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Polynomial system related to the Jacobian Conjecture

1. Introduction

Let K be a field of characteristic zero. The two–dimensional

Jacobian Conjecture (JC), formulated by Keller in [7], asserts that any

pair of polynomials P,Q ∈ R := K[x, y] with

[P,Q] := ∂xP ∂yQ− ∂xQ∂yP ∈ K×

defines an automorphism of R.

In [8], T. T. Moh investigated possible counterexamples (P,Q)

of total degree below 101, identifying four exceptional pairs (m,n) =

(48, 64), (50, 75), (56, 84) and (66, 99), where (n,m) = (degP,degQ).

He then ruled out these cases by explicitly solving certain ad-hoc systems

of equations for the coefficients of the potential counterexamples.

Motivated by Moh’s approach, in [5] the authors introduce a family

of polynomial systems

St(n,m, (λi), F1−n)

consisting of m+n− 2 equations in m+n− 2 variables with coefficients

in a commutative K-algebra D. Here (λi)0≤i≤m+n−2 ⊂ K and

F1−n ∈ D. Among other results, they prove that a specific instance

of this system (with D = K[y] and F1−n = y) has a solution in

Dm+n−2 if and only if there exists a counterexample (P,Q) to JC

with (n,m) = (degP,degQ). The argument relies on an equivalent

formulation of JC due to Abhyankar in [1], which states that JC holds

provided that for every Jacobian pair (P,Q) either degP | degQ or

degQ | degP . They also show that, when D is an integral domain,

the set of solutions of St(n,m, (λi), F1−n) is finite. Furthermore, they

examine in detail the “homogeneous” case λi = 0 for i > 0, giving an

explicit description of its solutions. The usefulness of this method is

shown in the last section of [5], where the method is illustrated with the

case (n,m) = (50, 75), showing—via a degree-reduction technique as in

[4]—that no counterexample arises.
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At the moment, there is no other method to discard small

possible counterexamples arising from the lists of families of possible

counterexamples given in [6] (see also [4]).

An advantage of this formulation is that the system of

equations remains canonical, even under the modifications needed for

computations as in [5]. This feature makes it suitable for algorithmic

implementation and, potentially, for discarding infinite families of

possible counterexamples rather than isolated cases.

In order to understand better the system, it could be helpful to

understand a Groebner basis of the system. In [9], an explicit Groebner

basis for the system St(2,m, (0), F1−n) is found. In the present paper we

will analyze the system St(3,m, (0), F1−n). We first find a Groebner basis

for a partial system, and then we manage to give a detailed description

of the solution set.

2. The Jacobian conjecture as a system of

equations

Let K be a characteristic zero field and let K[y]((x−1)) be the

algebra of Laurent series in x−1 with coefficients in K[y]. We will start

from the following theorem, proved in [5, Theorem 1.9].

Theorem 2.1. The Jacobian conjecture in dimension two is false if and

only if there exist

- P,Q ∈ K[x, y] and C,F ∈ K[y]((x−1)),

- n,m ∈ N such that n - m and m - n,

- νi ∈ K (i = 0, . . . ,m+ n− 2) with ν0 = 1,

such that

- C has the form

C = x+ C−1x
−1 + C−2x

−2 + · · · with each C−i ∈ K[y],
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- gr(C) = 1 and gr(F ) = 2− n, where gr is the total degree,

- F+ = x1−ny, where F+ is the term of maximal degree in x of F ,

- Cn = P and Q =

m+n−2∑
i=0

νiC
m−i + F .

Furthermore, under these conditions (P,Q) is a counterexample to the

Jacobian conjecture.

In [5], the authors consider the following slightly more general

situation. Let D be a K-algebra (for example, in Theorem 2.1 we

have D = K[y]), n,m positive integers such that n - m and m - n,

(νi)1≤i≤n+m−2 a family of elements in K with ν0 = 1 and F1−n ∈ D (in

Theorem 2.1 we take F1−n = y). A Laurent series in x−1 of the form

C = x+ C−1x
−1 + C−2x

−2 + · · · with C−i ∈ D,

is a solution of the system S(n,m, (νi), F1−n), if there exist P,Q ∈ D[x]

and F ∈ D[[x−1]], such that

F = F1−nx
1−n + F−nx

−n + · · · , with F1−n, F−n, . . . in D,

P = Cn and Q =

m+n−2∑
i=0

νiC
m−i + F.

For example, if n = 3, then

P (x) = C3 = x3 + 3C−1 x + 3C−2 + (3C2
−1 + 3C−3) x−1

+ (6C−1C−2 + 4C−4) x−2

+ (C3
−1 + 3C2

−2 + 6c−2C−3 + 3C−5) x−3

+ (3C2
−1C−2 + 6C−2C−3 + 6C−1C−4 + 6C−6) x−4

+ (3C−1C
2
−2 + 3C2

−1C−3 + 3C2
−3 + 6C−2C−4 + 6C−1C−5

+ 6C−7) x−5

+ . . .
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and the condition C3 ∈ K[x] translates into the following conditions

on C−k:

0 = (C3)−1 = 3C2
−1 + 3C−3,

0 = (C3)−2 = 6C−1C−2 + 4C−4,

0 = (C3)−3 = C3
−1 + 3C2

−2 + 6c−2C−3 + 3C−5,

0 = (C3)−4 = 3C2
−1C−2 + 6C−2C−3 + 6C−1C−4 + 6C−6,

0 = (C3)−5 = 3C−1C
2
−2 + 3C2

−1C−3 + 3C2
−3 + 6C−2C−4 + 6C−1C−5

+ 6C−7,

...

In the general case, the condition P (x) = Cn ∈ K[x] yields the equations

(Cn)−k = 0, whereas the condition Q(x) =
∑m+n−2

i=0 νiC
m−i +F ∈ K[x]

gives us the equations
(∑m+n−2

i=0 νiC
m−i + F

)
−k

= 0, where we note

that F−k = 0 for k = 1, . . . , n− 2.

It is easy to see (e.g. [5, Remark 1.13]) that the first m + n − 2

coefficients determine the others, i.e., the coefficients C−1, . . . , C−m−n+2

determine univocally the coefficients C−k for k > m+ n− 2. Moreover,

the F−k for k > n−1 depend only on F1−n and C. Consequently, having

a solution C to the system S(n,m, (νi), F1−n) is the same as having a

solution (C−1, . . . , C−m−n+2) to the system

Ek := (Cn)−k = 0, for k = 1, . . . ,m− 1,

Em−1+k :=

(
m+n−2∑

i=0

νiC
m−i

)
−k

= 0, for k = 1, . . . , n− 2,

Em+n−2 :=

(
m+n−2∑

i=0

νiC
m−i

)
1−n

+ F1−n = 0,

(2.1)

with m+ n− 2 equations Ek = 0 and m+ n− 2 unknowns C−k.
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In order to understand the solution set of this system, it would

be very helpful to find a Groebner basis for the ideal generated by the

polynomials Ek in D[C−1, . . . , Cm+n−2]. In this paper we compute such

a Groebner basis of (2.1) in a very particular case: we assume n = 3,

m = 3r + 1 or m = 3r + 2 for some integer r > 0, and νi = 0 for i > 0.

Moreover we consider D = C[y] and F1−n = y, as in Theorem 2.1.

3. Computation of a Groebner basis

for Im−1

Assume n = 3, 3 - m > 3 and νi = 0 for i > 0. Set also D = C[y]

and F1−n = y.

Then the system (2.1) reads

Ei =


(C3)−i, i = 1, . . . ,m− 1,

(Cm)−1, i = m,

(Cm)−2 + y, i = m+ 1,

(3.1)

where (C2)−i denotes the coefficient of x−i in the Laurent series C3.

Explicitly, the polynomials Ei are given by

E1 = 3C2
−1 + 3C−3,

E2 = 6C−1C−2 + 3C−4,

E3 = C3
−1 + 3C2

−2 + 6C−1C−3 + 3C−5,

E4 = 3C2
−1C−2 + 6C−2C−3 + 6C−1C−4 + 3C−6,

E5 = 3C−1C
2
−2 + 3C2

−1C−3 + 3C2
−3 + 6C−2C−4 + 6C−1C−5 + 3C−7,

...

Em−1 = (C3)1−m,

Em = (Cm)−1,

Em+1 = (Cm)−2 + y.

(3.2)
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Each Ei is a polynomial in the ring C[C−1, C−2, . . . , Cm+1, y], and

the m+ 1 polynomials yield the ideal

I = 〈E1, . . . , Em, Em+1〉.

Our goal is to find a Groebner basis for the ideal I, but we find it nearly

explicit only for Im−1 := 〈E1, E2, . . . , Em−2, Em−1〉. For this we note

that the equations are homogeneous, for the weight obtained by setting

w(C−i) = i+ 1, and w(y) = m+ n− 1 = m+ 2.

We consider y as a variable, so the equations remain homogeneous. Then

w(Ek) = k+3, for k = 1, . . . ,m− 1, w(Em) = m+1 w(Em+1) = m+2.

Note that for k = 1 . . . ,m− 1 we have

Ek :=3
( [[ k+1

2 ]]∑
i=−1
3i 6=k

C2
−iC−(k−2i)

)
+ 6
( ∑

0<i<j
i+j=k+1

C−iC−j

)
(3.3)

+ 6
( ∑

0<i<j<l
i+j+l=k

C−iC−jC−l

)
+ ε(C− k

3
)3,

where

ε =

{
1, 3|k
0, 3 - k

.

Note that C1 = 1 and C0 = 0, and so

3

[[ k+1
2 ]]∑

i=−1
C2
−iC−(k−2i) = 3Ck+2 + 3

[[ k+1
2 ]]∑

i=1

C2
−iC−(k−2i). (3.4)
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In order to compute a Groebner basis we will consider the degree

reverse lexicographic monomial order, but for the degree given by the

above mentioned weight. This means that the monomial order is given

by the matrix

wmat =



m+ 2 m+ 1 m . . . 4 3 2 m+ 2

0 0 0 . . . 0 0 0 −1

0 0 0 . . . 0 0 −1 0

0 0 0 . . . 0 −1 0 0
...

...
...

. . .
...

...
...

...

0 0 −1 . . . 0 0 0 0

0 −1 0 . . . 0 0 0 0


,

on the variables C−(m+1), C−m, C−(m−1), . . . , C−3, C−2, C−1, y. We first

compute the reduced Groebner basis (Ẽ1, Ẽ2, . . . , Ẽm−1) for the ideal

Im−1 := 〈E1, E2, . . . , Em−2, Em−1〉.

Proposition 3.1. The set {E1, . . . , Em−1} is a Groebner basis of Im−1.

The reduced Groebner basis of Im−1 is given by polynomials Ẽk for

k = 1, . . . ,m− 1, each of the form

Ẽk = C−(k+2) +Rk(C−1, C−2),

where Rk(C−1, C−2) ∈ Q[C−1, C−2] is an homogeneous polynomial in

the variables C−1 and C−2 of weight w(Ẽk) = w(Ek) = k + 3.

Proof. By (3.3) and (3.4) we know that Ek is of the form

Ek = 3C−k−2 + T (C−1, . . . , C−k), for k = 1, . . . ,m− 1,

where T is a polynomial in the variables C−1, . . . , C−k. Then by

Proposition 2.9.4 of [2], since
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LCM(LT (Ei)/3, LT (Ej)/3) = LCM(C−i−2, C−j−2) = C−i−2C−j−2

= (LT (Ei)/3)(LT (Ej)/3)

we have S(Ei, Ej) −→G 0, and so, by Theorem 2.9.3 of [2], the set G =

{E1/3, . . . , Em−1/3} is a Groebner basis of Im−1. One verifies directly

that it is a minimal Groebner basis, according to Definition 2.7.4 of [2].

If we apply the process described in the proof of [2, Proposition 2.7.6]

to the Groebner basis G = {E1/3, . . . , Em−1/3} we obtain that

Ẽ1 = E1/3
G\{E1

3 } = E1/3 and Ẽ1 = E2/3
G\{E2

3 } = E2/3.

Moreover, for k = 3, . . . ,m− 1, set Gk = {Ẽ1, . . . , Ẽk−1, Ek, . . . , Em−1}
and then

Ẽk = Ek
Gk\Ek

.

Clearly the remainder can have only the variables C−1 and C−2, hence

Ẽk is of the form

Ẽk = C−(k+2) +Rk(C−1, C−2),

as desired.

Although we have no explicit formula for Rk(C−1, C−2), we can

compute it for small k.

Ẽ1 = C−3 + C2
−1,

Ẽ2 = C−4 + 2C−1C−2,

Ẽ3 = C−5 + C2
−2 −

5

3
C3
−1,

Ẽ4 = C−6 − 5C2
−1C−2,

Ẽ5 = C−7 +
10

3
C4
−1 − 5C−1C

2
−2.
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Dividing the polynomials Em and Em+1 by the polynomials

{Ẽm−1, . . . , Ẽ2, Ẽ1}

with respect to the given order, we obtain

Em

3

Gm\{Em
3 }

= Ẽm = Rm(C−1, C−2)

and

Em+1

3

Gm\{
Em+1

3 }

= Ẽm+1 = y +Rm+1(C−1, C−2),

where Rm(C−1, C−2), Rm+1(C−1, C−2) ∈ Q[C−1, C−2] are homogeneous

polynomials such that w(Ẽm) = w(Em) = m + 1 and w(Ẽm+1) =

w(Em+1) = m+ 2.

Although we don’t give an explicit description of the Groebner Basis

of the whole system, in the next section we show how to determine the

solution set of the polynomial system, using that

I = 〈E1, E2, . . . , Em, Em+1〉 = 〈Ẽ1, Ẽ2, . . . , Ẽm, Ẽm+1〉.

4. The solution set of the system of

polynomial equations

In this section we analyze the solutions of the system of equations.

Note that the partial system Im−1 shows that the values of C−1 and C−2
determine univocally the values of C−k for k > 2. Moreover, C−1 and

C−2 can be computed using the following two equations:

Ẽm = Rm(C−1, C−2) = 0 (4.1)

and

Ẽm+1 = y +Rm+1(C−1, C−2) = 0, (4.2)

where Rm(C−1, C−2), Rm+1(C−1, C−2) ∈ Q[C−1, C−2] are homogeneous

polynomials with respect to the weight considered before, i.e. w(C−1) =
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2, w(C−2) = 3. Moreover w(Ẽm) = m + n − 2 = m + 1 and

w(Ẽm+1) = m+ n− 1 = m+ 2. Then (4.1) and (4.2) read

Ẽm =
∑

2i+3j=m+1

λijmC
i
−1C

j
−2 (4.3)

and

Ẽm+1 = y +
∑

2i+3j=m+2

λijm+1C
i
−1C

j
−2, (4.4)

for some constants λijm, λ
ij
m+1 ∈ K. By (4.4) the two variables cannot be

zero at the same time. We compute first the solutions in the cases where

one of the variables is zero.

FIRST CASE: C−1 = 0 and C−2 6= 0.

In this case the only term surviving in (4.3) is

0 = Ẽm = λ0jmC
j
−2,

with 3j = m+ 1. So necessarily

λ0,(m+1)/3
m = 0 if 3|m+ 1. (4.5)

Similarly, the only term surviving in the sum (4.4) has i = 0, and so we

obtain

0 = Ẽm+1 = y + λ0jm+1C
j
−2 with 3j = m+ 2.

Since y 6= 0, necessarily λ0jm+1 6= 0 for 3j = m + 2, and so 3|m + 2, i.e.

m ≡ 1 mod 3. This shows that the condition (4.7) is trivially satisfied.

Lemma 4.1. If 3|m+ 2, and C−1 = 0, then λ0jm+1 6= 0 for 3j = m+ 2.

Proof. It is easy to check that P = x3 + 3C−2, and then, by Newtons

binomial theorem we have

Cm = Pm/3 =

∞∑
k=0

(
m/3

k

)
(3C−2)k(x3)

m
3 −k. (4.6)
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Thus λ0jm+1C
j
−2 = (Cm)−2 is the coefficient of x−2 = (x3)

m
3 −j , since

m = 3j − 2. Then

λ0jm+1 =

(
m/3

j

)
3j 6= 0,

as desired.

Thus we have proved the following proposition.

Proposition 4.2. If (C−1, C−2, . . . , C−(m+1)) is a solution of the

system (3.1), with C−1 = 0 and C−2 6= 0, then

m ≡ 1 mod 3,

λ0jm+1 6= 0 for j := m+2
3 ,

There are j solutions of the system (3.1) in K[y1/j ], given by

C−1 = 0, C−2 =

(
−y
λ0jm+1

) 1
j

and C−k = −Rk−2(C−1, C−2)

for 3 ≤ k ≤ m+ 1.

SECOND CASE: C−1 6= 0 and C−2 = 0.

In this case the only term surviving in (4.3) is

0 = Ẽm = λi0mC
i
−1,

with 2i = m+ 1. So necessarily

λ(m+1)/2,0
m = 0 if 2|m+ 1. (4.7)

Similarly, the only term surviving in the sum (4.4) has j = 0, and so we

obtain

0 = Ẽm+1 = y + λi0m+1C
i
−1 with 2i = m+ 2.

Since y 6= 0, necessarily λi0m+1 6= 0 for 2i = m + 2, and so 2|m + 2, i.e.

m is even. This shows that the condition (4.7) is trivially satisfied.
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Lemma 4.3. If 2|m and C−2 = 0, then λi0m+1 6= 0 for 2i = m+ 2.

Proof. It is easy to check that P = x3 + 3xC−1, and then, by Newtons

binomial theorem we have

Cm = Pm/3 =

∞∑
k=0

(
m/3

k

)
(3xC−1)k(x3)

m
3 −k. (4.8)

Thus λi0m+1C
i
−1 = (Cm)−2 is the coefficient of x−2 = (x)i(x3)

m
3 −i, since

m = 2i− 2. Then

λi0m+1 =

(
m/3

i

)
3i 6= 0,

as desired.

Thus we have proved the following proposition.

Proposition 4.4. If (C−1, C−2, . . . , C−(m+1)) is a solution of the

system (3.1), with C−1 6= 0 and C−2 = 0, then

m ≡ 1 mod 3,

λi0m+1 6= 0 for i := m+2
2 ,

There are i solutions of the system (3.1) in K[y1/i], given by

C−1 =

(
−y
λi0m+1

) 1
i

, C−2 = 0 and C−k = −Rk−2(C−1, C−2)

for 3 ≤ k ≤ m+ 1.

THIRD CASE: C−1 6= 0, C−2 6= 0 and m even.

In this case we introduce a new auxiliary variable t satisfying C2
−2 =

tC3
−1. The equality (4.3) now reads

Ẽm =
∑

2i+3j=m+1

λijmC
i
−1C

j
−2 =

∑
2i+6r+3=m+1

λi,2r+1
m Ci

−1C
2r+1
−2

=
∑

2i+6r+2=m

λi,2r+1
m Ci+3r

−1 C−2t
r,
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since m even implies that the weight 2i+ 3j = m+ 1 is odd, so j is odd

and can be written as 2r + 1. Moreover, for the terms in the sum we

have i+ 3r = m−2
2 , and so we arrive at

0 = C
m−2

2
−1 C−2

∑
2i+6r=m−2

j=2r+1

λijmt
r.

Thus t is a root of the polynomial

f(t) =

bm−2
6 c∑

r=0

art
r, where ar = λ

m−2−6r
2 ,2r+1

m . (4.9)

Let {t1, . . . , ts} be the roots of the polynomial f(t). Note that in

the equality (4.4) the power j has to be even, since m is even and

2i+ 3j = m+ 2. Hence, if we replace C2
−2 by tlC

3
−1 in (4.4), we obtain

Ẽm+1 = y +
∑

2i+3j=m+2
j=2r

λijm+1C
i
−1C

j
−2 = y +

∑
2i+6r=m+2

λi,2rm+1C
i+3r
−1 trl .

Note that for each of the terms in the last sum we have i + 3r = m+2
2 ,

and so

0 = y + C
m+2

2
−1 g(tl), where g(t) =

bm+2
6 c∑

r=0

brt
r,

with br = λ
m+2−6r

2 ,2r
m+1 . It follows that

C−1 =
( −y
g(tl)

) 2
m+2

.

Thus we have arrived at the following result.

Proposition 4.5. If (C−1, C−2, . . . , C−(m+1)) is a solution of the

system (3.1), with C−1 6= 0, C−2 6= 0 and m even, then the system

has at most s · (m + 2) solutions, where s is the number of roots of
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f(t) defined in (4.9). Moreover, for every choice of a root tl of f , the

solutions are given by

C−1 =
( −y
g(tl)

) 2
m+2

,
m+ 2

2
choices,

C−2 =
(
tlC

3
−1
) 1

2 , 2 choices,

C−k = −Rk−2(C−1, C−2) for 3 ≤ k ≤ m+ 1.

FOURTH CASE: C−1 6= 0, C−2 6= 0 and m odd.

In this case we introduce a new auxiliary variable t satisfying C2
−2 =

tC3
−1. The equality (4.3) now reads

Ẽm =
∑

2i+3j=m+1

λijmC
i
−1C

j
−2 =

∑
2i+6r=m+1

λi,2rm Ci
−1C

2r
−2

=
∑

2i+6r=m+1

λi,2rm Ci+3r
−1 tr,

since m odd implies that the weight 2i+ 3j = m+ 1 is even, so j is even

and can be written as 2r. Moreover, for the terms in the sum we have

i+ 3r = m+1
2 , and so we arrive at

0 = C
m+1

2
−1

∑
2i+6r=m+1

j=2r

λijmt
r.

Thus t is a root of the polynomial

f(t) =

bm+1
6 c∑

r=0

art
r, where ar = λ

m+1−6r
2 ,2r

m . (4.10)

Let {t1, . . . , ts} be the roots of the polynomial f(t). Note that in

the equality (4.4) the power j has to be odd, since m is odd and

2i+ 3j = m+ 2. Hence, if we replace C2
−2 by tlC

3
−1 in (4.4), we obtain

Ẽm+1 = y+
∑

2i+3j=m+2
j=2r+1

λijm+1C
i
−1C

j
−2 = y+

∑
2i+6r+3=m+2

λi,2r+1
m+1 Ci+3r

−1 C−2t
r
l .
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Note that for each of the terms in the last sum we have i + 3r = m−1
2 ,

and so

0 = y + C
m−1

2
−1 C−2g(tl), where g(t) =

bm−1
6 c∑

r=0

brt
r,

with br = λ
m−1−6r

2 ,2r+1
m+1 . We also replace C−2 by

(
tlC

3
−1
) 1

2 . It follows

that

0 = y + C
m+2

2
−1 (tl)

1
2 g(tl),

and so

C−1 =
( −y

(tl)
1
2 g(tl)

) 2
m+2

.

Thus we have arrived at the following result.

Proposition 4.6. If (C−1, C−2, . . . , C−(m+1)) is a solution of the

system (3.1), with C−1 6= 0, C−2 6= 0 and m odd, then the system

has at most 2 · s · (m + 2) solutions, where s is the number of roots of

f(t) defined in (4.10). Moreover, for every choice of a root tl of f , we

first choose a square root of tl and then the solutions are given by

C−1 =
( −y

(tl)
1
2 g(tl)

) 2
m+2

,
m+ 2

2
choices,

C−2 =
(
tlC

3
−1
) 1

2 , 2 choices,

C−k = −Rk−2(C−1, C−2) for 3 ≤ k ≤ m+ 1.

Final Remark.

The solution sets arising in the four cases reveal that no solution

exists in K[y], whereas all solutions lie in K
[
y1/(m+2)

]
. This, in

turn, implies that there is no counterexample (P,Q) to the Jacobian

Conjecture with deg(P ) = 3 and 3 - deg(Q). Although this fact is

already known—for instance, because no counterexample can occur when

gcd
(
deg(P ),deg(Q)

)
= 1—a more detailed analysis of the corresponding

Gröbner bases in broader settings may still yield new insights toward a

proof or disproof of the Jacobian Conjecture.
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Resumen

Calculamos la base de Groebner de un sistema de ecuaciones

polinomiales relacionadas con la conjetura jacobiana y describimos

completamente el conjunto de soluciones.
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