Pro Mathematica: Vol. V, Nos. 9 - 10, 1991

ON THE ALGEBRAIC MULTIPLICITIES OF THE EIGEN VALUES OF THE INTEGRAL

Julio ALCANTARA BODE*

It is proven that all non-cero eigenvalues of the integral operator on

$$L^2 \; (0,1), \; \; [A_\rho f](\theta) = \int\limits_0^1 \rho(\theta \!\!/ \!\! x) \; f(x) \; dx \; , \label{eq:L2}$$

where ρ is the fractionary part function, have algebraic multiplicity equal to one.

^{*}Profesor Asociado de la PUCP and UPCH, Lima Perú

1. Introduction

In a previous work [1] we reformulated the Riemann Hypothesis as a problem of Functional Analysis by means of the following Theorem.

Theorem. Let $[A_{\rho}f]$ $(\Theta) = \int_0^1 \rho(\frac{\Theta}{x}) \ f(x) \ dx$, where $\rho(x) = x - [x]$, $[x] \le x < [x] + 1$, $[x] \in \mathbb{Z}$, be considered as an operator on $L^2(0,1)$. Then, the Riemann Hypothesis holds if and only if Ker $A_{\rho} = \{0\}$ or if and only if $h \notin Ran \ A_{\rho}$, where h(x) = x, $\forall x \in [0,1]$.

Among others things we also proved that:

- i) A_{ρ} is Hilbert-Schmidt but not nuclear.
- ii) $\lambda \neq 0$ is an eigenvalue of A_{ρ} if and only if $T(\lambda^{-1}) = 0$, where

$$T(\mu) = 1 - \mu + \sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{(r+1)! (r+1)} \prod_{l=1}^{r} \zeta$$
 (1+1) μ^{r+1}

is an entire function of order one and type one; moreover each non-zero eigenvalue λ has geometric multiplicity one and the corresponding eigenfunction

$$\varphi_{\lambda}$$
 is $\varphi_{\lambda}(x) = x T'(x/\lambda)$.

iii) If $\{\lambda_n^{}\}_{n\geq 1}$ is the sequence of non-zero eigenvalues of $A_0^{}$, where each eigenvalue is

repeated a number of times equal to its algebraic multiplicity, and the ordering is such that $|\lambda_n| \geq |\lambda_{n+1}| \quad \forall n \geq 1$, then $|\lambda_n| \leq e/n \quad \forall n \geq 1$ and $\sum\limits_{n=1}^{\infty} |\lambda_n| = \infty$.

- iv) If D^* is the modified Fredholm determinant of A_{ρ} then $D^*(\mu) = e^{\mu} T(\mu) \quad \forall \mu \in \mathbb{C}$.
 - v) If $\varphi \in]0, \frac{\pi}{2}$ [then, in the complement of each of the wedges

has an infinite number of eigenvalues.

vi) The largest eigenvalue λ_1 of A_ρ is positive and has algebraic multiplicity one.

The last result was proven as an application of the Krein-Rutman Theorem. The purpose of this note is to prove that all non-zero eigenvalues of A_{ρ} have algebraic multiplicity one or equivalently that the entire functions D^{\star} and T have only simple zeros, [3], p.349 Theorem 2.

2. Proof of result

Theorem. All non-zero eigenvalues of A_{ρ} have algebraic multiplicity one.

Proof: First we prove that if $T^{(1)}(\lambda_1^{-1})=0$ for $0 \le 1 \le k-1$ and $T^{(k)}(\lambda_j^{-1})\ne 0$, then the functions $\xi_{j,1}(x)=x^1$ $T^{(1)}(x/\lambda_j)$, $1 \le 1 \le k$, obey the equations

$$(A_{\rho} - \lambda_{j})^{1} \xi_{j;1} = 0 ,$$

$$(A - \lambda_{j})^{1-1} \xi_{j;1} = (-1)^{1-1} (1-1)! \lambda_{j}^{21-2} \xi_{j;1}$$

$$1 \le 1 \le k$$
(1)

In [1] it has ben shown that if $\psi_{\mu}(x) = \mu x T'(\mu x)$ and h(x) = x, then $(A_{\rho} - \mu^{-1}) \psi_{\mu} = T(\mu) h$ or

$$A_{\rho} \psi_{\mu} - \mu^{-1} \psi_{\mu} = T(\mu) h$$
 (2)

If $\mu_0 \in \mathbb{C}$ we have by Taylor's theorem that

$$\psi_{\mu}(\mathbf{x}) = \sum_{n=0}^{\infty} \frac{(\mu - \mu_{o})^{n}}{n!} [\mu_{o} \mathbf{x}^{n+1} \ \mathbf{T}^{(n+1)}(\mu_{o} \mathbf{x})] + n \ \mathbf{x}^{n} \ \mathbf{T}^{(n)}(\mu_{o} \mathbf{x})]$$
(3)

$$\mu^{-1} \psi_{\mu}(\mathbf{x}) = \sum_{n=0}^{\infty} \frac{(\mu - \mu_{o})^{n}}{n!} \mathbf{x}^{n+1} \mathbf{T}^{(n+1)}(\mu_{o}\mathbf{x})$$
 (4)

$$T(\mu) h(x) = \sum_{n=0}^{\infty} \frac{(\mu - \mu_o)^n}{n!} T^{(n)}(\mu_o) x$$
 (5)

Replacing equations (3), (4) and (5) in (2) and equating coefficients of the same powers of $(\mu - \mu_0)$ on both sides of the resulting equation

we get

$$(A_{\rho} - \mu_{o}^{-1})\mu_{o} \psi_{\mu_{o}; n+1} = T^{(n+1)}(\mu_{o})h - n A_{\rho} \psi_{\mu_{o}; n},$$

$$n \ge 1 \qquad (6)$$

where $\psi_{\mu,n}(x) = x^n T^{(n)}(\mu x) \forall n \ge 1$.

From equation (6), we get both equations (1) by induction.

Now in equation (6) we replace μ_o by μ , where μ^{-1} is not in the spectrum of A_ρ . If we apply operator $(A_\rho - \mu^{-1})^{-1}$ to the resulting equation we get

$$n\mu^{-1} \left(A_{\rho} - \mu^{-1}\right)^{-1} \quad \psi_{\mu;n} = \frac{T^{(n)}(\mu)}{T(\mu)} \psi_{\mu} - n \psi_{\mu;n} - \mu \psi_{\mu;n+1}$$
 (7)

Assume now that μ_j^{-1} is a non-zero eigenvalue of A_ρ of algebraic multiplicity p_j and that A_ρ does not have an eigenvalue in $\Omega_j = \{\mu | 0 < |\mu - \mu_j| < \epsilon\}$. In Ω_j is valid the following Laurent expansion for the resolvent $(\mu^{-1} - A_\rho)^{-1}$ of A_ρ , [2] Satz 5.14 and Satz 4.12

$$(\mu^{-1} - A_{\rho})^{-1} = \sum_{k=1}^{P_{j}} (\mu^{-1} - \mu_{j}^{-1})^{-k}$$

$$(A_{\rho} - \mu_{j}^{-1})^{k-1} P_{j} + W_{j}(\mu)$$
(8)

Where W_i is analytic in $\Omega_{j} \cup \{\mu_{j}\}$ and P_j is the

proyection into the finite dimensional subspace generated by the principal vectors of A_{ρ} associated to the eigenvalue μ_{i}^{-1} of A_{ρ} , i.e.

 $\begin{array}{llll} P_{j} \ L^{2}(0,1) & = & \bigcup_{k=1}^{\infty} \ \text{Ker} \ (A - \mu_{j}^{-1})^{k} \ . & \text{It is known} \\ \\ \text{that} & P_{j}^{2} & = P_{j}, \ A_{\rho}P_{j} & = P_{j} \ A_{\rho} \ (A_{\rho} - \mu_{j}^{-1})^{n} \ P_{j} \neq 0 \quad \text{if} \\ \\ 0 & \leq n \leq p_{j} - 1 \quad \text{and} \quad (A_{\rho} - \mu_{j}^{-1})^{p_{j}} \ P_{j} & = 0 \quad \text{[2], Satz} \\ \\ 4.12 \ . & \text{We have that} \end{array}$

$$T(\mu) = (\mu - \mu_j)^{P_j} g(\mu), g(\mu_j) \neq 0$$
 (9)

If in (7) we replaced equations (8) and (9), take $1 \le n \le p_j$ and then the limit $\mu \longrightarrow \mu_j$ we get that the left hand side of (7) behaves as

$$-n \sum_{k=1}^{\infty} \mu_{j}^{2k-1} (\mu_{j} - \mu)^{-k} (A_{\rho} - \mu_{j}^{-1})^{k-1} P_{j} \psi_{\mu_{j}; n} (10)$$

and the right hand side behaves as

$$\frac{p_{j}!}{(p_{j}-n)!}(\mu-\mu_{j})^{-n} \psi_{\mu_{j}}$$
 (11)

comparing terms in (10) and (11) we get that

$$(A_{\rho} - \mu_{j}^{-1})^{k-1} P_{j} \psi_{\mu_{j}; n} = 0 \text{ if } n < k \le p_{j}$$
 (12)

and

$$(-1)^{n-1}$$
 n μ_j^{2n-1} $(A_\rho - \mu_j^{-1})^{n-1}$ P_j

$$\psi_{\mu_{j};n} = \frac{p_{j}!}{(p_{j}-n)!} \psi_{\mu_{j}}$$
 (13)

By the equations (1) we know that

$$P_{j} \psi_{\mu_{j}; n} = \psi_{\mu_{j}; n} \quad \text{if} \quad 1 \le n \le p_{j} \quad (14)$$

and

$$(A_{\rho} - \mu_{j}^{-1})^{n-1} \psi_{\mu_{j}; n} = (-1)^{n-1} (n-1)! \mu_{j}^{2-2n} \psi_{\mu_{j}; 1}$$
 (15)

From (13), (14) and (15) we get

$$\frac{p_{j}!}{(p_{j}-n)! n} = (n-1)! \quad \text{or} \quad \frac{p_{j}!}{(p_{j}-n)! n!} = 1$$

Therefore $n = p_j = 1$, since $1 \le n \le p_j$.

Acknowledments

This work was realized while attending the X ELAM, held in Córdoba, Argentina. I would like to thank Proffessors R. Macias and G. Corach for the invitation to take part in this event. I am also grateful to the organizers of the X ELAM, and the Alexander von Humboldt Stiftung for financial support.

References

- [1] J. Alcantara—Bode , An integral equation formulation of the Riemann Hypothesis, manuscript submitted to the Journal of Integral Equations and Operator Theory.
- [2] K. Jörgens , Lineare Integralenoperatoren, Teubner, Stuttgart, 1970.
- [3] A.C.Zaanen, Linear analysis, North Holland, Amsterdam, 1964.