Pro Mathematica: Vol. V, Nos. 9 -10, 1991

ON THE ALGEBRAIC MULTIPLICITIES OF THE EIGEN VALUES OF THE INTEGRAL

Jullo ALCANTARA BODE*

It is proven that all non-cero eigenvalues of the integral operator on

$$
L^{2}(0,1),\left[A_{\rho} f(\theta)=\int_{0}^{1} \rho(\theta / x) f(x) d x,\right.
$$

where ρ is the fractionary part function, have algebraic multiplicity equal to one.

[^0]
1. Introduction

In a previous work [1] we reformulated the Riemann Hypothesis as a problem of Functional Analysis by means of the following Theorem.

Theorem. Let $\left[A_{\rho} f\right](\theta)=\int_{0}^{1} \rho\left(\frac{\theta}{x}\right) f(x) d x$, where $\rho(x)=x-[x],[x] \leq x<[x]+1,[x] \in \mathbb{Z}$, be considered as an operator on $L^{2}(0,1)$. Then, the Riemann Hypothesis holds if and only if Kier $A_{\rho}=\{0\}$ or if and only if $h \notin \operatorname{Ran} A_{\rho}$, where $h(x)=x, \forall x \in[0,1]$.

Among others things we also proved that:
i) A_{ρ} is Hilbert-Schmidt but not nuclear.
ii) $\lambda \neq 0$ is an eigenvalue of A_{ρ} if and only if $T\left(\lambda^{-1}\right)=0$, where
$T(\mu)=1-\mu+\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{(r+1)!(r+1)} \prod_{1=1}^{r} \zeta(1+1) \mu^{r+1}$
is an entire function of order one and type one; moreover each nonzero eigenvalue λ has geometric multiplicity one and the coresponding eigenfunction

$$
\varphi_{\lambda} \text { is } \varphi_{\lambda}(x)=x \mathrm{~T}^{\prime}(\mathrm{x} / \lambda) .
$$

iii) If $\left\{\lambda_{n}\right\}_{n \geq 1}$ is the sequence of non-zero eigenvalues of A_{ρ}, where each eigenvalue is
repeated a number of times equal to its algebraic multiplicity, and the ordering is such that $\left|\lambda_{n}\right| \geq\left|\lambda_{n+1}\right| \forall n \geq 1$, then $\left|\lambda_{n}\right| \leq e / n \forall n \geq 1$ and $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|=\infty$.
iv) If D^{*} is the modified Fredholm determinant of A_{ρ} then $D^{*}(\mu)=e^{\mu} T(\mu) \quad \forall \mu \in \mathbb{C}$.
v) If $\varphi \in] 0, \frac{\pi}{2}$ [then, in the complement of each of the wedges

$$
\begin{aligned}
W_{\varphi} & =\{\lambda| | \operatorname{Im} \lambda \mid \leq \operatorname{tg} \varphi \operatorname{Re} \lambda\} \quad \text { and } \\
-W_{\varphi} & =\left\{\lambda \mid-\lambda \in W_{\varphi}\right\}, A_{\varphi}
\end{aligned}
$$

has an infinite number of eigenvalues.
vi) The largest eigenvalue λ_{1} of A_{ρ} is positive and has algebraic multiplicity one.

The last result was proven as an application of the Krein-Rutman Theorem. The purpose of this note is to prove that all non-zero eigenvalues of A_{ρ} have algebraic multiplicity one or equivalently that the entire functions D^{*} and T have only simple zeros, [3], p. 349 Theorem 2.

2. Proof of result

Theorem. All non-zero eigenvalues of A_{p} have algebraic multiplicity one.

Proof: First we prove that if $T^{(1)}\left(\lambda_{1}^{-1}\right)=0$ for $0 \leq 1 \leq k-1$ and $T^{(k)}\left(\lambda_{j}^{-1}\right) \neq 0$, then the fundtions $\xi_{j ; 1}(x)=\dot{x}^{1} T^{(1)}\left(x / \lambda_{j}\right), \quad 1 \leq 1 \leq k$, obey the equations

$$
\begin{align*}
& \left(A_{\rho}-\lambda_{j}\right)^{1} \xi_{j ; 1}=0, \\
& \left(A-\lambda_{j}\right)^{1-1} \xi_{j ; 1}=(-1)^{1-1}(1-1)!\lambda_{j}^{21-2} \xi_{j ; 1} \\
& 1 \leq 1 \leq k \tag{1}
\end{align*}
$$

In [1] it has ben shown that if $\psi_{\mu}(x)=\mu x T^{\prime}(\mu x)$ and $h(x)=x$, then $\left(A_{\rho}-\mu^{-1}\right) \psi_{\mu}=T(\mu) h$ or

$$
\begin{equation*}
\mathrm{A}_{\rho} \psi_{\mu}-\mu^{-1} \psi_{\mu}=\mathrm{T}(\mu) \mathrm{h} \tag{2}
\end{equation*}
$$

If $\mu_{0} \in \mathbb{C}$ we have by Taylor's theorem that

$$
\begin{align*}
& \Psi_{\mu}(x)= \sum_{n=0}^{\infty} \frac{\left(\mu-\mu_{0}\right)^{n}}{n!}\left[\mu_{0} x^{n+1} T^{(n+1)}\left(\mu_{0} x\right)\right. \\
&\left.+n x^{n} T^{(n)}\left(\mu_{0} x\right)\right] \tag{3}\\
& \mu^{-1} \psi_{\mu}(x)= \sum_{n=0}^{\infty} \frac{\left(\mu-\mu_{0}\right)^{n}}{n!} x^{n+1} T^{(n+1)}\left(\mu_{0} x\right) \tag{4}\\
& T(\mu) h(x)=\sum_{n=0}^{\infty} \frac{\left(\mu-\mu_{0}\right)^{n}}{n!} T^{(n)}\left(\mu_{0}\right) x \tag{5}
\end{align*}
$$

Replacing equations (3), (4) and (5) in (2) and equating coefficients of the same powers of ($\mu-\mu_{0}$) on both sides of the resulting equation
we get

$$
\begin{gather*}
\left(A_{\rho}-\mu_{0}^{-1}\right) \mu_{0} \Psi_{\mu_{0} ; n+1}=T^{(n+1)}\left(\mu_{0}\right) \mathbf{h}-n A_{\rho} \psi_{\mu_{0} ; n}, \\
n \geq 1 \tag{6}
\end{gather*}
$$

where $\psi_{\mu, n}(x)=x^{n} T^{(n)}(\mu x) \forall n \geq 1$.
From equation (6), we get both equations (1) by induction.

Now in equation (6) we replace μ_{0} by μ, where μ^{-1} is not in the spectrum of A_{ρ}. If we apply operator $\left(A_{\rho}-\mu^{-1}\right)^{-1}$ to the resulting equation we get

$$
\begin{gather*}
n \mu^{-1}\left(A_{\rho}-\mu^{-1}\right)^{-1} \psi_{\mu ; n}=\frac{T^{(n)}(\mu)}{T(\mu)} \psi_{\mu}-n \psi_{\mu ; n} \\
-\mu \psi_{\mu ; n+1} \tag{7}
\end{gather*}
$$

Assume now that μ_{j}^{-1} is a non-zero eigenvalue of A_{ρ} of algebraic multiplicity p_{j} and that A_{ρ} does not have an eigenvalue in $\Omega_{j}=\left\{\mu\left|0<\left|\mu-\mu_{j}\right|<\varepsilon\right\}\right.$. In Ω_{j} is valid the following Laurent expansion for the resolvent $\left(\mu^{-1}-A_{\rho}\right)^{-1}$ of A_{ρ}, [2] Satz 5.14 and Satz 4.12

$$
\begin{gather*}
\left(\mu^{-1}-A_{\rho}\right)^{-1}=\sum_{k=1}^{P_{j}}\left(\mu^{-1}-\mu_{j}^{-1}\right)^{-k} \\
\left(A_{\rho}-\mu_{j}^{-1}\right)^{k-1} P_{j}+W_{j}(\mu) \tag{8}
\end{gather*}
$$

Where W_{j} is analytic in $\Omega_{j} \cup\left\{\mu_{j}\right\}$ and P_{j} is the
proyection into the finite dimensional subspace generated by the principal vectors of A_{ρ} associated to the eigenvalue μ_{j}^{-1} of A_{ρ}, i.e.
$P_{j} L^{2}(0,1)=\bigcup_{k=1}^{\infty} \operatorname{Ker}\left(A-\mu_{j}^{-1}\right)^{k}$. It is known that $P_{j}^{2}=P_{j}, A_{\rho} P_{j}=P_{j} A_{\rho}\left(A_{\rho}-\mu_{j}^{-1}\right)^{n} P_{j} \neq 0$ if $0 \leq n \leq p_{j}-1$ and $\left(A_{\rho}-\mu_{j}^{-1}\right)^{p_{j}} P_{j}=0 \quad[2]$, Satz 4.12 . We have that

$$
\begin{equation*}
\mathrm{T}(\mu)=\left(\mu-\mu_{\mathrm{j}}\right)^{\mathrm{P}_{\mathrm{j}}} \mathrm{~g}(\mu), \mathrm{g}\left(\mu_{\mathrm{j}}\right) \neq 0 \tag{9}
\end{equation*}
$$

If in (7) we replaced equations (8) and (9), take $1 \leq \mathrm{n} \leq \mathrm{p}_{j}$ and then the limit $\mu \rightarrow \mu_{j}$ we get that the left hand side of (7) behaves as
$-n \sum_{k=1}^{\infty} \mu_{j}^{2 k-1}\left(\mu_{j}-\mu\right)^{-k}\left(A_{\rho}-\mu_{j}^{-1}\right)^{k-1} P_{j} \quad \psi_{\mu_{j} ; n}$
and the right hand side behaves as

$$
\begin{equation*}
\frac{p_{j}!}{\left(p_{j}-n\right)!}\left(\mu-\mu_{j}\right)^{-n} \psi_{\mu_{j}} \tag{11}
\end{equation*}
$$

comparing terms in (10) and (11) we get that

$$
\begin{equation*}
\left(A_{\rho}-\mu_{j}^{-1}\right)^{k-1} P_{j} \Psi_{\mu_{j} ; n}=0 \text { if } n<k \leq p_{j} \tag{12}
\end{equation*}
$$

and

$$
(-1)^{n-1} n \mu_{j}^{2 n-1}\left(A_{\rho}-\mu_{j}^{-1}\right)^{n-1} P_{j}
$$

$$
\begin{equation*}
\psi_{\mu_{j} ; n}=\frac{p_{j}!}{\left(p_{j}-n\right)!} \psi_{\mu_{j}} \tag{13}
\end{equation*}
$$

By the equations (1) we know that

$$
\begin{equation*}
P_{j} \psi_{\mu_{j} ; n}=\psi_{\mu_{j} ; n} \quad \text { if } \quad 1 \leqslant n \leqslant p_{j} \tag{14}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(A_{\rho}-\mu_{j}^{-1}\right)^{n-1} \psi_{\mu_{j} ; n}=(-1)^{n-1}(n-1)!\mu_{j}^{2-2 n} \\
\psi_{\mu_{j} ; 1} \tag{15}
\end{gather*}
$$

From (13), (14) and (15) we get

$$
\frac{p_{j}!}{\left(p_{j}-n\right)!n}=(n-1)!\quad \text { or } \quad \frac{p_{j}!}{\left(p_{j}-n\right)!n!}=1
$$

Therefore $n=p_{j}=1$, since $1 \leq n \leq p_{j}$.

Acknowledments

This work was realized while attending the X ELAM, held in Cordoba, Argentina. I would like to thank Proffessors R. Macias and G. Corach for the invitation to take part in this event. I am also grateful to the organizers of the $X E L A M$, and the Alexander von Humboldt Stiftung for financial support.

References

[1] J. Alcantara-Bode, An integral equation formulation of the Riemann Hypothesis, manuscript submitted to the Journal of Integral Equations and Operator Theory.
[2] K. Jörgens, Lineare Integralenoperatoren, Teubner, Stuttgart, 1970.
[3] A.C.Zaanen, Linear analysis, North Holland, Amsterdam, 1964.

[^0]: ${ }^{*}$ Profesor Asociado de la PUCP and UPCH, Lima, Perú

