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ALGEBRAIC STRUCTURE OF
CONVOLUTIONAL ENCODERS

Jorge Pedraza-Arpasi

Abstract

Traditionally the convolutional encoders
were regarded as machines from automata theory
without any algebraic structure.
In this work we give a group structure on such encoders
and get some elemental results.

Introduction.In direction to give an algebraic fundamentals of
convolutional encoders, in a first step we observe that all known
convolutional encoders, found in the respective literature, are over algebraic
fields, i.e. its input alphabet, output alphabet, and state space are in a
cartesian product of a field. After some manipulations we can see that this
encoder uses only the first operation of the field, namely, the “sum”. Because
this fact, our convolutional encoders will be over groups.



We define the encoders as machines in the sense of [6]. So, when we say the
terms encoder or machine; we will be talking about the same thing. In the
first section we take the inputs, outputs, and the states of the machine, strictly,
over an abelian group, and we name this machine as Elementary
Convolutional Encoder (ECE). The whole class of know encoders it .is
included in this family of ECEs. We point out ECE’s properties that will be a
guide for the definition of generalized machines.

Like a collateral result, we give a technique to obtain a new machines from a
given “old” machine. The characteristics of the new machine is that it have
less states, the same inputs, and outputs than the old. We think by using the
Axiom of the States, in the sense of [5]; this could be a practical way to find
minimal encoders. A practical example is given.

In the second section, in order to define convolutional encoder machines over
any group, abelian or not, we define the Schreier Product of gréups. By using
this product we define a General Convolutional Encoder (GCE). Of course, as
is expected a ECE is a particular case of a GCE. Moreover, this tlass of
GCEs is so wide that some restrictions are necessaries. For instance, we
introduce the controllability restriction. So, only, will it be considered
controlable machines. Finally we give criterions to build non-trivial
convolutional encoders and some examples.

1 Elementary Convolutional Encoder (ECE) and
Reduction of States

Given k,ne N, consider a matrix T=(t;); 1 Si<k; 1 <j<n; tje Z=Integers
Set.

Let G be an abelian group. For any ne N, consider G" the cartesian product of
G. With the G-operation over the coordinates; G" is, also abelian group.

Given xe G* and T as above, consider the product

k

k k
x.T: (2 Xi fi|, Z xitiz,....,z Xi fi|, 5

i=l =1 =1

where
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Lj- times

'__/\_——-‘_‘ .
X *Fxp .. Fx if >0
Xty = eG if L= 0
(x5 * x; .. * X )—I if L < 0
| I |
I iy | - times

Because the abelian condition of G and G" we can to write the plus simbol (+)
instead the star (*), and to denote O instead eg . So, we are ready for ECE’s
definition.

Def 1 Let nk.m be natural numbers such that n>k>1;, m=1. Consider the
matrices T, T',... T, with T' = (t'm,);t:,se Z; 1<r<k; 1<s<n; i=0,1...,m.

We define an Elementary Convolutional Encoder (ECE); with parameters
n,k,m; over G; as a machine M = (X,Y,0,0,B); where:

X c GY; is the, finite, set of imput alphabets,
Y < G" is the set of output alphabets,

O0={g=0u"x.x"/xeX}c(GH"=G™;
is the set (or space) of the machine states,

8: X x Q — O is defined by,

0 0.1 2 0.1 .2 "
(%) = 8 x' P ™ = O A ™)

B: XX Q> Y is a surjective map, defined by
BOlq) =BOx o ™ = TP X P+ P TP XTI

1.1 Some Properties of the ECE
pp 1 If X group, then Y and Q are groups.

PP 2 If X is group, then 8 and 3 are homomorphisms of groups, with &
being suryective.
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PP 3 Assume that X is a group. Let Yo = {B(x.eQ)}sex be the outputs
“from”the neutral state e.

Then, we have Yy is a normal subgroup of Y and T); =0
PP 4 Assume X is a group. Let Yy = {B(x,q) / 8(x,q) = eq} be the outputs
“to”neutral state.

Then, we have Y, is a normal subgroup of Y and —)% = (.

Proof 1
- Given y = z:io £ T eY and y= Z;io x' T eV, we have y+y'=

m i Si i .
Zi:O (x'+x') T €VY; because X is a group.
Analogously, given g = (x'x%,...x™ and ¢’'=(x"' x’%...x™), we have g+g’ =

g y g7 q 7 1tq
o+ x P+ x4+ 0™ €, because X is a group

Proof 2
Now X and Q are groups, hence XXQ is a group. Thus & is a map between two
groups. Let (x,g) and (x’,¢’) be two elements of X x O, with ¢ = (x',x°,...x™)
and ¢ = ' x2,...x™); then

(g + (XN =8x+x,g+q)=(x+xx +x" +x™")

=X x0T = 8(g) + 80,97,

therefore, d is a homomorphism of groups.

1
2 m+)

By other side, given g = (', x,...xMe Q, take the state go = (X,
€Q and x' €X;then 8(x',go) = g. So, & is suryective.

Analogously is straightforward to show that B is a homomorphism.

Proof 3
Define the map y: Y — @, puting

w(Bx.g) = q.
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Then,

Y(Blg) + Bx'.g)) = w(B(+x’, g+¢°)) = g+q"= W(B(x.9) + Y(B(x".9")).

Thus W is a suryective homomorphism.

Ker (y) = (B(x.9)) / ¢ =y(B(x,9)) =0} =¥,
By the fundamental theorem of the homomorphisms:

Proof 4
In analogous way to Proof 3, by defining the map y: Y > Q as
Y(B(x.)) = 8(x.q)

1.2 Reduction of States
PP 5 Let Q' Q be anormal subgroup of Q. We write
Y’ ={B(xg)e¥/qeQ’ and d(x.q) e Q'};
then Y’ is normal subgroup of Y.
Proof
Define the map f: Y — —QQ—xg as being:
v (B (x.9) = (g+Q"). 8(x,q) + O°)

then

Y(B(x.g) + B .q) = y(B&x+x", g+¢’))
=((g+q") + @', 8(x+x’, g+q’) + Q)
= (q+Q0), 8(x,q) + @)+ (¢’+ Q"), &(x".q") + Q")
= y(Bx.g) + w(B&’,9")
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Ker(y) = (B(x.q) / w(B(x,q)) = (0.0} = (Blx.q)e Y/ g Q; d(x.)e O’}

=Y’. Thus Y’ is normal in Y.

Note that, the above map W can be not suryective.

Def 2 Given a machine M = (X,Y,0,8,8); let Y'Y and Q'cQ be like
above; such that; 8(0,q)e Q’, Vge Q.

Then, we define a new machine M’ = (X, %g 8,3’ ), where:

& :Xxg—>g is given by
Qo o

& ((ng) + Q') =d(xq) + O

0] Y
B’:Xx—'—>—y—‘ is given by

B ((x,q) + V)= PBlx,q) + Y’ (parallel transition class)
The maps & and P’, are well defined; i.e.; they are independent of the
representant of the class g+Q’. Thus the new machine M’is a well defined

ECE. Therefore it have the properties 1.1. So, & an B’ are suryective
homomorphisms; the sets

Yoo={B(x.Q"): xe X};
Yo1={B (x.q+0"); (x,g+Q")e X % g and & (x,q+Q0)=Q’};

x
are normal subgroups of = and
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1.3 A family of Reduced Machines

Given a Machine M = (X,Y,Q,S,B) with 7° as the Def 1, we consider the
family of subsets of O defined by

0= {g= (' X%, x™e Q suchthat x'.x%,...x' € Ker(T9)};
=1,2,....m :

Pp 6 Qi is a normal subgroup of Q; Vi=1,...m
Proof

Given ge @', we write ¢ = (x,y), with x = (x' 2%...x") and y = (™',..x™).
Also, we write

=T+ 2T+ L+ X T,

we have, always, x*7°=0. .
Let (x,g) and (x,q’) be elements of Q'. Then

(6,g) + (X)) = (x+x", y+y'),

and (x+x’)*70‘: 0. This jointly to the abelian condition of Q shows the
normality of Q".

A characteristic of the family {Q'}™,.,, is that
Qm c Qm~l c..c Ql - Q
Hence, we will have

Y

10l > 1.%.; 2. 2l—=1.
0

Now, let Y be a subset of Y defined by

Y'={Brge¥/qeQ and 8(x,q)cQ'};
by pp 5. ¥ isnormal in ¥; Vi=1,2,...m

PP 7 Vge @', we have, 8(0,9)e Q'
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Proof
Let g=(x'x%...x' 2" ,...x™) be aelement of Q'
We have
3(0,9) = 8(0,(x' 2% X x™)
= (0! e XX

Making x’ = (O,xl,xz_,...,xi'l) we have x'*7°=0.
Therefore &(0,9)e Q'

In this way, we can define a family {M'} ;’;1, of machines, putting for each
machine:

_Q-—aSi’Bi);

!

. Y
M = (X’_i’
Y

with ' .
8 (1.g+Q) = 8(ng)+Q'
Bi (x.g+0") = Blx,g)+Y
1.4 Example
GivenG:Zl,n=3,k=2,m=2;Toz[] ! '] T':(l 0 O]Tz:

11 01 0
0 1 0
; we have:
I 0 o0

X=275 =1{00,01, 10, 11}

A (0000 0100 1000 1100 0001 0101 1001]

0=X'=2Z, =
0010 0110 1010 1110 0011 O111 1111

Y=2) = {000, 001,010, 100,011, 110, 101, 111}
86g) = 80", (¢, ) = (') a'e Z3
BG"q) = BGO, (', x%) = 2°T° + X' T + X°T°

The trellis representation of M, is showed in the Figure 1.

100



0000

0100

1100

0001

0101

1101

0010

0110

1010

1110

[URR!

1011

11

//

4
)
O'O
\
\

/
i
Q\

A

)
a,i

Vi
%

W
.to,é,
W
WA

)

;r
i
XN
o
"\\? X
i
N
)

i
y
A

)

"

%
lo‘d
¢

/
N
/
5
"1‘
»‘)
M
)

PN EL i
BPCS gt

/3

£X?

N4
~§\\\// 0N
X
&
".
)

N
§
i
0

¢
(X
!{
\

,»
X
)

N

j
N

Z L%

N

)
»Q»' ¢
g
W
)

\\.
/

/

y N

)
EpNEERERNEEREREEEEEREREREE

Figure 1: Trellis diagram for the machine M

1.4.1 Reduced Machine M*

classes | 10004+ Q2 = {1000, 1011, 0100, 0111}
2

Q" ={0000, 0011, 1100, TT11} = {10014+ 0> = {1001, 1010, 0101, 0110}

1101+ Q% = {1101, 1110, 0001, 0010}

classes {100+ y* = {100, 010}
2
¥ ={000, 110} = {001+ v = (001, 111}

o11+v? = (011,101
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= {(Q% 1000 + 07, 0001 + Q?)

tQNI,Q

L = (¥ 100472001 + Y2011 + V)

8, (x,0%) :{ Q;, if xe (00,11}
[1000+Q7, if xe (00,11}

1001+ Q%, if xe {00,11}

8 (x,1000+0%) = {
1000+ 07, if xe (0110}

llOl+Q". if xe {00,11}
1001+Q’, it xe {01,10}

8, (x,1001+0%) =

if xe{00,11}
1000+Q'. if xe {01,10}

8 (x,1011+0% =

011+ Y%, if xe {01.10}

B, (1000402 = | 100+Y7, if xe (00,11}

OLl+Y?, if xe {01,10}

it xe {00.11)
001+ Y%, if xe (01,10}

Bs (x,1001+0%) =

By (x,110140%) = vt xe (0041)

B, (X,QZ) { . if xe (00,11}

011+ Y%, if xe {01,10}.

The Trellis representation of M is given in the Figure 2.
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Y? | <

110
0B+Y?
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11
Y? 1000+Q? 00 u
o1
00+Y2 100
010
01%+Y? 101+ (01 ol
00
Y 110
001+Y2 1001+Q? 001
11
a: Classes Qutputs b: Classes Contain Qutputs

Figure 2: Trellis diagram for the machine M?

1.4.2 The Reduced Machine M'
Q’ = {0000, 0011, 1100, 1111, 0001, 0010, 1101, 1110}

1000+Q' = {1000, 1010, 1001, 1011, 0100, 0101, 0110, 0111}
(the other class)

Y! = {000, 100, 010, 110}

001 +Y* = {001, 101,011, 111} (the other class)

L = {0', 1001 + Q' }
0

-+ = (¥',001 + ¥*}
0
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if xe{00,11}
1000+ Q", if xe (01,10

8 (x,0")

1000+Q , if xe {0110}

, if xe {0011}
001+Y if xe {0L10}

52(x1000+Q ) —{ , if xe {00,11)}
B (xQ") {

1 e
Ba (x, 1000+Q')={ Yo, if xe {00.11)
001+Y', if xe (01,10}

The trellis representation of M' is showed in the Figure 3.

2 General Convolutional Encoder (GCE)
2.1 Schreier Product
Def 8 Let H and K be, two finite groups. Let 6: K — Aut (H) and

KxK— H be; mappings such that Yk, ks, ks€ K 'y Vhe H, satisfying the
following two conditions:

o(ky ) (Wkaks )) « (ki koks ) = (UK Lko ) « Wk kooka ) (1)
o(ky ) (Gka,h)) = ik ko) « Olkiks) (B) . Wik ks (2)

We define the SCHREIER PRODUCT H,K, of H and K as the ordered
pair group (h,k), having the operation:

(hky*(h* k") = (h.o(k)(B )k .K), kk’).

So, the Schreier Product depends of the mappings ¢ and L .
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Y 00
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111
H1+Y! 1000+Q' 001
> 0t
101
a: Classes Outputs b: Classes Contain Outputs

Figure 3: Trellis diagram for the machine M *

2.1.1 Some Properties

PP 8 When Wk .ky) =id, Yk, ky € K; and o is a group homomorphism, we
have the particular case of Semidirect Product.

When Wk, ky) = id, Vky, ko € K; and o(k) = id, Vke K, we have the particular
case of Direct Product.

PP 9 The neutral element of this, new, group is (L ek, eK)'], ex). And the
inverse element of any (x,q) is

(xg)' = (0@ Mg, ¢ ) - e e) . AT q)
pp 10 If H o K is a semidirect product, with o#id, then is not abelian.

pp 11 The mapping @: H — H o K given by o(h) = (u(ek, ex)” hex) and
the proyection 7 : H o K given by m, (h,k) =k are group homomorphisms.

Conversily; if HxK is a group such that the mappings © y T,, as above, are
homomorphisms, then HXK is a Schreier Product.
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Because the pp 8 is almost evident, and the pp 9 and pp 10 are indicate in
[4], and the pp 11 is implicitly showed in [2]; we omit the proof of these
properties.

2.2 General Encoder Machine

Defd Let X, Q and Y be groups, with X and Q finites. Let X,Q be, a
Schreier Product. Let 6: X,Q — Q and B: X,Q — Y be group homomor-
phisms, with 8 suryective.

We define the General Convolution Encoder (GCE) as a machine M = (X.Y,
" 0.X,0,8,8) such that the map W: X(Q — QXYxQ, given by

Y(x,q) = (q,B(x,q), O(x,q)) is inyective.

2.2.1 Some Properties

PP 12 The ECE is particular case of GCE

pp 13 Let T = Im(\W) = W(XoQ) € OxYXQ. Then T is a group and XQ =T;

moreover _
To = {(eq, Blx,eq), O(x,e))e T/ xe X},

and
T] - {(‘LB(x’q)’ S(X’q))e T/ (X’CI)E X(X'Q» S(qu) = eQ}v

are normal subgroups of T and T—z = -7TT = Q.

pp 14 Given geQ, let

TqO = {((]vB(x,CI), 5(%6])) /)CEX}

be the transitions “from” the q state; and let

Ty = {(g".B(x.q" ), 8(x,q")) € XaQ; 8(x,q” ) = q}
be the transitions “to” the g state.

Then Ty is a lateral class for Ty and Ty, is a lateral class for T,
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Proof 12
On the ECE, making the direct product XXQ as a Schreier Product X,0; we
see that the mapping ¥ of the Def 4 is inyective

Proof 13
Consider the group T = OxB(X,0Q) x Q < OxYxQ. The mapping ¥ is a
homomorphism between X,Q and T. by the inyectivity, X,Q = T.

By other side, considering the proyection ®, : T — @, given by

m (¢.B(x.q9), d(x.9) = q;

we see that m; is a suryective homomorphism with Ker(n)) = Ty . Thus

Analogously, for T,

Proof 14
Given 1'q = (¢.8(x",9).8(x",q); tq = (¢,p(x,q), d(x,q)€ Ty ; is suffice to show
that £’y r'q €Ty .

Indeed,
Uqt'e=(q,B(.9).8(x".9)); (¢.B(x.q), 8(x.q))"
= (4,809, .q)); (g Blx.g)" ), 8((xg)" ).

But
(g =@ Mg, ¢")  tew e) X1, g

Hence, we can take (x,q)" =", q‘]). Therefore

tqr's=(eq, BUX. ", g")), 8. )", ¢ )
= (eq. B .0(@)(X™)Wg,q " ), eq), X)X G,g ' )s e )) € Ty

The proof for T is similar
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2.3 Some Criteria to Construct Encoders
Def5 Given a encoder M = (X,Y,0X.0.6,8) we say that M is

controllable, when Vq,q’e Q, there is a finite sequence {x),%2,....x, }CX,
such that

C]’ = 6(xm B(XH-I’ 8(X11~2’-“98(x2’8(x1’q))---)-
Our definition of controlability of encoders is compatible with the
controlability of Codes given in {2], the controlability of Group Codes given
.in [3] and [1], and the controlability of Dynamical Systems given in [5] and
[1].

pP 15 Assume that the group Q is not trivial. If Ty and T\, defined in pp 13,
are equals; then the machine is non-controllable.

Proof
- n h
Given any sequence {x;},_,, we have

) (xny 6()("_], 6(-xn~25 6(-X:Z’S(-xlaeQ ))) =eé€qQ,;
beCZlUSC, TO = Tl = {(EQ, B(X,EQ), EQ) / xe X}
Therefore for g#eq, there is not {x; }©,, such that

=1

q= 6 (xm 6(-xn-l» 8(-xn-2a-~-’6(-x2’6(xlﬁeQ )))

By joining this result to fact X,Q = T; we conclude that to build controllable
machines is suffice to check the normal subgroups of X,Q such that they have
the same cardinality than X. Therefore:
PP 16 [f the class:

X ={H cXoQ such that H is a normal subgroup with \Hl = X1}

has not more than one element; then, the machine is non-controllable.
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2.3.1 Examples

Ex1

Let X =2, and Q = Zs be two ciclic groups. The direct product Z; x Zs it
have only one normal subgroup of cardinality four and only one of cardinality
five. Therefore; there is not any controlable machine for this Schreier
Product.

Ex 2
Let X =0 be the ciclic group

Zy= {eX=qQ:€7nvn2’n3 B
Let ©: Zy = Aut(Z,;) be, the homomorphism defined by:

i ) .'3I
omHm' )=n’
Take the Schreier Product X0 as being the Semidirect Product X;Q as being
the Semidirect Product X,Q, with the operation

(x,q) (",q°) = (x.0(@)x"), 99°)
Since x=m',¢="1,x =1",¢" =n", we have

(xg) (¢,¢") = (') .o M), n'n*)
3+

=m0

In this way we can write;

«@ =

[(0,0), (1,0), (2,0), (3,0), (0,1), (0,2), (0,3), (1,1),}
1(1,2), (1,3), (2,1), (3,1), (2,2), (3.2), (2,3), (3,3)

And the operation over X0 induced by G, now is:
(i)(rs) = (r3 + ij + 5); (Mod4)
Also, we back to write

Zo=X=0=10,1.23}.
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The normal subgroups of cardinality four are U = {(0,0), (1,0), (2,0),
(3,00} and Uy ={(0,0), (1,2), (2,0), (3,2)}.

For the definition of § in a way that it be a suryective homomorphism, we use
the pp 14. We must take Ty =U, and T, =U,. Therefore, if &: Xo;Q —Q is
defined, using the lateral classes of U, , as being;
I[O’ if (.)€ {(0,0),(1,2)2,0),(3,2)}
8i) {1, if ()€ {(1,0)*(0,0),(1.2),(2,0),(3,2)}
)= . -
2, if (@, e {(0,1)*(0,0),(1,2),(2,0),(3,2)}
[3’ if () e {(0,3)%(0,0),(1,2),(2,0),(3,2)}

We have that d is a suryective homomorphism.

Finally by making Y = X;(@, we can define B=id. so, we have the machine M
=(X.Y,0, X;0.8,8) whose trellis graphic is showed in the Figure 4.

0 0,0)
2.0
(L0
3,0)
1 (12
(32
0.2
(2.2
0.1
2 ) )
a,
3,0
(13
(33
3 0.3
@3

Figure 4: Trellis diagram for the machine M = (X,Y,0,X;0,6,8)
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