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1. Introduction

Let us denote by R™ the n-dimensional euclidean space. By
T-y=2I1y1 + Z2¥2 + + -+ + ZTaYn We denote the scalar product of
z = (21, " *,Zn) and y = (1, - Yn)-

The norm of z € R" is given by | z |= (z - z)!/? and B(z,r)
designates the ball {y:|y— z |< r}, where z € R" and 7 > 0.

All the functions considered here are Lebesgue measurable
and | E | stands for the Lebesgue measure of a measurable set
E. Let f be a locally integrable function. The Hardy-Little wood
maximal function of f is defined as

Mf(z) = sup | B(z,r) |~ /
r>0

B(z,

)lf(y)ldy-

Let w(z) be a non-negative and locally integrable function. The
weight w(z) is said to belong to the A, class of Muckenhoupt,
1 < p < o, if there exists a constant ¢ such that the inequality

(181 [ wie)i B [ woDanet <.

holds for every ball B C R™. We say that w belongs to A, if
there exists a constant ¢ such that Mw(z) < cw(z) holds for
almost every point z in R™. Results concerning A, weights can be
founded in B. Muckenhoupt [6], R. Coiman and C. Fefferman [3]
and R. Hunt, B. Muckenhoupt and R. Wheeden [4]. We define the
measure w(E) = [, w(z)dz, where E is any Lebesgue measurable
subset of R". (2, denotes the volume of the unit ball of R™ and
wn—1 the surface area of the unit sphere. The letter ¢ designates
a constant not necessarily the same at different ocurrences.

The type of singular integral kernels k(z) that shall be con-
sidered in this paper will satisfy the following conditions:

() lk(z)[<elz|™, ifz #0;
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(ii) there exists an increasing function 6(t) such that 6(2t) <
cf(t),

[ k(z —y) - k(z) |< Byl /=D | =]
if|z]|>2}y],and fol 8(t)d(t)/t < oo;
(iii) for every 0 < a < b, | [, .., K(z)dz |< ¢
(iv) the limit iz_rz(z) frcocr K(z)dz exists.

A kernel k(z) satisfying these properties allows us to define
a temperate distribution, which is called the principal value of k,
by means of

<puvk,p>= lir%/ k(z)p(z)dz =
ot d

r>e

[ Hole(@) - p(0)ldz+
1z]<1

+ ¢(0). lim k(z)dz + /

z}>

k(z)p(z)dz
e<jz|<1 1

for every ¢ € S. In order to calculate the Fourier transform of the
distribution p.v.k, we observe that the conditions assumed on the
kernel imply the hypothesis'of Theorem in {1].

From the proof of that theorem it follows that the Fourier trans-
forms of the truncated kernels, k.(z) = k(z) if | z |> ¢ and
ke(z) = 0if | z |< €, are uniformly bounded, i.e. for every ¢ > 0.

(1) | ke(z) |< M.

Moreover, we have



Fo(z) = / (e Vk(y)dy +  (z)
e<yl<1

= [ ey [ k).
e<]yl<1 e<lyl<1
Letting ¢ go to zero and taking into account (i) and (iv) we obtain

lim Es(x) = / [ =27 Y — 1k(y)dy
=0 lyl<1

+lim/ k(y)(ly+’l:'1(m~).
e<jyi<1

This proves the existence of the limit. Let us denote by 75(9;) the
function lin(z)ke(z). We shall show that
£— .

(2) < (pvk) o >=<puo.k,p>= /Z‘(.‘L‘)'s,:‘(x)d.t.

Indeed, from the relation < Es,tp >=< k., > and (1), by the
Lebesgue dominated convergence theorem, it follows (2) for every
@ € S. In addition, by (1), we have

(3) | k(z) |< M.

Let k(z) be a kernel satisfying conditions (i) to (iv). For
€ > 0, we define the truncated singular integral operator K, as

K.f(z) = / ke(z - 1) f(¥)dy,

where f belongs to L?, 1 < p < oo, and w € 4,. The maximal
singular integral operator K* associated to k(z) is defined as

K*f(z)=sup | K.f(z)] .
e>0



Next, we gather in theorems A and B some known results
that will be needed in the sequel.

Theorem A. Let K* be the maximal singular integral operator
associated to a kernel k(z) which satisfies conditions (i), (ii), (iii)
and (iv).

(i) if fe LE,1 < p < o0,and w € Ap, then | K™ fll» < c||fl|Ls,
where the constant ¢ does not depend on f.

(ii) If f € L}, and w € A;, then there exists a constant ¢ such that
w({z : K* f(z) > A}) < eA7||fl| L2 holds for every A > 0.

Theorem A is a consequence of Theorem 5 of [5] since hypothesis
(a) of that theorem holds by (3) and the other hypothesis (b) and
(c) of the same theorem coincide with our assumptions (i) and (ii)
on the kernel.

Theorem B. Let k(z) be a kernel satisfying the same assumptions
as in Theorem A.

(K felLf,1<p<oo,we A, then Kf(z) = lirréKef(:r)
exists almost everywhere. e

(ii) If f € L%, 1 < p < oo and w € Ay, then ||K fl|Lr < ¢||fl]|z,
where ¢ does not depend on f.

(iii) If f € L), and w € A;, then, there exists a constant ¢ such
that w({z :| Kf(z) |> A}) < eA7Y||fllzy holds for every
A>0.

(iv) f feLl,,1<p<ooand w€ A, then
tim||K.f ~ K fllcz =0.
&=

It is easy to verify that (i) holds for f € C§°. Arguing as in [7],
p. 45, and taking into account Theorem A we obtain (i). Parts
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(i) and (iii) follow from part (i) and Theorem A. As for (iv),
it follows from (i) and part (i) of Theorem A by applying the
Lebesgue dominated convergence theorem.

. in L1
2. Convergence in Lg,.

Let ¢(z) be a function defined on R™. The least decreasing
radial majorant function ¥(z) of ¢(z) is given by

P(z) = sup I | o(y) | -

lyl> |z

With an abuse of notation, we write ¥(r) = 9(z) if | « |= r. For
€ >0, we set @ (z) =€ "p(z/€).

Lemma 1. Let ¢(z) be a function whose least decreasing radial
majorant ¥(z) is integrable. Assume that f(z) belongs to Lf,1 <

p< oo, w€ Ap. If for € > 0 we define fo(z) = [ f(z — y)p(y)dy
then,

(i) for every € > 0, | fe(z) |[< M f(z) [ ¥(y)dy,
(i) for every ¢ >0, |[fellLy < ¢ [ ¥(¥)dyllfllLs,

(iii) for every Lebesgue point z of f and therefore, for almost every
point = € R", £in‘z)f,(z) = f(z) [ ¥(y)dy and

(iv) lim [ | fe(z) - f(2) [ p(y)dy IP w(=z)dz = 0

To prove Lemma 1 we shall need some results that we state in
Lemmas 2 and 3.

Lemma 2. Let h(z) > 0 be a locally integrable function and let
¥(z) > 0 be a decreasing radial and integrable function. Then,
the following properties hold

(1)  h(y)¥(y)dy < MA(0) [ ¢(y)dy,
8



(ii) f|y|<p y)¥(y)dy

ny~—1
Sozgzslp(ﬂnr )7 fier B [y, $(¥)dY,

(iii) Jiy)5p A(0)¥(y)dy

<2M(2" - 1)—1f;‘€(ﬂnrﬂ)-l fp(ly'_(_r h(y)dy f!ybl;. Y(y)dy.
Proof. Part (i), which is the core of the lemma is well known (see
[7], Theorem 2, p.62). Part (ii) follows from (i) considering h(y)

and ¥(y) as equal to zero for | y |> p. To get part (iii) we observe
that since 9 is a radial and decreasing function, we have

(1= 272" H(p) < / $(y)dy.

2<lyl<e

If we apply part (i) to h,(y) = h(y) if | y |> p, hp(y) = 0if [y [< p
and ¥,(y) = ¥(y) if | y |> p and ¥,(y) = ¥(p) if | y |< p, then

/ hy)d(y)dy = / ho(9)%s(y)dy
lyl>e

< MAh,(0)[Q,p"¥(p) + / ¥(y)dy

lyi>e

< 272" - 1)7' Mh,(0) ¥(y)dy,
lyi>£

which is (iii).

Lemma 3. Let w € A, and f € L}. If, for p > 0, we set
As(p) = (Qup™) ™ [, |1 Fa—9) = F(z) | w(z)dzdy, then,

(i) As(p) L ellflley,
(ii) limAg(p) =0

Proof. We have,



Af(p) € (Qup™)! /MSP [ 146a) | wta + sy
+ 1) wie)is
= [15@ 110! /Msp w(z + y)dsldz + |1 f]lzy
<e [ 1@ u(@)ds + 1l
= el Al

This proves (i). In order to prove part (ii), let ¢ be a continuous
function with compact support such that ||f — gllz:y < e. Then,
there exists p, such that

/ | 9(z — y) - 9(z) | w(z)dz < ¢,

for every | y |< p,. Therefore, by part (i), we have

Ap(p) £ (As-g)(p) + Aglp)
<ellf-glley +¢
<(c+1)e, if p<p,.

Proof of Lemma 1. Part (i) of Lemma 1 is an easy consequence of
part (i) of Lemma 2. Part (i) and the assumption w € A, imply
(ii) for p> 1. If p = 1, by part (i) of Lemma 1, we have

J 1@ 1 w@ie < [{[150)1 bele - pasyuiayis
= [11@)1{ [ vl + vywete)daday
< [ 11w Muly)ay
<e [ 11w vy
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since w € A;.
Let us prove part (iii). If B is a ball, we have

-1

@ B /B | £(3) | dy < ell fllze ( /B w(y)dy) *

which shows that f is a locally integrable function and therefore,
that almost every point z € R™ is a Lebesgue point for f. Then,
assuming that z is a Lebesgue point for f, there exists p, > 0 such
that

(Qur)! / | f(y) - flz) | dy < 1
le—yl<r

holds for every 0 < r < p,. Thus,

® @[ @S )

for 0 < r < p,. Taking into account (4) with B = {y:|z—y |< 7},
r > p, and (5) it follows that M f(z) < oo. Now, we have

| £u(z) - f(=) / o(y)dy |
< {f'y'Sp + f|y|>,,} | f(z —y) ~ f(z) | Ye(y)dy.

By Lemma 2, we obtain

| f(2) - 1() / o(y)dy |

< sup (Qur™)7! | f(z—y) - f(z) | dz-
0<r<p lsl<

sty MI@ [ vt @1 [ v

yl>p

=hLh+ 1L+ 1.

lyl<e
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Choesing p small enough, J; can be made less than any given
n > 0 no matter the value of €. Once p is fixed, both I and I3 go
to zero for £ going to zero.
Therefore, (ii) is proved.
As for part (iv), we observe that the case p > 1 follows inmediately
from (i) and (iii) by applying the Lebesgue dominated convergence
theorem. If p = 1, we have

J11@) - 1@ [ etwyay | wizds

< [t] 116 -9 - 1@ vetvdntuta)is
< [t [15@= 9= 1@ | wt@)tz}vuto)iy
= / h(y)¥(y)dy,

where

hy) = [ 15 =)~ £2) | wl@)i.

By Lemma 3, the function h(y) satisfies Mh(0) < oo and y = 0
is a Lebesgue point for h. The proof of part (iii) of this lemma
shows that

tim, [ Wu)¥lu)dy = h(0) =0,

which ends the proof of part (iv)-

Let m be a positive integer and k = (ky,...,k,) € Z™. Let
yP* stand for the point 2™k € R™ and Q7 = {y € R : 27 ™k; <
Ui < 27™(ks+1),1< i< n}. Weobserve that yJ* € QF and that
the length of the sides of Q* are equal to 2~™. In addition, for
any given m, the family {Q}* : k € 2"} is a partition of R". Let
us assume that g is a bounded function with bounded support,
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w € Ay and f € LL. Then, for any given positive integer m, we
define

©) (D)= 2 fa-uF) [ otwdy

keZn

The set I of indices k with the property that @7 has a non-
‘empty intersection with the support of g is a finite set. If the
support of g is contained in the unit ball, the points {y}xer
satisfy | yg* |< 1+ 27™/n. In the sequel we shall assume that m
is large enough so that | y* |< 2.

Lemma 4. Let w € A, f € L} and let g be bounded function
with bounded support. Then, for every R > 0,

lim / | Cl(f)(2) = (f * 9)() | da = 0.
lz|€R

m-+00
Proof. Without loss of generality, we may assume that the support
of g is contaired in the unit ball. If we take z, | z |< R then since
|z -yl |<R+2and|z—y|< R+ 1for|y|L 1, it follows that
Cu(f)(2) = (f % 9)(2) = Ca(fXpse 2) = ((FXR42) * 9)(2),
where x.,,(y) stands for the characteristic function of | y |< R+2.

Therefore, it is enough to prove the lemma for functions which are
Lebesgue integrable. Then, assuming that f € L}(R"), we have

[ 1n(p)@)- (71 9)(a) | do
skg;‘”/%/lf(r-y;’:‘)—f(r—y)ldxly(y)ldy

which tends to zero as m tends to infinity.
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Lemma 5. Let w € A; and let g be a bounded function with
bounded support. If f and f = K f belong to L}, then

(f*9)~(z) = (f+g)(z)

holds for almost every z in R™.

Proof. Without loss of generality we may assume that the support
of g is contained in the unit ball. From Theorem B, we know that
the operator k is defined on L} and since f * g belongs to L1,
then it follows that (f * ¢)~(z) is defined almost everywhere. The
assumption that f € L! implies the almost everywhere existence -

of (f*g)(z). Let T > 0 and ¢ > 0 Choose R such that R> T +6
and

(M [ s ety < e
lv|>R-2

By Lemma 4 applied to f and f there exists m such that

® [ 1Ca)®)- (0)) [y < Fand
lyl<R

® [ 1Ca@ - (o) <
lylI<R

Then, denoting Br = {z :| 2 |[< T} we have

(10) [{z:{(f+9)"(@)-(f*9)=) |>e}NBr|
<Hz ol (£ 297 (2) - (xa(f #9)™(@) > S}N Br |
+ 1z | (xa(f *9) () = (aCinl£) (@) > S} Br |
+1{z | (txCm(£))(2) = Cm(FN=) > 3N Br |

+{z 4 Cn(De) - (Fr)(@) > T}
=a+f+v+4.
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Let us estimate a. By the A; condition on w and the (1,1)-weak
type of the operator K, we have

a < o| Br | Jw(Br))w({z | (f * 9)"(2) = (xa(f * 9))~(2) |> 261})

(11) <l Br| Jw(Br))w({z | [(1 - x)(f x9)]7(2) |> Z})
< e Br | Jw(Br)IQ - xo)(f * 9)lles -

For this norm, we have

10 = xR)(f * )l
< /MZR{ / | f) I 9(z = v) | dy}uw(z)dz.

Since the support of ¢ is contained in the unit ball, the relevant
values of z and y in the integral satisfy |z |> Rand |z -y |< 1.
Therefore, R— | y |<| ¢ | = | y |< 1, which implies R -1 <| y |.
Then, by condition A; and (7), we obtain

0= xR)(S * o)y
<[ MO 1ee =) L wteieydy
< ulgles |

lv|I2R

. | f(v) 1 {5} w(z)dz}dy

lz-y|<1

< Ouclalls [ 1) L utv)dy

¥2R
< cligll o2
which together with (11) gives

(12) a < e(} Br | [w(Br))liglloor-
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Estimation of 3. By (8) and the (1,1)-weak type of the operator
k, we get

(13) B <H{z | (xaCm(N))™(2) = (xa(f *9))7(2) |> €/4} |

< dee™ / | Cl£)(2) = (f * 9)(z) | de
lz|<R
< 4ce.

Estimation of ¥. We have

(XaCom(F)™(2) = Cl(F)(z)
= v | k(z — - y™)d z)dz
S / (@ — V)xa (W) - 1)y /Q o)
-Ero / Kz — v — 1) f()dy /Q _o(esdz

=S / Kz — ¥ — ) xa (v + ¥) — 1f(¥)dy /Q _ 9(2)az

Thus

(19) | (aComl) (@) - Cm(F)(2) I
Xk:/lk(z—y—yz")—k(r—y) Il xa(y+ v = 111 £(3) | dy
Ji NECIES
+1 [ ke - 9)f) S lxelo+97) - 1y /Q _o(=)dz|

= I(z) + J(z).
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If| y |< R-2,since | y7* |< 2 for m large enough, then | y+y;* |<
R and thus [xp(y +y7) -1 =0. If z € By, T < R -6 and
| v|> R — 2, we have

lz—y 2|y~ |z {2 (R-2)-(R-6)=422]y|.

Therefore, by condition (ii) on the kernel k(z) we get

Kz —y—-yP) -k -y)|<clz—y| 004 /12—yl
Then, taking into account that | z — y |> 4, we can write
(15) g, I(z)w(z)dz <
fk;{flylza_llflz-y|z4 c|z—y |7 02/ | z—y |Jw(z)dz] | f(y) | dy-

fQ;ﬂ 'g(z) | d‘z}

To estimate the integral with respect to dz, we apply part (iii) of
Lemma 2, obtaining

[ le-ymeqslz -y (e
lz-y|24

< Mu(y) /’ MR R IRt

Voo dt
< cw(y) G(t)-t— ,since w € A;.
0
Returning to (15), the estimate obtained together with (7) gives
[ Hews < el [ 15@)| wlv)dy
Br lyl>R-2
< clgll -
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Then, since w € A; and by Tchebichef’s inequality it follows that

(16) [{z:1(z)> %} N Br|

<l Br| fu(Br)w({z: I(z) > £} N B)

<<l Br | fo(Br)C [ I)wds

< el Br| /w(Br))e.
By the (1,1)-weak type of the operator K and (7), we obtain

(17) | {z:J(z) > %}nBTl

< (| Br| fu(Br)yo({z : J(z) > £})
<eel(| Brl fwBO) [ 11| wludslgl
ly|>R-2

< <] Br | /w(Br))e.
Then, from (14), (16) and (17), it follows that

(18) 75|{z:I(:c)>—;-}HBT|+|{::::J(:1:)>%}nBT|
< (| Br | /w(Br))e.

Let us estimate §. By Tchebichef’s inequality and (9), we have

(19)  s=|{z:l Cu(P(2) - (F9)() I> S} N Br |
SQ [ 1 nlD@) = (Fra)) | do
< 4e. )
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The estimates (12), (13), (18) and (19) for «, 8, v and § respec-
tively show that (10) is smaller than a constant cy times . This
ends the proof of the lemma.

Lemma 6. Let w € 4; and f € L. If g is a function with a
decreasing radial majorant 3 such that ¢ € L'NL, 1 < py <
then

(f*9)7(z) = (f+9)=)

holds almost everywhere.

Proof. If w € A,, it follows from the reverse Holder inequality
that there exists é > 1 such that for every p, 1 < p < §, w? € A;.
We choose p satisfying 1 < p < min(py,6). By Lemma 2, part (i),
and the assumption that w € A;, we have

(20) / | 9(z = ) P w(z)Pdz < MwP(y) / $(y)Pdy
< cu(y)IlE,.

Then, by Minkowski’s integral inequality and (20), we obtain

@) W vollz, < [156) 1 [ 19tz - 9) P wlz)do)ray

< elbllr [ 1 56) | w(u)ey
= || flley 1l es-
On the other hand, since w? € A; C A, and recalling that the

operator K is of strong type (p, p) for weights belonging to 4,, we
have

/ | 3(z ~ y) |? w(z)Pdz < C/ | 9(z — y) |? w(z)Pdz.
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Then, applying Minkowski’s integral inequality and (20), we ob-
tain

17 +dller, < [1501([ 13- 9) P wlzydo)ray
<cllflley llllee-

Applying Fubini’s theorem, it is easy to show that for every € > 0

(fxg)xke = fx(gxke)

Since, as we have shown in (21), f+g € L?,, then by Theorem B,
part (iv), we have that f % g) x k. converges to (f * ¢)~ in L? as
€ goes to zero. The proof of the lemma will be completed once we
show that

(22) tim |1 + (g % k) = £ *4llez, = 0.

We observe that (20) says that g(z — y) belongs to L%, for almost
every y. Therefore, in virtue of Theorem B, part (iv), if §. = K.g,
we have that

(23) / | Ge(z - 9) - 3z — v) | wP(2)dz

tends to zero as ¢ — 0 for almost every y € R™. Moreover, since
K*g(z) = sup | ge(z) |, then, by Theorem A, part (i), we have
>0

[l -9 - = -9 P w(eyas

<2 [(Kg(e - Puiayes

<e / | o(z - v) |P w(z)Pdz
< cw(y)P#IE,.
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Then, by Minkowski’s integral inequality, we get

(24)  [If+ (94 k) = Fodllus,
< [ 15011 dule =) - itx ) I w(@)io)} s,

and, by the considerations just made in (23) and the Lebesgue
dominated convergence theorem, we conclude that the right hand
side of (24) tends to zero with €. This ends the proof of the lemma.

Lemma 7. Let k(z) be a singular integral kernel and w € A;.
Then,

L 1K@ =K )| w(e)ds < culy)
lz122lvl
holds for almost every y € R™.

Proof. By condition (ii) on the kernel and Lemma 2, part (iii), we
have

[ 1ke= ) - ko) | wlate
jz| =2yl
sef almedyl/ 1z ()
lz1221yl

1
< ¢ sup / w(z)dz )-
> 2|yl (Q"r" 2lyi<|zl<r ®) )

‘ (/,w lz1™ 0 y|/|= ).

Taking polar coordinates, we get

vl

/ Irl“"O(Iyl/Irl)dz=wu-1/wr“9(lyl/r)dr
l=12iwl
1
= Wa_1 /0 O(t)dt/t < oo.
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Now, since {z:2|y|<| z|< r} C B(y,3r/2), we have

1 - / w(z)dz < ¢ | B(y,3r/2) |} / w(z)dz
Qur lv|<lx] -B(y,3r/2)

< cw(y),

for a.imost every y, ending _the proof of the lemma.
Theorem 1. Let K f = f be a singular integral operator with a
kernel k(z) and let w € A;. If f and f belong to L}, then

1) for every € > 0, k. * f belongs to L}, and
2) |lke* f— flly — 0ase — 0.

Proof. Let ¢ > 0,0 € C3°,supp ¢ C {z :| 2 |< 1} and [ ¢(z)dz =
1. Let p.(z) = e "p(z/e) and set §.(z) = @(z) — K (z). If g is
a continuous function with bounded support we shall show that
llg * é|lL: tends to zero as ¢ tends to zero. In fact, we have
g*Pe = (g*@e)™ = § * ¢, (see [2] , Lemma 3). Therefore,
(g*6:)(z) = (g*pe)(z)— (ke *g)(z), a.e. Adding and substracting
g, and taking into account Lemma 1 and Theorem B, part (iv) we
have '

(25) ﬁII(l) llg * 6]l L2
£ w
< lim ||G *¢e — §llz + lim ||§g — k- * gl|L2 = 0.
e—0 L4 £—0 w

Now, arguing as in the proof of Lemma 5 of [2], we shall prove
that ¢ 6, also tends to zero in L}, when ¢ goes to zero. In fact, if
the support of g is contained in the ball | z |< N, then support of
g * . is contained in | 2 |< 2N provided 0 < ¢ < N. By Lemma
3of [2],if |z ]> 4N and 0 < ¢ < N, we have :

(Pe * 9)(z) = (e * )~ (2)

- / Kz — y)(e * 9)(¥)dy.
lvi<2N.
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Moreover, since

(ke x g)(z) = / k(z — y)g(y)dy,

lyl<2N
it follows that

(9+6.)(z) = / Kz - 3)l(ge * 9)(v) — 9(x)ld,

ly|<2N

for|z|>4N and 0<e< N.
Observing that

[ lwes ) - swldy =0,
lvi<2N

We write,

(9+8)@) = [

lyl<

for | z |> 4N and 0 < € < N. Then, multiplying by w(z) and
integrating on | z |> 4N, we get

[k(z — y) = K=)][(ve * 9)(v) — 9(y)]dy,
2N

[ 18 | wle)de <
olzaN

[ 1Ma=)- k@) w(aa) | (perg)) -o(o) | .
lyl<2N Jiz|22y

By Lemma 7, the right hand side of the inequality above is bound-
ed by a constant times || * g — gl|L1y which in turn tends to zero
when ¢ — 0, by Lemma 1. If | z |[< 4N, we have

[ lg+8)@) | w(e)ds
|zl<4N

3
<( [ w(@ds) llgbelez,
|z| 4N
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Which, by (25), tends to zero with ¢. Next, we shall find a de-
creasing, radial and integrable function A(z) such that | §.(z) |<
A (z) = e ™A(z/e). In fact, if | z |< 2¢, we have

65("’) = ¢c(z) - ke(z)

= lim [ Ey)pe(z — y) — we(z)]dy
n<lyl<4e

+ @e(z) lim k(y)dy — k().
n—0 n<jyl<4e

Hence, by conditions (i), (iii) and (iv) on k(z), we obtain

(26) | 8e(z) | ™, for |z |< 2e.
Let | z |> 2¢. Then,

e = [ e - 9) - K@leelw)dy
lyl<e

Thus, by condition (ii) on k(z), we have

(27)  1é(z) 1< C/ [z 17" Oy 1/ 2 ee(y)d(y)-

{yl<e

Defining A(z) = ¢ for | z |< 2 and

A(z)=c / Lz ™ 0(y|/]z Del)dy) for |z]>2.
lyig1

We have that by (26) and (27), | 6.(2) |< Ac(z) = e A(z/e).
As for the integrability of A(z).

A(z)dz = /

Iyl

w(y)( lz ™" 0y |/ ]|z |)dz)dy
<1 =122

1/2
=n_1/9°(y)dy A o(t)dt/t < oo,

lyl22
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shows that A(z) is integrable.
By Lemma 5 and 6, we know that (f *@pc)(z) = (f* e )(z) almost

everywhere. Hence, (f * kc)(z) = (f * @e)(z) — (f * 8. )(z), a.e.
Therefore,

I klley < NF*@elly + 1S * &l -
Since | 6.(z) |< A(z), by Lemma 1, part (ii), we obtain

I *kellzy < Ufllzy + 1A ley -

For n > 0, let ¢ be a continuous function with bounded support
such that ||f — gll2 < n. Then,

8~ Flley < IF #@e = flley +11(S = 9) * 8clley, + llg * ellca,-

Since [|(f — ¢) *&ellLy < ||| f -9 | *Aclizy, by Lemma 1, part
(ii), we get ||[(f — g) * d|lzy < en. On the other hand, since we
have already shown that ||g * é.|| 1 thends to zero and by Lemma

1 applied to ||f * e — f"LL we get
limsup||f x k, — flle < en.
e—0 v

Then arbitrariness of » > 0 proves that the limit exists and that
it is equal to zero.

_ Lemmas 5 and 6 show that for a function f such that f and
f belong to L1, w € A,

(f+9)() = (f *§)(2)

holds almost everywhere provided that ¢ is a bounded function
with bounded support. This result can be generalized as follows.

Theorem 2. Let w € A; and Jet f be a function such that f and f
belong to L1, Let us assume that g is a function with a decreasing
and radial majorant v such that ¢y € L' NLP°, 1 < pg < 0o. Then
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(f+g)z) = (f+)z)

holds almost everywhere on z.

Proof. By Fubini’s theorem, (f* K.)*xg = f x (k. * g).
Since w € Ay, we have

I(f*ke)xg = Frglly <ellf * ke~ fllza Il

By Theorem 1, fx k. — f converges to zero in Ll as ¢ — 0.
Therefore, (f * k.) * g converges to fxgin Ll. On the other
hand, observing that the hypothesis of the theorem imply those
of Lemma 6, by (22) we have that f * (k. * g) converges in L%

wP

1<p<ptof*§when ¢ — 0. This completes the proof of the
theorem.

3. Application HL.
Let F(z,t) = (u(z,t),v1(z,t),...,vn(z,t)), ¢ € R™, t > 0 be
a vector function satisfying the Cauchy-Riemann equations in the

sense of Stein and Weiss [8]. The vector F(z,t) is said to belong
to HL if

Male sup/ | F(z,1) | w(z)de < oo.
t>0 JRn

The Poisson integral of a function f is defined as

Pf(z,t) = / f(= - 9)P(y, )dy,

where P(y, t) = cnt(t2+ I Yy ’2)"("“'1)/2'
The j-conjugate Poisson integral, 1 < j < n, is given by

QS = [ 1z - Q0. )dy,
where Q;(y,t) = cay;(£2+ | y |2)~(*+1/2,
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Let R; denote the j-Riesz transform, i.e.

Rf(@) = po. [ eat |y 17 Sz = )
It is well known that Qj(z,t) = R;(P(.,1))(z).

We shall apply Theorer'n 2 to give a proof of a result due to
R. L. Wheeden in [9].

Theorem 3. (see [9], Theorem 1, part (ii)). Let w € A; and
f€Ll. Ifeach Rjf € L} |1 < j < n, then, the vector

F=(Pf,Q:1f,...,@nf)

belongs to Htlu Moreover, for 1 < j < n,

(28) Qif = P(R;f), and

n
el Flllry < ey + D IR fliey < e2lll Flllmz
j=1

where the constants ¢; and ¢; do not dependent on f.
Proof. Since Rj(P) = Q; and observing that P(z,t) is a radial

decreasing function in L' N L* , from Theorem 2 we have that if
fand R;f,1<j<n,belong to L1, then

(29) / F)Qj(z - v, t)dy = / R; f(5)P(z - v, t)dy

holds for almost every point z € R™ for each give t > 0. It is easy
to show that both sides of (29) are continuous function of z and
t > 0. Therefore (29) holds for every z € R™ and t > 0. This
proves (28). Now, since
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F = (Pf7Q1fa-”7an) = (Pf’P(le),ap(Rnf))a

we have

[ 170 | w(e)ds
< [1Pra) [ w@ds + Y [ 1PR1)@0] wle)de.
j=1

By Lemma 1, the right hand side of this inequality is bounded by

e [ 1) 1+ 3 [ 18s500) i

Conversely, since by Lemma 1, ||fllpy = lzm”Pf(:c t)llzy and
I1R; fllLy = lzm”P(R Nz, t)”L1 , we obtain' ™"

ey + Z”ijuz,; < V|||l
Jj=1
which ends the proof of the theorem.
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