have arrived at the following result.

Proposition 4.5. If (C_1,C_a,...,C_(;,41)) is a solution of the
system (3.1), with C_1 # 0, C_o # 0 and m even, then the system
has at most s - (m + 2) solutions, where s is the number of roots of
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f(t) defined in (4.9). Moreover, for every choice of a root t; of f, the
solutions are given by

2
— iz 2
C_,= (—y) +2, m+2 choices,
g(t) 2
C_o = (t,C2))2, 2 choices,

C_p = —Rk,g(C,l,C,g) for 3<k<m+1.

FOURTH CASE: C_; #0, C_5 # 0 and m odd.
In this case we introduce a new auxiliary variable t satisfying C2?, =
tC3,. The equality (4.3) now reads

En= % XCLCOL= ) AFCL0%

2i+3j=m+1 2i4+6r=m+1

— Z )\i,2rCi—ii37’tr’

m
2i4+6r=m-+1
since m odd implies that the weight 2i 435 = m + 1 is even, so j is even
and can be written as 2r. Moreover, for the terms in the sum we have
i+ 3r = mTH7 and so we arrive at

— 2 i 47
0=C_2 S N
2i+6r=m-+1
Jj=2r

Thus ¢ is a root of the polynomial

mt1
=5 mt1-6r o

f®) = Z art", where a, = A, 2
r=0

(4.10)

Let {ti,...,ts} be the roots of the polynomial f(¢). Note that in
the equality (4.4) the power j has to be odd, since m is odd and
2i + 35 = m + 2. Hence, if we replace C?, by t;,C?, in (4.4), we obtain

5 — 2: ij il Z ,2r+1 ~i+3r r
Em+1 = y+ )\m+10_10_2 =y+ /\m+1 C—l C_Qtl .
2i4+3j=m+2 2i4+6r4+3=m+2
j=2r+1
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Note that for each of the terms in the last sum we have i + 3r = mT’l,

and so

m—1
m—1 L J

6
0=y+C_7 C_ag(t), whereg(t)= > bt
r=0

m=1=67 or41

with b, = A, ] . We also replace C_5 by (thil)%. It follows
that

0=y+C_;7 (t)2gt),

_ Yy \m
Cu= <<tl>%g<tl>> '

Thus we have arrived at the following result.

and so

Proposition 4.6. If (C_1,C_s,...,C_(,41)) is a solution of the
system (3.1), with C_1 # 0, C_o # 0 and m odd, then the system
has at most 2 - s - (m + 2) solutions, where s is the number of roots of
f(t) defined in (4.10). Moreover, for every choice of a root t; of f, we
first choose a square root of t; and then the solutions are given by

_ 2 m+2 )
7) , ———  choices,
tr) 2

C_y=(t,C%)2, 2 choices,
for 3<k<m+1.

p
=
Il
|
=
T
Q
Q

Final Remark.

The solution sets arising in the four cases reveal that no solution
exists in K[y], whereas all solutions lie in K[y'/(™*»].  This, in
turn, implies that there is no counterexample (P, Q) to the Jacobian
Conjecture with deg(P) = 3 and 3 t deg(Q). Although this fact is
already known—for instance, because no counterexample can occur when
gcd(deg(P), deg(Q)) = 1—a more detailed analysis of the corresponding
Grébner bases in broader settings may still yield new insights toward a
proof or disproof of the Jacobian Conjecture.
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Resumen

Calculamos la base de Groebner de un sistema de ecuaciones

polinomiales relacionadas con la conjetura jacobiana y describimos

completamente el conjunto de soluciones.
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