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l. Introd uction 

Let us denote by Rn the n-dimensional euclidean space. By 
x ·y= X1Y1 + X2Y2 + · · · + XnYn we denote the scalar product of 
X= (xb"',xn) and Y= (Yb'"Yn)· 

The norm of x E Rn is given by 1 x 1= (x · x)112 and B(x,r) 
designates the hall {y :1 y- x 1< r}, where x E Rn and r >O. 

All the functions considered here are Lebesgue measurable 
and 1 E 1 stands for the Lebesgue measure of a measurable set 
E. Let f be a locally integrable function. The Hardy-Little wood 
maximal function of f is de:fined as 

Mf(x) = sup 1 B(x,r) l-1 
{ 1 f(y) 1 dy. 

r>O JB(x,r) 

Let w( x) be a non-negative and locally ·integrable function. The 
weight w(x) is said to belong to the Ap class of Muckenhoupt, 
1 < p < oo, if there exists a constant e such that the inequality 

(1 B l-1 L wdx)(l B l-1 L w-1f(p- 1)dv)P-1 5 e 

holds for every hall B C Rn. We say that w belongs to A1 if 
there exists a constant e such that Mw(x) 5 ew(x) holds for 
almost every point x in Rn. Results concerniug Ap weights can be 
fouuded in B. Muckenhoupt [6], R. Coiman aud C. Fefferman [3] 
and R. Hunt, B. Muckenhoupt and R. Wheeden [4}. We define the 
measure w(E) = JEw(x)dx, where E is any Lebesgue measurable 
subset of Rn. S1n denotes the volume of the unit hall of Rn and 
Wn-I the surface area of the unit sphere. The letter e designates 
a constant not necessarily the same at different ocurrences. 

The type of singular integral kernels k( x) that shall be con­
sidered in this paper will satisfy the following conditions: 

(i) 1 k(x) 15 e 1 x 1-n, if x f O; 
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(ii) there exists an increasing function O(t) such that 8(2t) < 
cfJ( t), 

1 k( X - Y) - k( X) 1 ~ cfJ( 1 Y 1 1 1 X 1) 1 1 X 1 n 

if 1 x 1~ 21 y 1, and J: O(t)d(t)lt < oo; 

(iii) for every O< a< b, 1 fa<x<b k(x )dx 1~ e; 

(iv) the limit lim J, < <I k( x )dx exists. 
n--+0 n x 

A kernel k( x) satisfying these properties allows us to define 
a temperate distribution, which is called the principal value of k, 
by means of 

< p.v.k,<p >= lim 1 k(x)<p(x)dx = 
e--+0 x>c 

f k(x)[<p(x)- <p(O)]dx+ 
Jlxl~l 

+<p(O).liml k(x)dx+ f k(x)<p(x)dx 
c--+O e<lxl<l Jlxl?:.l 

for every <pE S. In order to calculate the Fourier transform ofthe 
distribution p.v.k, we observe that the conditions assumed on the 
kernel imply the hypothesis-of Theorem hi {1]. 
From the proof of that theorem it follows that the Fourier trans­
forms of the truncated kernels, k e( x) = k( x) if 1 x 1 ~ E and 
k e( x) = O if 1 x 1 < E, are uniformly bounded, i.e. for every E > O. 

(1) 

Moreover, we ha ve 
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ke(x) = J [e-21rix·y]k(y)dy + k 1(x) 
e<IYI<l 

=1 [e-Z11"ix·y-l]k(y)dy+1 k(y)dy+k1(x). 
e<IYI<l e<IYI<I 

LeÚing Ego to zero and taking into account (i) and (iv) we obtain 

lim ke(x) = r [f-'lrrir·y- l]k(y)dy 
E-+0 }¡yj<I 

+liml k(y)dy+k¡(x). 
e<IYI<l 

~ 

This pro ves ºle existence of the limit. Let us denote by k( x) the 
function limk,( x ). We shall show that 

E-+0 · 

(2) < (p:v.k)",<.p >=< p.v.k,íp >= Jk(x)..p(x)dx. 

Indeed, from the relation < k,, <.p >=< l~"' :P > and (1), by the 
Lebesgue dominated convergence theorem, it follows (2) for every 
<.pE S. In addition, by (1), we have 

(3) 1 k(x) 1~ M. 

Let k(x) be a kernel satisfying conditions (i) to (iv). For 
é > O, we define the truncated singular integral operator Ke as 

Kef(x) = J ke(X- y)J(y)dy, 

where f belongs to L~, 1 ~ p < oo, and w E Ap. The maximal 
singular integral operator K"' associated to k( x) is defined as 

/("' f(x) = sup 1 l(ef(x) 1· 
e>O 
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Next, we gather in theorems A and B sorne known results 
that will be needed in the seque!. 

Theorem A. Let K* be the maximal singular integral operator 
associated toa kernel k(x) which satisfies conditions (i), (ii), (iii) 
and (iv). 

(i) if fE L~, 1 < p < oo, and w E Ap, then IIK* !IIL¡:, ~ cii/IILl:., 
where the constant e does not depend on f. 

( ii) If f E L ~ and w E A1 , then there exists a constant e su eh that 
w( { x : K* f( x) > ..\}) ~ c..\ - 1 11/IIL~ holds for every ,\ > O. 

Theorem A is a consequence of Theorem 5 of [5] since hypothesis 
(a) of that theorem holds by ( 3) and the other hypothesis (b) and 
(e) of the same theorem coincide with our assumptions (i) and (ii) 
on the kernel. 

Theorem B. Let k( x) be a kernel satisfying the same assumptions 
as in Theorem A. 

(i) If fE L~, 1 ~ p < oo, w E Ap, then J(f(x) = limK,J(x) 
. al h e-o extsts most everyw ere. 

(ii) If fE L~, 1 < p < oo and w E Ap, then IIK /IIL~ ~ cllfiiL~, 
where e does not depend on f. 

(iii) If f E L~ and w E A¡, then, there exists a constant e such 
that w({x :1 Kf(x) 1> ..\}) ~ c..\-111/IIL!. holds for every 
,\>o. 

(iv) If fE L~, 1 < p < oo and w E Ap, then 
limiiKef -- K fiiLP =O. e-o .. 

lt is easy to verify that (i) holds for f E C{f. Arguing as in [7], 
p. 45, é!-nd taking into account Theorern A we obtain (i). Parts 
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(ii) and (iii) follow from part (i) and Theorem A. As for (iv), 
it follows from (i) and part (i) of Theorem A by applying the 
Lebesgue dominated convergence theorem. 

2. Convergence in L!v. 

Let <p( x) be a function defined on Rn. The least clecreasing 
radial majoran t function '1/J( x) of <p( x) is gi ven by 

'lj;(x) = sup 1 <p(y) 1. 
IYI?:lxl 

With an abuse of notation, we write ,P(r) = ,P(x) if 1 :e 1= r. For 
E> O, we set <flc(x) = E-n<p(xjE). 

Lemma 1. Let <p( x) be a function whose least decreasing radial 
majorant '1/J( x) is integrable. Assume that /( x) belongs to L~, 1 ~ 
p < oo, w E Ap. If for E> O we define fc(x) = J f(x- y)<pc(y)dy 
then, 

(i) for every E> O, 1 fc(x) 1~ M f(x) J 1/J(y)dy, 

{ii) for every t >O, llflllLc, ~e J 1/J(y)dyllfllL¡:,, 

(iii) for every Lebesgue point x off and therefore, for almost every 
point x E Rn, limfc(x) = f(x) J 1/J(y)dy and 

c--+0 

(iv) /im J 1 !c(x)- f(x) J <p(y)dy IP w(x)dx =O 
E--+0 

To prove Lemma 1 we shall need sorne results that we state in 
Lemmas 2 and 3. 

Lemma 2. Let h(x) ~ O be a locally integrable funétion and let 
'1/J( x) 2: O be a decreasing radial and integrable function. Then, 
the following properties hold 

(i) I h(y),P(y)dy::; Mh(O) J 1/J(y)dy, 
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(ii) ]¡yj:5;p h(y)?jJ(y)dy 

~ o~~~P (Dnrn tt JIYI~r h(y)dy JIYI~P 7/J(y )dy, 

(iii) ]¡yj>p h(y)?jJ(y)dy 

~ 2n(2n -1)-l~~~(Dnrn)-1 fv<IYI$;rh(y)dy JIYI>f 7/J(y)dy. 

Proof. Part (i), which is the core of the lemma is well known (see 
[7), Theorem 2, p.62). Part (ii) follows from (i) considering h(y) 
and tf;(y) as equal to zero for 1 y 1> p. To get part (iii) we observe 
that since 7/J is a radial and decreasing function, we have 

If we apply part (i) to hp(y) = h(y) if 1 y 1> p, hp(y) =O if 1 y 1~ p 
and t/Jp(y) = .,P(y) if 1 y 1> p and t/Jp(y) = t/J(p) if 1 y 1~ p, then 

[ h(y)t/J(y)dy = J hp(y)t/Jp(y)dy 
}IYI>P 

~ Mhp(O)(flnpnt/J(p) + { '1/J(y)dy] 
}¡yj>p 

~ 2n(2n- 1)-l Mhp(O) { t/J(y)dy, 
}¡yj>~ 

which is (iii ). 

Lemma 3. Let w E A1 and f E L~. If, for p > O, we set 
fl¡(p) = (finpn)-1 JIYISP J 1 f(x- y)- f{x) 1 w(x)dxdy, then, 

(i) fl¡(p) ~ cllfi!L!.• 

{ii) limfl ¡(p) = O. 
p-0 

Proof. We have, 
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ó.¡(p) ~ (Dnpn)-1 
{ J 1 J(x) 1 w(x + y)dxdy 
JIYI~P 

+ J 1 f(x) 1 w(x)dx 

= J 1 J(x) 1 [(ünpn)-1 
[ w(x + y)dy]dx + IIJIIL!. 
J,y,~p 

~e J 1 f(x) 1 w(x)dx + llfiiL~ 
= ellfiiL~ 

This proves (i). In arder to prove part (ii), let g be a continuous 
function with compact support such that 11/- Yi!Ll < E. Then, 
there exists Po such that "' 

J 1 g(x- y)- g(x) 1 w(x)dx <E, 

for every 1 y 1< p0 • Therefore, by part (i), we have 

ó.¡(p) ~ (ó.(f-g)(P) + ~g(p) 
~ ellf- YIIL~ +E 
<(e+ l)é, if p <Po· 

Proof of Lemma 1. Part (i) of Lemma 1 is an easy consequence of 
part (i) of Lenima 2. Part (i) and the assumption w E Ap imply 
(ii) for p > l. If p = 1, by part (i) of Lemma 1, we have 
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J 1 fe(x) l w(x)dx ~ j {! 1 f(y) I'I/Je(x- y)dy}w(x)dx 

= j l f(y) 1 {¡ w(x + y)'I/Je(x)dx}dy 

~ j 1 f(y) 1 Mw(y)dy 

~e j 1 /(y) 1 w(y)dy. 



since w E A1 . 

Let us prove part (iii). If Bis a hall~ we have 

( 4) 1 B l-1 ll f(y) 1 dy $ c!lfiiLt (l w(y)dy) -; 

which shows that f is a locally integrable function and therefore, 
that almost every point x E Rn is a Lebesgue point for f. Then, 
assuming that x is a Lebesgue point for ¡; there exists p1 > O such 
that' 

(nnrn)- 1 r 1 f(y)- J(x) 1 dy $ 1 
}¡x-yj~r 

holds for every O < r s; p
1

• Thus, 

(5) (flnrn)- 1 r 1 f(y) 1 dy $ 1+ 1 f(x) 1, 
}¡x-yj~r 

forO< r s; p1 • Taking into account ( 4) with B = {y :1 x-y ls; r }, 
r > p1 and (5) it follows that Mf(x) < oo. Now, we have 

1 fe:(x)- f(x) J <p(y)dy 1 

s; {J¡yj~p + ~YI>P} 1 f(x- y)- f(x) !"1P.:(y)dy. 

By Lemma 2, we obtain 

1 f.:(x) -J(x) j <p(y)dy 1 

s; sup (flnrn)-1 r 1 f(x- y)- J(x) 1 dx· 
O<r~p }¡yj~p 

· f 1P.:(y)dy+MJ(x) f 1P.:(y)dy+IJ(x)l f lP.:(y)dy 
}¡y¡~p }¡yj> f }¡yj>p 

= /¡ + /2 + 13. 
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Choosing p small enough, /¡ can be made less than any given 
n >O no matter the value of E. Once pis fixed, both /2 and /3 go 
to zero for E going to zero. 
Therefore, (ii) is proved. 
As for part (iv ), we observe that the case p > 1 follows inmediately 
from (i) and (iii) by applying the Lebesgue dominated convergence 
theorem. If p = 1, we have 

j 1 fc(x)- f(x) j <p(y)dy 1 w(x)dx 

where 

~ j {! 1 f(x- y)- f(x) 1 tPc(y)dy}w(x)dx 

~ J {¡ 1 f(x- y)- f(x) 1 w(x)dx}tflc(y)dy 

= j h(y)tfle(y)dy, 

h(y) = J 1 f(x- y)- f(x) 1 w(x)dx. 

By Lemma 3, the function h(y) satisfies Mh(O) < oo and y = O 
is a Lebesgue point for h. The proof of part (iii) of this lemma 
shows that 

lim jh(y)t/Je(y)dy = h{O) =O, 
c-+0 

which ends the proof of part (iv)~ 

Let m be a positive integer and k= (k¡, ... ,kn) E zn. Let 
Yi: stand for the point 2-"'k E R" and Q¡: = {y E R:': 2-mk¡ ~ 
Yi < 2-"'(k¡ + 1), 1 ~ i ~ n}. We observe that YÍ: E Q'k and that 
the lengíh of the sirles of Q';' are equal to 2-m. In addition, for 
any given m, the family {Qk': k E Z"} is a partition of R". Let 
us assume that g is a bounded function with bounded support, 
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w E A1 and f E L~. Then, for any given positive integer m, we 
define 

(6) Cm(f)(x) = Í:: f(x- YÍ:) { g(y)dy 
kEZ" }q': 

The set I of índices k with the property that Qí: has a non­
empty intersection with the support of g is a finite set. If the 
support of g is contained in the unit hall, the points {ykhEI 
satisfy 1 YÍ: 1 :s; 1 + 2-m ,fñ. In the seque! we shall assume that m 
is large enough so that 1 Yk I:S: 2. 

Lemma 4. Let w E A1 , f E L~ and let g be bounded function 
with bounded support. Then, for every R > O, 

lim { 1 Cm(/)(x)- (f * g)(x) 1 dx =O. 
m-oo Jlzl$.R 

Proof. Without loss of generality, we may assume that the support 
of gis conta.ined in the unit hall. If we take x, 1 x I:S: R then since 
1 x- Yk l$ R + 2 and 1 x-y l$ R + 1 for 1 y l$ 1, it follows that 

where xR+2 (y) stands for the characteristic function of 1 y 1$ R+ 2. 
Therefore, it is enough to prove the lemma for functions which are 
Lebesgue integrable. Then, assuming that fE L 1(Rn), we have 

j 1 Cm(f)(x)- (! * g)(x) 1 dx 

$ L ¡m J 1 J(x- Yk)- f(x- y) 1 dx 1 g(y) 1 dy 
kEZ" Q¡, 

which tends to zero a.s m tends to infinity. 
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Lemma 5. Let w E A1 and let g be a bounded function with 
hounded support. H f and j = /( f belong to L~, then 

(! * g)'""(x) = (i * g)(x) 
holds for almost every x in Rn. 

Proóf. Without loss of generality we may assume that the support 
of gis contained in the unit ball. From Theorem B, we know that 
the operator k is defined on L~ and since f * g belongs to L~, 
then it follows that (! * g)'""(x) is defined almost everywhere. The 
assumption that j E L!u implies the almost everywhere existence 
of(i*g)(x). Let T >O and é >O Choose R such that R > T+6 
and 

(7) f 1 f(y) 1 w(y)dy < t:2
• 

JlYl>R-2 

By Lemma 4 applied to f and j there exists m such that 

(8) { 1 Cm(/)(y)- (! * g)(y) 1 dy < t:2 and 
}IYI5':R 

(9) { 1 Cm{j)(y)- {i * g)(y) 1 dy < t:2 
• 

}IYI5':R 

Then, denoting BT = {x :1 x 1< T} we have 

(10) 1 {x :1 (! * g)'""(x)- {j * g)(x) 1> t:} n BT 1 
::;1 {x :1 U*u)'""(x)-(xRU*Y))-(x) 1> ¡}nBT 1 

+ 1 {x :1 (xR(! * g))-(x)- (xRC,n(!))'""(x) 1> ¡} n BT 1 
- t: . + 1 {x :1 (xBCm(/))'""(x)- Cm(!)(x) 1> ¡} n BT 1 

- - t: + 1 {x :1 Cm(J)(x)- (! *9)(x) 1> ¡} 1 

= a + .8 + 1 + cS. 
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Let us estímate a. By the A1 condition on w and the (1, 1)-weak 
type of the operator ](, we ha ve 

a::; c(l BT 1 fw(BT))w({x :1 (J*g)'•(x)-(xR(J*g))"'(x) 1> ¡}) 

(11) ::; c(l BT 1 fw(BT))w({x :1 [(1- xR)(f*g)r(x) 1> ¡}) 

::; c'E-
1 (1 BT 1 fw(BT ))11(1 - XR )(! * g)IIL~ · 

For this norm, we have 

11(1- XR)(J * g)IIL~ 

::; [ {¡ 1 f(y) 11 g(x- y) 1 dy}w(x)dx. 
Jlxi?.R 

Since the support of g is contained in the unit ball, the relevant 
values of x and y in the integral satisfy 1 x 1~ R and 1 x- y 1::; l. 
Therefore, R- 1 y ¡::;¡ x 1 - 1 y ¡::; 1, which implies R- 1 ::;1 y 1· 
Then, by condition A1 and (7), we obtain 

11(1- XR)(J * g)IIL!. 

~ r 1 f(y) 1 { { 1 g(x- y) 1 w(x)dx}dy 
Jllii?.R-1 }¡x-yj~l 

::; ílnll9lloo [ 1 f(y) 1 {íl~ 1 1 w(x)dx}dy 
· }¡yj?_R-1 lx-yl9 

~ ílncll91loo 1 1 ](y) 1 w(y)dy 
y>R-1 

~ cllglloo• 2 

which together with (11) gives 

(12) a :S: e(! BT 1 fw(BT ))ll9lloo• · 
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Estimation of {3. By (8) and the {1,1)-weak ~ype of the operator 
k, we get 

(13) f3 ~~ {x :1 (xRCm(/))"'(x)- (xR(f * g))"'(x) 1> é/4} 1 

~ 4cé-l { 1 Cm(/)(x)- (! * g)(x) 1 dx 
Jfxf$R 

~ 4Cé. 

Estimation of 1· We have 

= LPvjk(x-y)xR(y)f(y-yí:)dy 1 g(z)dz 
k }q. 

- LP. V. J k(x- Yk- y)f(y)dy 1m g(z)dz 
k Q~ 

= LPV J k(x- y- Yí:)[xR(y + YÍ:)- 1]f(y)dy 1m g(z)dz. 
k ~ 

Thus 

(14) 1 (xRCm(f)Y'"(x)- Cm{j)(x) 1~ 

L J 1 k(x- y- YÍ:)- k(x- y) 11 xR(y + YÍ:)- 1 11 J(y) 1 dy, 
k 

· 1 1 g(z) 1 dz 
}q. 

+ 1 J k(x- y)f(y) :LrxR(y + Yk')- 1]dy 1m g(z)dz 1 
k Q, 

= I(x) + J(x). 
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If 1 y 1~ R-2, since 1 y¡: 1~ 2 for m large enough, then 1 y+yk 1~ 
R and thus [XR(Y + yk) - 1] = O. If x E BT, T < R - 6 and 
1 Y 1 > R - 2, we ha ve 

1 X- y 1~1 y 1- 1 X 1~ (R- 2)- (R- 6) = 4 ~ 21 Yk 1 . 

Therefore, by condition (ii) on the kernel k( x) we get 

1 k(x- Y- Yk)- k(x- y) 1~ e 1 X- Y 1-n 0(1 Yk 1 / 1 X- Y 1). 

Then, taking into account that 1 x-y 1~ 4, we can write 

(15) J8 T I(x)w(x)dx 5 

~{JIYI~R-tlflz-yl~4 e 1 x-y 1-n 0(2/ 1 x-y l)w(x)dx] 1 /(y) 1 dy· 

· JQ;:' 1 g(z) 1 dz} 

To estimate the integral with respect to dx, we apply part (iii) of 
Lemma 2, obtaining 

[ 1 x-y I-n 0{2/ 1 x-y l)w(x)dx 
}¡z-yl~4 

5 Mw(y) { 1 X 1-n 0(2/ 1 X l)dx 
J1x1~2 
¡t dt 

5 cw(y) Jo 0(t)t ,since w E A1 • 

Returning to (15), the estimate obta.ined together with (7) gives 

[ I(x)w(x)dx 5 cllgiiLt [ 1 /(y) 1 w(y)dy 
j Br jiYI>R-2 

~ cllgiiLt'2. 
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Then, since w E A1 and by Tchebichef's inequality it follows that 

(16) 

E 
$ c(l Br 1 fw(Br))w({x: I(x) >S} n B1') 

::; c(l Br 1 fw(Br))(~ f I(x)wdx 
é JBT 

::; c(l Br 1 fw(Br ))c. 

By the (1, 1 )-weak type of the operator ]( and (7), we obtain 

(17) 

E ::; c(l Br 1 fw(Br))w({x: J(x) > 8}) 

~ cc-1 (1 Br 1 fw(Br ))( f 1 /(y) 1 w(y)dy)II9IILI 
JIYI>R-2 

$ c(l Br 1 fw(Br ))E. 

Then, from (14), (16) and (17), it follows that 

(18) 
é E 

¡ ~~ {x: I(x) > 8} n Br 1 + 1 {x: J(x) >S} n Br 1 
$ c(l Br 1 /w(Br ))E. 

Let us estímate 6. By Tchebichef's inequality and (9), we have 

(19) - - é 
6 =1 {x :1 Cm(/)(x)- (1 * g)(x) 1> ¡} n Br 1 

$ (~) { 1 Cm{j)(x)- {] * g)(x) 1 dx 
E JlxiSR 

$ 4c. 
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The estimates (12), (13), (18) and (19) for a, ¡3, 'Y and é respec­
tively show that (lO) is smaller than a constant CT times é. This 
ends the proof of the lemma. 

Lemma 6. Let w E A1 and f E L~. If g is a function with a 
decreasing radial majorant t/J such that t/J E L 1 n LPo, 1 < p0 ~ oo 
then 

(! * g)-(x) = (! * g)(x) 

holds almost everywhere. 

Proof. If w E At. it follows from the reverse Holder inequality 
that there exists é > 1 süch that for every p, 1 < p ~ ~. wP E A1 • 

We choose p satisfying 1 < p ~ min(Po,~). By Lemma 2, part (i), 
and the assumption that w E A1 , we ha ve 

(20) J 1 g(x- y) IP w(x)Pdx ~ MwP(y) j t/J(y)Pdy 

~ cw(y)PIItfJII~ •. 

Then, by Minkowski's integral inequality and (20), we obtain 

(21) 11/ * 9IIL:_,. ~ J 1 /(y) 1 (/ 1 g(x- y) IP w(x)Pdx)11Pdy 

~ cllt/JIIL' j 1 /(y) 1 w(y)dy 

= cllfiiL!,IItPIIL" · 

Ou the other haud, siuce wP E A 1 C Ap and recalling that the 
operator ]( is of strong type (p, p) for weights belonging to A;, we 
ha ve 

J 1 g(x- y) IP w(x)Pdx ~e J 1 g(x- y) IP w(x)Pdx. 
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Then, applying Minkowski's integral inequality and {20), we ob­
tain 

11/ * 9IIL:_p ~ J 1 f(y) 1 (/ 1 g(x- y) IP w(x)Pdx)11Pdy 

~ cllfiiL~IItftiiLP· 

Applying Fubini's theorem, it is easy to show that for every é > O 

(/•g)•ke = f*(g*ke)· 

Since, as we have shown in (21), f*9 E L!:,P, then by Theorem B, 
part (iv), we have that f * g) * ke converges to (f * g)- in L~ as 
é goes to zero. The proof of the lemma will be completed once we 
show that 

(22) Iimllf*(9*ke)-f*9IILP =0. 
e-0 vP 

We observe that (20) says that g(x- y) belongs to L!:,p for almost 
every y. Therefore, in virtue ofTheorem B, part (iv), if 9e = f{eg, 
we have that 

(23) j 1 9e(x- y)- g(x- y) IP wP(x)dx 

tends to zero as é -+ O for almost every y E Rn. Moreover, sin ce 
K*g(x) = sup 1 fíe(x) 1, then, by Theorem A, part (i), we have 

e>O 
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j 1 fíe(x- y)- g(x- y) IP w(x)Pdx 

~ 2P j(K*g(x- y))Pw(x)Pdx 

~e j 1 g(x- y) IP w(x)"dx 

~ cw(y )PIItJ111tP · 



Then, by Minkowski's integral inequality, we get 

(24) 11! * (g * ke:)- f •:YIIL:,p 

~ 1 1 /(y) 1 (1 Ye:(x- y)- jj(x- y) IP wP(x)dx)¡dy, 

and, by the considerations just made in (23) and the Lebesgue 
dominated convergence theorem, we conclude that the right hand 
side of (24) tends to zero with E. This ends the proof ofthe lemma. 

Lemma 7. Let k( x) be a singular integral kernel and w E A 1 • 

Then, 

f 1 k(x)- k(x- y) 1 w(x)dx ~ cw(y) 
ltxi~2IYI 

holds for almost every y E Rn. 

Proof. By condition (ii) on the kernel and Lemma 2, part (iii), we 
ha ve 

r 1 k(x- y)- k(x) 1 w(x)dx 
Jlxi:?:ZJyl 

~ C r 1 X ~-n f>(l y 1 1 1 X l)w(x)dx 
Jlxi~2IYI 

<e sup (-
1

- r w(x)dx)· 
- r>2jyj flnrn }2jyf<fzf<r 

· ( 1 1 X ¡-n 9(1 Y 1 1 1 X l)dx). 
lxi>IYI 

Taking polar coordinates, we get 

{ 1 X ¡-n 9(1 Y 1 1 1 X l)dx = Wn-1 rX> T-1 9(1 Y 1 lr)dr 
llxl!:lwl }¡¡¡f 

= Wn-1 11 

9(t)dtlt < OO. 
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Now, since {z: 21 y 1<1 z 1< r} C B(y,3r/2), we have 

O 
1 

n f w(z)dz :$e 1 B(y,3r/2) ¡-t f w(z)dz 
nT }IYI<Ixl JB(y,3r/2) 

:$ cw(y), 

for almost every y, ending the proof of the lemma. 
Theorem l. Let /( f = j be a singular integral operator with a 
kernel k(x) and let w E A1 • If f and j beiong to L~, then 

1) for every E >O, kc * f belongs to L~ and 

2) llkc * f- iiiL!, -+O as E- O. 

Proof. Let <.p 2: O, <.pE CQ>, supp <.p C {x :1 x 1:5 1} and J <.p(x)dx = 
l. Let "Pc(x) = E-n<.p(x/E) and set Óe(x) = cpe(x)- Ke(x). If gis 
a continuous function with bounded support we shall show that 
IIY * ócllu tends to zero as E tends to zero. In fact, we have 
g * cpc = w (g *"Pe)- = jj *"Pe (see [2) , Lemma 3). Therefore, 
(g*óc)(x) = (Y*"Pc)(x)-(kc*Y)(x), a.e. Adding and substracting 
jj, and taking into account Lemma 1 and Theorem B, part (iv) we 
have · 

(25) lim 119 * óeiiL2 
e-+0 .. 

:$ lim 119 *"Pe - YIIL2 + lim 119 - ke * 9IIL2 = O. 
e-+0 '" c-+0 '" 

Now, arguing as in the proof of Lemma 5 of (2L we shall prove 
that g * Óe also tends to zero in L~ when E goes to zero. In fact, if 
the support of gis contained in the balll x 1:5 N, then support of 
g * <pe is contained in 1 x 1:$ 2N provided O < E < N. By Lemma 
3 of [2], if 1 x 12: 4N andO< E <N, we have 

(cpc*9)(x) = ("Pe*9)-(x) 

= { k(x-y)(<.pc*9)(y)dy. 
}IYI9N 
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Moreover, sin ce 

(ke * g)(x) = { k(x- y)g(y)dy, 
}IYI9N 

it follows that 

(g*óe)(x)= { k(x-y)[(rpe*9)(y)-g(y)]dy, 
}IYI9N 

for 1 x 1 ~ 4N and O < E < N. 
Observing that 

{ [(rpe * g)(y)- g(y)]dy =O, 
}IYI$:2N 

We write, 

(g * Óe)(x) = { [k(x- y)- k(x)][(rpe * g)(y)- g(y)]dy, 
}IYI$:2N 

for 1 x 1~ 4N andO < E < N. Then, multiplying by w(x) and 
integrating on 1 x 1~ 4N, we get 

f 1 (g * Óe)(x) 1 w(x)dx ~ 
Jlxi?_4N 

f { { 1 k(x-y)-k(x) 1 w(x)dx} 1 (<pe*9)(y)-g(y) 1 dy. 
}IYI9N jlxl?_2y 

By Lemma 7, the right hand side of the inequality above is bound­
ed by a constant times lllf'e * g - 9IIL1 which in turn tends to zero 
when E- O, by Lemma l. If 1 x 1~ 4N, we have · 
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Which, by (25), tends to zero with é. Next, we shall find a de­
creasing, radial and integrable function Ll( x) su eh that 1 hA x) 1 ~ 
Lle(x) = é-nLl(x/é). In fact, if 1 x 1~ 2é, we have 

6e(x) = !j¡e(x)- ke(x) 

= lim 1 k(y)[<pe(X- y)- <;?e(x)]dy 
n-.O n<lul<4e 

+ <;?e(x) lim 1 k(y)dy- ke(x). 
n-+0 n<IYI<4t: 

Hence, by conditions (i), (iii) and (iv) on k(x), we obtain 

(26) l6e(x) 1 ~ Cé-n , for 1 X 1~ 2t. 

Let 1 x 12: 2t. Then, 

t5e(x) = { [k(x- y)- k(x)]<pe(y)dy. 
JIYIS:e 

Thus, by condition (ii) on k(x), we have 

(27) 1 t5e(x) 1 ~ C { 1 X 1-n 0(1 Y 1 / 1 X l)<p"(y)d(y). 
}IYIS.e 

Defining Ll( x) = e for 1 x 1 ~ 2 and 

Ll(x) =e [ 1 x 1-n 0(1 y 1 / 1 x l)<pe(y)d(y) for 1 x 12: 2. 
JluiS:l 

We have that by (26) and {27), l6e(x) 1~ Lle(x) = é-nLl(x/é). 
As for the integrability of Ll(x). 

f Ll(x)dx = 1 <p(y)( 1 1 x 1-n 0(1 Y 1 / 1 x l)dx)dy 
JIYI?.2 Jlul$:.1 Jlzl?_2 

J 
¡tl2 

= n-1 <p(y)dy Jo 0(t)dt/t < oo, 
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shows that ~(x) is integrable. 
By Lemma 5 and 6, we know that (j * <p, )( x) = (J *<Pe)( x) almost 
everyw here. Hence, (f * k e)( x) = (j * <t?e )( x) - (J * ó, )( x ), a. e. 
Therefore, 

11/ * keiiL~ ~ llj * <t?eiiL~ + IIJ * .óeiiL~ · 
Since 1 óe(x) 1~ ~e(x), by Lemma 1, part (ii), we obtain 

For n > O, let g be a continuous function with bounded support 
such that 11/- Yllu < n. Then, 

w 

Since 11(!- g) * óei!L~ ~ 111 f- g 1 *~~HL!., by Lemma 1, part 
(ii), we get 11(!- g) * óeiiL!. ~ en. On the other hand, since we 
have already shown that 119 * óei!Ll thends to zero and by Lemma ... 
1 applied to l!j * <t?e - jiiLl we get .. 

limsupllf * ke - fiiL!, ~ en. 
&-+0 

Then arbitrariness of n > O proves that the limit exists and that 
it is equal to zero. 

Lemmas 5 and 6 show that for a function f such that f and 
j belong to L~, w E A¡, 

(j * g)(x) = (! * g)(x) 

holds almost everywhere provided that g is a bounded function 
with bounded support. This result can be genera.lized as follows. 

Theorem 2. Let w E At and let f be a function such that f and J 
belong to L~. Let us assume that gis a function with a decreasing 
and radial majorant t/J such that t/J E L 1 n LPo, 1 < p0 ~ oo. Then 
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{i * g)(x) = (! * g)(x) 

holds almost everywhere on x. 

Prool. By Fubini's theorem, (!*K~)* g = 1 *(k~* g). 
Since w E A1 , we ha ve 

By Theorem 1, 1 * k~ - j converges to zero in L~ as E ...._. O. 
Therefore, (! * k~) * g converges to j * g in L~. On the other 
hand, observing that the hypothesis of the theorem imply those 
of Lemma 6, by (22) we have that 1 * (ke * g) converges in L~p, 
1 < p s; Po to 1 * g when E _, O. This completes the proof of the 
theorem. 

3. Application H!,. 

Let P(x,t) = (u(x,t),v¡(x,t), ... ,vn(x,t)), x E Rn, t >O be 
a vector function satisfying the Cauchy-Riemann equations in the 
sense of Stein and Weiss [8]. The vector P( x, t) is said to belong 
to H:U if 

IIIFIIIH.!, = sup { 1 P(x, t) 1 w(x )dx < oo. 
t>O jR" 

The Poisson ihtegral of a function 1 is defined as 

P l(x, t) = j l(x- y)P(y, t)dy, 

where P(y,t) = cnt(t2+ 1 y 12)-(n+l)/2. 

The j-conjugate Poisson integral, 1 s; j s; n, is given by 

Qif(x,t) = j l(x- y)Qj{y,t)dy, 

where Qj(y,t) = CnYj(t2+ 1 y 12)-(n+l)/2. 
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Let Rj denote the j-Riesz transform, i.e. 

Rjf(x) = p.v. j CnYj 1 y ¡-n-l f(x- y)dy. 

It is well known that Qj(x, t) = Rj(P(., t))(x ). 

We shall apply Theorem 2 to give a proof of a result due to 
R. L. Wheeden in (9]. 

Theorem 3. (see [9], Theorem 1, part (ii)). Let w E A1 and 
fE L~. If each Rjf EL~, 1 ~ j ~ n, then, the vector 

F= (PJ,Q¡J, ... ,Qnf) 

belongs to H~. Moreover, for 1 ~ j ~ n, 

(28) 

n 

CtiiiFIIIH~ ~ 11/IIL!. + L IIR;fiiL!. ~ c2IIIFIIIH;, 
j=l 

where the constants e¡ and c2 do not dependent on f. 

Proof. Since R;(P) = Q; and observing that P(x,t) is a radial 
decreasing function in L1 n L 00 'from Theorem 2 we have that if 
f and Rjf, 1 ~ j ~ n, belong to L~, then 

(29) J f(y)Qj(x- y,t)dy = J Rif(y)P(x- y,t)dy 

holds for almost every point x E Rn for each give t > O. It is easy 
to show that both sides of (29) are continuous function of x and 
t > O. Therefore (29) holds for every x E Rn and t > O. This 
proves (28). Now, since 
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F = (PJ,Q¡J, ... ,Qn/) = (P/;P(R¡J), . .. ,P(Rnf)), 

we have 

J 1 f(x,t) 1 w(x)dx 

~ j 1 Pf(x,t) 1 w(x)dx + t J 1 P(Rj/)(.r,t) 1 w(x)dx. 
J=l 

By Lemma 1, the right hand side of this inequality is bounded by 

e J 1 f(x) 1 w(x)dx + t J 1 Rj/(x) 1 w(x)dx. 
)=1 

Conversely, since by Lemma 1, IIIIIL!, = ~~IIPJ(x,t)IIL!, and 
IJRiiiiL!. = ~~IIP(Rj/)(x, t)IIL~, we obtain 

n 

II!IIL~ + L IIRifiiL!. ~ v'niiiFIIIH!' 
i=l 

which ends the proof of the theorem. 
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