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ALGEBRAIC STRUCTURE OF 
CONVOLUTIONAL ENCODERS 

Jorge Pedraza-Arpasi 

Abstract 

Traditionally the convolutional encoders 
were regarded as machines from automata theory 

without any algebraic structure. 
In this work we give a group structure on such encoders 

and get sorne elemental results. 

lntroduction. In direction to give an algebraic fundamentals of 
convolutional encoders, in a first step we observe that all known 
convolutional encoders, found in the respective literature, are over algebraic 
fields, i.e. its input alphabet, output alphabet, and state space are in a 
cartesian product of a field. After sorne manipulations we can see that this 
encoder uses only the first operation of the field, namely, the "sum". Because 
this fact, our convolutional encoders will be over groups. 



We define the encoders as machines in the sense of [6]. So, when we say thc 
terms encoder or machine; we will be talking about the same thing. In the 
first section we take the inputs, outputs, and the states of the machine, strictly, 
over an abelian group, and we name this machine as Elementary 
Convolutional Encoder (ECE). The whole class of know encoders it . is 
included in this family of ECEs. We point o<ut ECE's properties that witl be a 
guide for the definition of generalized machines. 
Like a collateral result, we give a technique to obtain a new machines from a 
given "old" machine. The characteristics of thc new machine is that it have 
less states, the same inputs, and outputs than the old. We think by using the 
Axiom of the States, in the sense of [5]; this could be a practica) way tD find 
minimal encoders. A practica) example is given. 

In the second section, in order to define convolutional encoder machines over 
any group, abelian or not, we define the Schreier Product of groups. By .using 
this product we define a General Convolutional Encoder (GCE). Of course, as 
is expccted a ECE is a particular case of a GCE. Moreover, this class of 
GCEs is so wide that sorne restrictions are necessaries. For instance, we 
introduce the controllability restriction. So, only, will it be considered 
controlable machines. Finally we give criterions to build non-trivial 
convolutional encoders and sorne examples. 

1 Elementary Convolutional Encoder (ECE) and 
Reduction of States 

Given k,nE N, considera matrix T = (tij); 1 ::;; i::;; k; 1 :S:j :S: n; t;i E Z = Integers 
Se t. 

Lct G be an abelian group. For any nE N, 'consider G" the cartesian product of 
G. With the G-operation over the coordinates; G" is, also abelian group. 

Given xE Gk and T as above, consider the product 

k k k 

x.T= (Í: X¡ f¡J, 2: X¡ ti2··· .. ,L X¡ f¡ 11 ); 

i=l i=l i=l 

whcre 
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ti.i- times 

X¡* X¡ ... * X¡ 

eG 

(X¡* X¡ ... *X¡ Y1 

L__-__J 

1 tii 1- times 

if t¡j >o 
if tu= o 
if fij <o 

Beca use the abelian condition of G and G" we can to write the plus simbo! ( +) 
instead the star (*), and to denote O instead eG • So, we are ready for ECE's 
definition. 

Def 1 Let n,k,m be natural numbers such that n>k~1; m~ l. Consider the 

matrices fl, T1
, ••• , 7'"; with T = (t~s);t;.,,.E Z; I:S:rS:k; l:S:s:S:n; i=O,l...,m. 

We define an Elementary Convolutional Encoder (ECE); with parameters 
n,k,m; over G; as a machine M= (X,Y,Q,8,~); where: 

X e Gk; is the, finite, set of imput alphabets, 

Y e G"; is the set of output alphabets, 

Q = {q = (x1
, x2

, .•. ,xm) 1 xi E X) e (Gk)m"' ckm; 

is the set ( or space) of the machine states, 

8: X x Q ~ Q; is defined by, 
8(x0 ,q) = 8(x0,x1 ,x2

, ••• ,xm) = (x0,x1 ,x2
, ••• ,xm-l) 

~:X x Q ~ Y is a surjective map, defined by 
A( O ) A( O 1 2 m) O ,.{) 1 TI 2 ...-J. m 7'" 1-' X ,q = 1-' X ,X ,X , ... ,X =X 1 +X +X 1 + ... +X . 

1.1 Sorne Properties of the ECE 

pp 1 lf X group, then Y and Q are groups. 

pp 2 lf X is group, then 8 and f3 are homomorphisms of groups, with 8 
being suryective. 
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pp 3 Assume that X is a group. Let Y0 = {~(x,e0)}xEX be the outputs 
"from "the neutral state e0 . 

Then, we have Yo is a normal subgroup of Y and ~ "' Q 

pp 4 Assume X is a group. Let Y1 = {~(x,q) 1 8(x,q) = e0 ) be the outputs 
"to "neutral state. 

Then, we have Y1 is a normal subgroup of Y and ~ "' Q. 

Proofl 

G. ~m i r· y d y'= ~m x'i IVen y = ¿_,i=O X E an ¿_,i=O 7' E Y, we have y+y'= 

r;:o (x1 + x'i ) fE Y; because X is a group. 

Analogously, given q = (x1 ,x2
, ... ,.xm) and q'= (x' 1 ,x' 2

, ... ,x'm), we have q+q' = 
(x1 + x' 1 ,x2 + x' 2

, ... ,xm + x'm) E Q, because X is a group 

Proof2 
Now X and Q are groups, hence XxQ is a group. Thus 8 is a map between two 
groups. Let (x,q) and (x' ,q') be two elements of X x Q, with q = (x1 ,x2

, ... ,xm) 
and q' = (x' 1 ,x'2, ... ,x'm ); then 

8((x,q) + (x' ,q')) = 8(x + x', q + q') = (x + x' ,x1 + x,¡ + x''"- 1 
) 

= (x,x1 
, ... ,xm-l ) + (x', x' 1 , ... , x'm-! ) = 8(x,q) + 8(x' ,q'); 

therefore, 8 is a homomorphism of groups. 

By other side, given q = (x1
, x2

, ... ,x'")E Q, take the state q0 = (x2,x3
, ... ,x"'+1 

) 

E Q and x 1 E X; then 8(x1 ,q0) = q. So, 8 is suryective. 

Analogously is straightforward to show that ~ is a homomorphism. 

Proof3 
Define the map \ji: Y~ Q, puting 

\jl(~(x,q)) = q. 
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Then, 

\jf(~(x,q) + ~(x' ,q')) = \jf(~(x+x', q+q')) = q+q'= \jf(~(x,q)) + \jf(~(x' ,q')). 

Thus \ji is a suryective homomorphism. 
Ker (\ji)= {~(x,q)) 1 q = \jf(~(x,q)) =O}= Y0 . 

By the fundamental theorem of the homomorphisms: 

Proof4 
In analogous way to Proof 3, by defining the map \ji: Y~ Q as 
\jf(~(x,q)) = O(x,q) 

1.2 Reduction of Sta tes 

pp 5 Let Q'c Q be a normal subgroup ofQ. We write 

Y'={~(x,q)EYiqEQ'and O(x,q)E Q'); 

then Y' is normal subgroup of Y. 

Proof 

Define the map f: Y~ g. x g. as being: 

then 

\ji(~ (x,q)) = (q+Q'), O(x,q) + Q') 

\jf(~(x,q) + ~(x' ,q)) = \jf(~(x+x', q+q')) 

= ((q+q') + Q', O(x+x', q+q') + Q) 

= (q+Q'), o(x,q) + Q') + (q' + Q'), o(x' ,q') + Q') 

= \jf(~(x,q)) + \jf(~(x' ,q')) 
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Ker(\jl) = { ~(x,q) 1 \jl(~(x,q)) = (Q' ,Q')) = { ~(x,q)E y 1 qE Q'; o(x,q)E Q') 
= Y'. Thus Y' is normal in Y. 

Note that, the above map \ji can be not suryective. 

Def 2 Given a machine M = (X,Y,Q,o,~); let Y 'e Y and Q' cQ be like 
abo ve; such that; o(O,q)E Q', V qE Q'. 

Then, we define a new machine M' =(X, ;. , g, o',~' ), where: 

o' : X X _g_ ~ _g_ is given by 
Q' Q' 

o' ((x,q) + Q') = o(x,q) + Q' 

Q y 
W :X x - ~- is given by 

Q' Y' 

W ((x,q) + Y')= ~(x,q) + Y' (parallel transition class) 

The maps o' and W, are well defined; i.e.; they are independent of the 
representant of the class q+Q'. Thus the new machine M'is a well defined 
ECE. Therefore it have the properties 1.1. So, o' an W are suryective 
homomorphisms; the sets 

Yo·o= fW(x,Q');xEX); 

Yo·1 = {~'(x,q+Q'); (x,q+Q')E Xx g and o'(x,q+Q') = Q'); 

are normal subgroups of r and 

.r. y 
Y' Y' Q __ , __ ,_ 

YQ'O YQ'I Q' 
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1.3 A family of Reduced Machines 

Given a Machine M= (X,Y,Q,o,~) with fl as the De:f 1, we consider the 
family of subsets of Q defined by 

Q; = (q = (x1,x2
, ••• ,xm)E Q such that x 1,x2, ... ,x; E Ker(fl)); 

i=1,2, ... ,m 

pp 6 Q; is a normal subgroup of Q; Vi= 1 , ... ,m 

Proof 
Given qE Q;, we write q = (x,y), with x = (x1 ,x2

, ••• ,x1
) and y = (xi+I , ... ,xm). 

Also, we write 

we have, always, x*fl =O. 
Let (x,q) and (x' ,q') be elements of Q; . Then 

(x,q) + (x' ,y')= (x+x', y+ y'), 

and (x+x')*fl = O. This jointly to the abelian condition of Q shows the 
normality of Q; . 

A characteristic of the family ( Q;} "';= 1, is that 

Hence, we will have 

Q Q 
IQI ~ 1.-.1 ~ ... ~ 1.-

1 
.1. 

Qm Q 

Now, let yi be a subset of Y defined by 

yi = ( ~(x,q)E Y f qE Qi and O(x,q)E Q¡}; 

by pp 5, yi is normal in Y; Vi= 1,2, ... ,m 

pp 7 VqE Qi, we have, o(O,q)E Qi 
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Proof 
Let q = (x 1 ,x2

, ••• ,xi,xi+1 
, ••• ,x111

) be a element of Qi 

We have 
O(O,q) = o(O,(x1 ,x2

, ••• ,xi,xi+1 
, ••• ,x111

)) 

= (O,xl ,xz, ... ,xi-I ,xi,xi+J , ... ,xm-1) 

Making x' = (O,x1,x2
, .•. ,xd) we have x'*'fl =O. 

Therefore o(O,q)E Q¡ 

In this way, we can define a family {Mi) ;~1' of machines, putting for each 
machine: 

with 

i y Q 
M = (X,-. ,-. , O¡ , ~¡ ); 

yl º[ 

O¡ (x,q+Qi) = O(x,q)+Qi 

~¡ (x,q+Qi) = ~(x,q)+Y 

1.4 Example 

Given G = z, n = 3 k = 2 m = 2· tJ = [1 1 
.!.' ' ' ' 

1 

(o 1 oJ ; we have: 
1 o o 

2 x = Z 2 = { oo, o 1, 10, 1 1) 

4 roooo 0100 1000 1100 0001 0101 1001t 

Q=X
2

=Z2 =t0010 0110 1010 1110 0011 0111 1111J 

Y= z; = ¡ ooo, oo 1 , o lO, 1 oo, o 1 1, 1 1 o, 1 o 1, 1 1 1 ¡ 

o( o ) oc o 1 2 o 1) i 2 2 X ,q = X , (X , X ) ) = (X ,X ,X E 2 

R O R O 1 2 O...D 1 1 2TJ. 1-'(x ,q) = 1-'(x , (x , x )) = x 1 + x T + x 1 • 

The trellis representation of M, is showed in the Figure l. 
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0000 

0100 

1000 

1100 

0001 

0101 

1001 

1101 

0010 

OliO 

1010 

1110 

0011 

0111 

1011 

1111 

Figure 1: Trellis diagrcunj(Jr the machine M 

1.4.1 Reduced Machine M2 

' ? 
dasses ¡1000+ Q- = {1000, 1011,0100,0111} 

Q2 = {0000, 0011, 1100, 1111} => 1001+ Q2 = {1001, 1010,0101, OliO} 

1101 + Q2 
= {1101, 1110,0001, 0010} 

dasses 100+ Y
2 

={lOO, 010} 

Y2 = {000, 110} => 00 1 + y 
2 

= { 00 1, 1 1 1 } 

OII+Y
2 

={011,101} 
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82 (x, 1 OOO+Qz) = { 1001 + Q:, if 

1000+ º-, if 

8z (x, 1001 +Q2) = { 11 O 1 + Q:, if 

1001 + º-' if 

82 (x, 101 H-Q
2
) = { Q: · 

if 

JOOO+Q-, if 

X E {00,11} 

X E {00,11} 

X E {00,11} 

X E {Ql,IQ} 

XE {00,11} 

XE {01,10} 

XE {00,11} 

XE {Ol,lO} 

{ 
Y

2 
if XE{00,11} 

= 011+Y< if XE{OLIO} 

~2 (x, 1 000+Q2)={100+Y:, if XE{00,11} 

01l+Y-, if XE {01,10} 

~l(x,!00 1 +Q2)={ Y:, if XE {00,11} 

OOI+Y-. if XE {01,10} 

{ 
Y

2 
if XE{00,11} ~2 (x, 1 101 +Q

2
) = 

7 
' 

011+Y-, if XE{Ül,10). 

The Trellis representation of M2 is given in the Figure 2. 
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a: Classes Outputs b: Classes Contain Outputs 

Figure 2: Trellis diagramfor the machine M 2 

1.4.2 The Reduced Machine M 1 

Q1 = {0000,0011, 1100,1111,0001,0010,1101, 1110} 

1000+Q1 = { 1000, 1010, 1001, 1011,0100,0101,0110,0111} 
(the other class) 

yl = {000, 100,010, 110} 

001 +Y1 = {001, 101,011, 111} (theotherclass) 
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01 (x,Q
1

) ¡ Q
1

, if XE {00,11} 

- 1000+Q1
, if XE {01,10} 

Oz(x,lOOO+Q') =! Q
1

1
, if xE{00,11} 

1000+Q , if XE {01,10} 

~~ (x,Q
1

) ¡ Y
1 

if XE {00,11} 

= 001+ Y 1
: if XE {01,10} 

~z (X, 1000 + Q') = { Y
1

1
, if XE {00,11} 

001+ Y , if XE {01,10} 

The trellis representation of M 1 is showed in the Figure 3. 

2 General Convolutional Encoder (GCE) 

2.1 Schreier Product 

Def 3 Let H and K be, two finite groups. Let 0': K ~ Aut (H) and Jl: 
KxK~ H be; mappings such that 'ik 1, k2, k3 EK y 'ihEH, satisfying the 
following two conditions: 

cr(k, ) (¡.t(k2,k3 )) • ¡.t(k"kz,k3 ) = (¡.t(k"kz )) • ¡.t(k"kz,k3) (1) 

cr(k, ) (cr(kz,h)) = ¡.t(k,,kz). cr(k~okz) (h). ¡.t(k"kzr' (2) 

We define the SCHREIER PRODUCT HaK, of H and K as the ordered 
pair group (h,k), having the operation: 

(h,k)*(h',k') = (h.a(k)(h').¡.t(k,k'), kk'). 

So, the Schreier Product depends of the mappings a and ¡.t . 
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a: Classes Outputs b: Classes Contain Outputs 

Figure 3: Trellis diagramfor the machine M' 

2.1.1 Sorne Properties 

pp 8 When !l(k1,k2) =id, 'ílk 1, k2 E K; and <J is a group homomorphism, we 
ha ve the particular case of Semidirect Product. 
When !l(k1 ,k2) = id, 'íl k1, k2 E K; and cr(k) = id, 'íl k E K, we ha ve the particular 
case of Direct Product. 

pp 9 The neutral element of this, new, group is (!l(eK, eKr1, eK). And the 
inverse element of any (x,q) is 

pp 10 lf Ha K is a semidirect product, with <Jot.id, then is not abe lían. 

pp 11 The mapping <p: H ~ Ha K given by <p(h) = (!l(eK, eKr
1 h,eK) and 

the proyection 1t2 : Ha K given by n2 (h,k) =k are group homomorphisms. 

Conversily; if HxK is a group such that the mappings <p y n2, as above, are 
homomorphisms, then HxK is a Schreier Product. 
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Because the pp 8 is almost evident, and the pp 9 and pp 10 are indicate in 
[4], and the pp 11 is implicitly showed in [2]; we omit the proof of these 
properties. 

2.2 General Encoder Machine 

Def 4 Let X, Q and Y be groups, with X and Q finites. Let XaQ be, a 
Schreier Product. Let 8: XaQ ~ Q and f3: XaQ ~ Y be group homomor
phisms, with 8 suryective. 
We define the General Convolution Encoder (GCE) as a machine M= (X, Y, 
Q,Xo.Q,o,~) such that the map \f': XaQ ~ QxYxQ, given by 
o/(x,q) = (q,~(x,q), O(x,q)) is inyective. 

2.2.1 Sorne Properties 

pp 12 The ECE is particular case of GCE 

pp 13 Let T = lm(\f') = \f'(Xo.Q) e QxYxQ. Then T is a group and XaQ ""'T; 
moreover 

To = {(e o, ~(x,eo), o(x,eo))E T 1 XE X), 

and 
T1 = { (q,~(x,q), o(x,q))E T 1 (x,q)EXaQ, o(x,q) = e0 ), 

are normal subgroups ofT and ! "' j:, ""'Q. 
'0 1 

pp 14 Given qE Q, let 

Tqo = { (q,~(x,q), O(x,q)) 1 xEX) 

be the transitions ''from" the q state; and let 

Tql = { (q' ,~(x,q' ), O(x,q' )) EXaQ; O(x,q' ) = q} 

be the transitions "to" the q state. 

Then Tqo is a lateral class for T0 and Tq 1 is a lateral class for T1 
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Proof12 
On the ECE, making the direct product XxQ as a Schreier Product XaQ; we 
see that the mapping 'fl of the Def 4 is inyective 

Proof13 
Consider the group T = Qx~(XaQ) x Q <;;:::; QxYxQ. The mapping 'fl is a 
homomorphism between XaQ and T. by the inyectivity, XaQ"" T. 

By other side, considering the proyection 1t1 : T--¿ Q, given by 

1t1 (q,~(x,q), O(x,q) = q; 

we see that 1t1 is a suryective homomorphism with Ker(1t1) = T0 . Thus 

Analogously, for T1 

Proof 14 

T 
-""Q. 
To 

Given t' q = (q,~(x' ,q),O(x' ,q); tq = (q,~(x,q), O(x,q)E Tqo ; is suffice to show 
that t'q f 1

q E T0 . 

Indeed, 
t'q f

1
q = (q,~(x' ,q),O(x' ,q)); (q,~(x,q), O(x,q))"1 

= (q,~(x' ,q),o(x' ,q)); (q· 1 ,~((x,q)" 1 
), o((x,q)" 1 

)). 

But 

Hence, we can take (x,q)" 1 = (x", q- 1
). Therefore 

t.q f 1
q =Ceo, ~((x',q)(x", q- 1 

)), o(x',q)(x", q- 1 
))) 

= (eo, ~(x' .a(q)(x").¡..t.(q,q-1 
), eo), o(x' .cr(q)(x").¡..t.(q,q- 1 

), e0 )) E T0 

The proof for Tq 1 is similar 
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2.3 Sorne Criteria to Construct Encoders 

Def 5 Given a encoder M = (X,Y,Q,XaQ,8,~) we say that M is 
controllable, when Vq,q'E Q, there is a finite sequence {xhxb···,Xn )eX, 
such that 

Our definition of controlability of encoders is compatible with the 
controlability of Codes given in [2], the controlability of Group Codes given 
in [3] and [1 ], and the controlability of Dynamical Systems given in [5] and 
[ 1]. 

pp 15 Assume that the group Q is not trivial. IJT0 and T1, defined in pp 13, 
are equals; then the machine is non-controllable. 

Proof 
Given any sequence {x¡} ;~ 1 , we ha ve 

Therefore for q=te0 , there is not { x ¡ } ;~ 1 , such that 

By joining this result to fact XaQ "" T; we conclude that to build controllable 
machines is suffice to check the normal subgroups of XaQ such that they have 
the same cardinality than X. Therefore: 

pp 16 If the class: 

X= {He XaQ such that H is a normal subgroup with IHI = lXI} 

has not more than one element; then, the machine is non-controllable. 
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2.3.1 Examples 

Ex 1 
Let X = Z4 and Q = Z5 be two ciclic groups. The direct product Z4 x Zs it 
have only one normal subgroup of cardinality four and only one of cardinality 
five. Therefore; there is not any controlable machine for this Schreier 
Product. 

Ex2 
Let X= Q be the ciclic group 

z4 ={ex= qQ =e, r¡, r¡2, 113 ). 

Let cr: Z4 ~ Aut(Z4) be, the homomorphism defined by: 

Take the Schreier Product Xa.Q as being the Semidirect Product XaQ as being 
the Semidirect Product Xa.Q, with the operation 

(x,q) (x' ,q') = (x.cr(q)(x'), qq') 

Since x = r¡i, q = r¡i, x' = r¡r, q' = r¡', we have 

In this way we can write; 

re o. o). o,o). (2,0), (3,0), co,1), co.2), co.3), (1,1),} 
Xa.Q= i l (1,2), (1,3), (2,1), (3,1), (2,2), (3,2), (2,3), (3,3) 

And the operation over XaQ induced by cr, now is: 

(ij)(r,s) = (r3i + ij + s); (Mod4) 

Also, we back to write 

Z4 =X= Q = {O, 1 ,2,3). 
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The normal subgroups of cardinality four are U0 = { (0,0), (1 ,0), (2,0), 
(3,0)} and U1 = { (0,0), (1 ,2), (2,0), (3,2)}. 

For the definition of o in a way that it be a suryective homomorphism, we use 
the pp 14. We must take T0 ~U0 and T1 ~U1 • Therefore, if o: XaQ ~Q is 
defined, using the lateral classes of U1 , as being; 

ro. if (i,j) E { (Q,Q),(l,2)(2,Q),(3,2)} 

r· if (i,j) E { (l,Q) * (Q,Q),(l,2),(2,Q),(3,2)} 
o(iJ) = 

if (i,j) E { (0,1) * (0,0),(1,2),(2,0),(3,2)} 2, 

l3. if (i,j) E {(0,3) *(Q,Q),(l,2),(2,0),(3,2)} 

We have that o is a suryective homomorphism. 

Finally by making Y= XaQ, we can define ~=id. so, we ha ve the machine M 
= (X.Y,Q, XaQ,o,~) whose trellis graphic is showed in the Figure 4. 

o 

2 

3 

Figure 4: Trellis diagramfor the machine M= (X, Y,Q,XaQ,O,f3) 
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