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ON SOME RECENT 
VARIATIONAL PRINCIPLES 

Djairo G. DE FIGUEIREDO* 

In this paper we survey sorne recent variational princi­
pies, which have proved to be very useful in the appli­
cations to the theory of differential equations, both ordi­
nary and partial. We .11tart with a basic principie due to 
Ekeland [4}, which provides new proofs to the well knówn 
rninirnax theorerns of Arnbrosetti - Rabinowitz [2} and Ra­
binowitz {7}, {8}. For proofs of these results we refer to 
{8}. We also rnention sorne applications to sernilinear 
elliptic equations. 
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l. The Ekeland Variational Principie. 

Let ( X, d) be a complete metric space, and ~ : X- ~U { +oo} 
a lower semicontinuous functional which is bounded from below. 
Then given é > o there exists Xe E xsuch that 

(1) 

(2) 

2. Remark. 

~(xe)5inf~+e 
X 

~(xe) < ~(x) + éd(x,xe), 'Vx f; Xe 

For comparision we recall a minimization, theorem from 
Topology. "Let X be a compact topological space, and ~ : X­
~ U { +oo} a lower semicontinuous functional. Then ~ is bounded 
below and the inf ~ is actually achieved". In the principie stated in 
paragraph 1 abo ve, although the functional is bounded from below, 
it is not true that the infimun is achieved in all cases. The reason 
for this is a lack of compactness. However that principie states the 
possibility of obtaining a minimizing sequence with a very special 
property. Such a property will be better understood if we assume 
more structure on the space X, namely that Xis a Banach space. 
In this case if ~ is assumed to be Gateaux differentiable, condition 
{2) simply states that IID~(xe)llx· 5 é when D~(xe) denotes the 
Gateaux derivative of ~ at Xe. 

3. The Palais-Smale condition. 

In the next paragraphs we will state results on the existence 
of critica} points for functionals which are in general unbounded 
below. We will use the strong (i.e. the norm) topology of the 
Banach space. Since the spaces considered are in general of infinite 
dimension we will not have compactness of bounded sets. So even 
restricting the functional to a hall we cannot use the minimization 
theorem stated in paragraph 2. In the theorems stated below we 
require instead a compactness condition on the functional itself. 
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Let us define it. Let ~ : X-+ R be a C1 functional defi.ned in a 
Banach space X. 

We say that ~ satisfi.es the Palais-Smale condition (for short, 
the (PS) condition) if given any sequen ce (un) in X such that 
1 q,(un) 1~ e and q,'(un)- o, for sorne constante, then we can 
find a subsequence Un; which converges in the norm - topology. 
In other words, we first define a Palais-Smale sequence as being a 
sequence (un) such that q,( un) is bounded and ~'(un) -+ O. Then 
q, satisfies the (PS) condition if every Palais-Smale sequence is 
relatively compact. 

4. A sufficient condition for (PS). 

"Let ~ : X-+ R be a. C1 functional on a. Hilbert space X. 
Suppose tha.t q,' = I + K, where I is the identity operator and 
K is a. compa.ct opera.tor. Then q, sa.tisfies the (PS) condition 
provided all Palais-Smale sequences are bounded". We recall that 
q,' : x- x·, where X* is the dual spa.ce of X; here we identify 
X* with Xvia the Riesz representation theorem. We say that K : 
X-l- Xis compact if it is continuous and takes bounded sets into 
relatively compact ones. Let us prove the statement above. Take 
a Palais-Smale sequence (un)· By hypothesis (un) is bounded. So 
(Kun) contains a convergent subsequence (!(un;), in view ofthe 
compactness of K. On the other hand, since q,'( un) = Un+ K Un -+ 
O we conclude that (Un;) converges. Q.E.D. 

5. An specific ex~mple oí a functional in the conditions 
oí the previous paragraph. 

Let us consider the functional q,: HJ(fl)-+ ~ defined by 

(3) q,(u) = ~ j 1 Vu 12 - j F(x,u) 

where the integrals are ta.ken over the whole of n. Here we 
assume n to be a bounded open connected subset of~.N'. We recall 
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that HJ(n) denotes the Sobolev space of L2 functions, whose first 
derivatives in the distrihution sense are in L2 , and moreover they 
satisfy a zero boundary condition. See, for instance, Adams [1] 
or Brézis [3]. To have the functional ~ well defi.ned in HJ sorne 
growth condition on F is necessary. Namely, there are positive 
constants e and u and an L1 function b such that 

(4) 

where 

(5) 

(6) 

1 F(x,s) 1 $e 1 S I(J +b(x), Vx En, Vs E~. 

1<d<oo 
- ·~ 2N 

1<u<-­
- - N-2 

if N= 2, or 

if N~ 3. 

Indeed, by the Sobolev immersion theorem we know that HJ 
is continuously embedded in Lu(n) with u restricted as in (5) and 
(6) above. This together with the growth condition (4) gives that 
the second integral in (3) is well defined. As for the first integral, 
we recall that the norm in HJ is taken as 

(7) 

Let us now suppose that F( x, s) is differentiable with respect 
tos, and let us denote its derivative by f(x,s). We assume that f 
is continuous and it satisfies also a growth condition: there exists 
positive constants e anda anda Ll'-function f3(x) such that 

{8) 1 f(x,s) 1 $e 1 s ¡o +f3(x) Vx En, Vs E !R 
where 

{9) 1 $a< oo, 1$p<oo if N= 2 

{10) 1 < N +2 
_a<N-2' 

> 2N 
p_ N+2 if N~ 3. 

This growth restriction on f is actually necessary in order 
to have ~ as a C1 functional in HJ. Under these restrictions we 
conclude that 
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_ < ~'(u),v >= J V'uV'v- J f(x,u)v Vv E HJ(O), 

where <, > denotes the inner product in HJ(O). 

Let us now define a mapping ]( : HJ -+ HJ by 

<K u, v >= j f(x, u)v Vu,v E HJ. 

It is easy to see that /( is compact if we assume (8) with (9) and 
in (10) a is restricted to be strictly less than (N+ 2)/(N- 2). In 
this argument one uses the fact that HJ is compactly embedded 
in LP with 1 ::; p < oo if N = 2 and 1 ::; p < 2N f (N - 2) if 
N ~ 3. See [1] or [3]. So under these conditions, in order to check 
that the functional ~ defined in (3) satisfies the (PS) condition, 
we have only to check that Palais-Smale sequences are bounded. 
See several examples in [5]. Observe that (8)- (9)- (10) imply ( 4) 
- (5)- (6). 

6. The Mountain Pass Theorem. 

Let ~ : X-+ R be a C1 functional defined in a Banaeh spaee 
X· Suppose that ~ satisfies the (PS) condition. Let S be a subset 
of Xwhieh diseonneets X[ for instance, S could be a hyperplane 
or the boundary of an open connected set ]. Let x0 and x1 be in 
distinct connected components of X\S. Suppose that 

(11) 
Let 
(12) 
and 
(13) 

inf{~(x): x E S}> max{~(xo),~(xt)}. 

r = {¡: (0,1)-+ X; continuous, ¡(O)= Xo,¡(1) = xt} 

e= inf max ~(¡(t)). 
-yer te(o,I) 

Then e is a critica! value. That is, there exists a uo E X sueh that 
~(uo) =e and 4>'(xo) =O. 
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The proof of this result via the so-called Clark deformation 
can be seen in [8]. This result was first proved in [2]. See also a 
proof using the Ekeland variational principie in [5]. 

7. An example. 

Let us consider the Dirichlet problem 

(14) -~u = !(u) in n, u = o on an 

when f : ~ --+ ~ is a continuous function satisfying condition (8) 
- (9)- (10) with a < (N+ 2)/(N- 2). Then the functional 

(15) ~(u)=~ J 1 Vu 1
2

- J F(u) 

where F(s) = J0
6 f(t)dt, is C1 and 

< ~'(u),v >= J VuVv- j f(u)v, 

which implies that the critica! points of ~ are precisely the weak 
(or generalized) solutions of (14). Now assume that f(s) = o(s) 
as s--+ O. So u= O is a solution of (14). If we assume further that 
these exists a constant e > 2 and an s0 > O such that 

(16) O< 0F(s) ~ sf(s) V 1 s 1> so 

then one can prove without difficulty that ~ satisfies the (PS) 
condition. Also (16) implies that 

(17) 

Now we assert that (14) has a solution u =f. O. For that matter 
we apply the Mounta.in Pass Theorem. Here we take z0 = O and 
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x1 = Rü where ii. is any positive function in HJ(n) and R > O is 
conveniently chosen. Indeed, from (17) given any M :> O there is 
a constant CM su eh that 

f(s) ~M.- CM, Vs >O. 

Hence 

and then 

So choose M > O such that 

J 1 Vül
2 
-M J 1 ü 1

2< O 

and then R >O so large such that the right side of (18) is negative. 
Next for S we selecta sphere of a convenient radius r about O, as 
follows. Given E > O let 6 > O be such that 

(19) 1 f(s) 1 S E 1 s l, for 1 s IS c5 

On the other hand using (8) we can fi.nd a constant e > O 
such that 

1/(s)ISelsl'\ for lsl~cS 

and without loss of generality we may assume a > l. 
So 

1 /( s) 1 S E 1 s 1 +e 1 s ¡a, for all s 
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and this implies 

(20) 

Now we use (20) to estimate <I> : 

(21) 

To continue the estímate in (21) we use Poincaré inequality 

Vu E liÓ(ü) 

where -\1 , is the first eigenvalue of the Laplacian subject to Dirich­
lct boundary condition, and also the continuity of the embedding 
of HJ into J/l<+l. Thus 

where c1 is the consta.nt that comes from the embedding. 
Choose e< .-\1 • So,.> O hü.s to be chosen in such a way that 

(22) 

This is possible becouse a > L In this way we have satisfied all 
the hypothesis of the Mounta.in Pass Theorem, and the existence 
of a nontrivial solution Uo of (14) follows. Observe that e is larger 
than the expression in (22). 

8. The Saddle Point Theorem. 

Let <I> : X--+ ~ be a C1 functional defined in a Banach space 
X· Assume that <!> satisfies the (PS) condition. Suppose that X= 
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V ED W , where V is a finite dimensional subspace, and <P satisfies 
the two conditions below 

<Pivn8Br(O) :5 a< b 

where a and b are constants and Br(O) is a ball of radius r about 
the origin, with boundary oBr(O). 

f = {'y :V n Br(O) - X continuous : -y 1 V n oBr(O) = id}. 

Then 

e= inf ffi!L_ <P{-y(t)) 
-yer teVnBr(O) 

is a criticnl value. 

A proof of the above theorem can be seen in [8], and in [5], 
where the Ekeland principie is used. 

9. An example. 

Consider the Dirichlet problem 

(23) -Au =/(u)+ h(x) in n u= O on on, 
where h E L2(ll) and f : R - R is a continuous function such 
that the limits below exist 

(24) 

and 

(25) 

/J = lim f(s) 
s-+-oo S 

Here An, An+t are two consecutive eigenvalues of the Laplacian 
subject to Dirichlet boundary condition. We claim that (23) has a 
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HJ soltttion for all h. It follows from {24) tha.t there are constants 
a and b such that 

(26) 1 /(s) ~a 1 s 1 +b Vs. 

So the functional 

~(u)=~ j 1 Vu 12 - j F(u)- j hu 

is well defined in HJ and its critica! points are precisely the Ht 
solutions (i.e. the weak solutions) of (23). As befare F(s) = 
J; f(t)dt. Let us denote by V the space generated by cp¡, ... ,cpn, 
the eigenfunctions of -6. corresponding to the eigenvalues >.1 < 
>.2 ~ · · · :$ >.n. And let W = V .l.. lt follows from {24) and {25) 
that there exist numbers J.'n < J.'n+b with >.n < lln < 1-Ln+l < 
>.n+b such that 

{27) Vs 

for sorne constant C. Using (27) and the inequalities 

j 1 Vv 12 :$ >.n j v2 Vv E V 

J 1 Vw 12 ~ >.n+l J w2 VwEW 

we prove that ~ is bounded below in W and ~(v) goes to -oo 
when vE V and llvll --+ oo. To apply the Saddle Point Tlieorem 
and then establish the claim it remains to prove the (PS) condition 
in the present hypothesis. Suppose by contradiction that we have 
Palais-Smale sequence (un) which is unbounded. Let us denote by 
Vn = (un/lluniD· 
Passing to a subsequence we may assume that there is vo E HJ 
such that Vn converges wea.kly in HJ to vo, strongly in L2 and a.e; 
moreover we may assume that there is an L2 function h such that 
1 vn(x) 1~ h(x). Now we make use of the inequality 
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where en -+O. In view of (27) we can prove (see [5]) that 

/(un) L 2 

llunll -+ ¡(x)vo 

where a $¡(x) $/3. So dividing (28) by llunll and passing to the 
limit we obtain 

j V' vo V' z - J ¡( x )voz = O Vz E HJ, 

which implies v0 = O. On the other hand, using (28) with z = 
vnfllunll a.nd passing to the limit, we see that the first term is 
constantly 1 and the other three go to zero. This is the contradic­
tion. QED. 

10. Final remarks. 

There are other variational principies which are used to sta­
blish existence of critica! points for functionals coming from dif­
ferential equations. We refer to the lecture notes by Rabinowitz 
[8], Mawhin (6], Struwe [9] and the author [5]. The present paper 
aims to cal! attention of the reader to certain interesting problems 
and inform him on recent trends in Differential Equations and the 
Calculus of Variations. The list of references supplies additional 
reading, which should be used if one wants to get a complete pic­
ture of this area. We take the opportunity to thank the hospitality 
of the Peruvian mathematicians during my visit to Lima in July 
1989, under an agreement between the Sociedad de Matemática 
Peruana and the Sociedade Brasileira de Matemática, sponsored 
by International Centre for Theoretical Physics. 
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