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RELATIONS BETWEEN WA VELETS 
AND 

OPERATOR THEORY 

Alejandro Ortiz F. 

1 ntroduction 

In this writing we are interested in to place sorne known 
relations between the operator theory and the recent wavelet 

theory. It is our intention to rernark sorne of the deep Calderón' s 
ideas in his work on singular integral operators (pseudo

differential operators) and how the wavelets, a new tool in pure 
and applied rnathernatics, can be useful to brighten sorne 

difficulties in to salve problerns with these operators. By the 
way, one road to arrive to the "wavelet world" was given by 
Calderón in his research on interpolation of function spaces 

(Calderón' s reproducing identity, 1960 ). 
It is curious that in "pure" ideas, like Littlewood-Paley theory 

and atornic decornpositions, between other ideas, there were the 
seed of sornething cornrnon to explore later. The celebrated 

Calderón-Zygrnund school, a branch of operator theory, is also 
a beautiful history related to this "wavelet adventure ". 

<:> Profesor del Departamento de Ciencias, Sección Matemáticas, PUCP. 



In this way, it was also amazing the identification of the algorithms proposed, 
by "wavelet people", in the signa! processing with sorne recourses developed 
by the cited school. As Meyer says: "time-frequency localization operators 
should definitively be understood before deriving any conclusion from a 
wavelet analysis. In the wavelet case, these operators happen to be Calderón
Zygmund operators, which in the windowed Fourier transform case, the 
corresponding operator theory is much wilder (it corresponds to the symbols 
S'o,o in H6rmander's terminology". See [Me 4]. 

The general idea is to address the possibility of using wavelets for 
studying operators, like singular integral operator or other. Thus, we must 
able to find a wavelet based criterion to have the continuity of the operator T 
acting on sorne Hilbert space, like L2(R). An ideal case is to have orthonomal 

basis for H in which T is diagonalized. The generality is to ha ve unconditional 
basis or frames in which we can to represent the operator T. The task is to 
construct a basis adapted to T and to have access for efficient algorithms. 
Before wavelet theory appear, "harmonic-people"uses the famous Cotlar's 
lemma for analysing operators, as we shall see later. 

We finish this introduction with a message of Ch. Chui-R. Coifman-1. 
Daubechies, a trio of authorities in the wavelet-field. 

"The past few years have seen a significant increase of interest in 
applications on the part of mathematicians with a "pure harmonic analysis" 
background, as well as a surge of curiosity, from applied scientists and 
engineers, in mathematical techniques that we shall label under the common 
denominator of harmonic analysis. Of course, all these different groups of 
people have used Fourier transforms for a long time and will continue to do 
so, but the emphasis here is on new tools that have recently made their 
appearance or the innovative use of any of the older tools. 

A particularly well-known and currently very popular example is provided 
by wavelets. With hindsight there are many precursors for what we now 
call wavelet expansions, ranging from the use and refinement of Calderón's 
decomposition ideas in the study of singular integral operators at one end 
of the pure-versus-applied spectrum to the algorithms from subband 
filtering in electrical engineering at the other end, with many intermediate 
stages as well, such as the link with coherent states in quantum physics or 
connections with spline functions and subdivision schemes in approximation 
theory. However, none of these forerunners showed the full force of the 
wavelet tools, which stems from a combination of these different aspects. 
Before they were linked to efficient and fast algorithms, the deep theorems of 
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pure harmonic analysis had a minimal impact on the study of applicd 
problems. At the same time, the algorithms alone, no matter how efficient, 
would not have led to meaningful results for those same applied problems 
without the deeper underlying mathematical unders tanding. The development 
of the wavelet tools themselves gives many beatiful examples of a constant 
feedback between theoretical understanding and practica) points of view, in 
both directions". 

(Applied and Computational Harmonic Analysis. Vol. 1, No.l, 1993) 

A. Singular Integral Operators and Differential 
Operators 

Motived by the severa) important applications of the singular integral 
operators in severa) branches of the analysis mainly in problems in partial 
differential equations, the theory of Calderón-Zygmund was extended to 
operators which are not of convolution type, like 

Tf(x) = lim J K(x,y) f(y)dy 
e -;O lx-yl>e 

where the kernel K(x) satisfies certain adequatc conditions. Between the 
different contributions to the theory, the work of R. Coifman-Y.Meyer ( 1978) 
is fundamental since they began a systematic study of such operators in a 
general context. These new operators were called "the new Calderón
Zygmund operators" (CZO). The reader can see Meyer [M.2] for more 
references. 

Using the distribution language, we say that an integral operator is 
defined on the space V(R") (test-functions) by 

T<j>(x) = f K(x,y) <j>(y)dy, <j>EV(R"), (1) 

where the kernel k ís a distribution on R"xR" and the operator T: V(R") -7 

V' (R") is defined more precisely by 

< 7\¡1, <j> >=<k, <j> ®\ji>, <j>,\jfEV(R"), 

where 
(<j> ®\ji) (x,y) = <j>(x) \jf(y) 

(in general < g,h > = f g h). 

(2) 
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e o 
A.P. Calderón studied kernels satisfying the conditions lk(x,y)l ::; 

lx- yl 

a 2 
1-k(x, y)l$ e 11x- yl and k(x,y) =- k(y,x). 
dX 

A famous result of L. Schwartz says that ''every linear continous operator T: 
'!) ~ '!)' admita kernel k such that we ha ve (1) in the sen se (2)". In this way, 
when a linear operator T is bounded on the Lebesgue space U, l~p<= ? ... For 
example, if we add to Calderón's conditions k(x,y) = k1 (x-y) (i.e T is a 
convolution operator), then T is bounded on /}. Also we know that the 
classical CZO (convolution type) are bounded on LP, l<p<= . For a general 
answer one consider the C-Z conditions: 

CZ.l Outside of the diagonale x =y, k(x,y) is a locally bounded function 
(kE L ~toe (R") ), and there exits a constant e>O such that 

e 
lk(x,y) 1::; ---

lx- yl
11 

Unfortunately an operator whose kernel satisfies only this condition is not 
necessary bounded on L2 (R"). Thus this condition is insufficient for the LP -

theory. For this reason one is carried to impose to k a mínima! continuity 
property outside of the diagonal. 

CZ.2 There exists a constant e>O such that 

J lk(x,y)-k(x',y)ldy::;e ... \fx,x'ER". 

lx-yk2:21x-x'l 

In this road one is also carried to consider the so called "standard kernels". 
Thus, k: ~e ~ e C~c is the complement of the diagonal x=y) is a standard 
kernel if Ít ÍS a COntÍnOUS function for which :J e> Ü SUCh that \f(x,y)E ~e 
we have (like Calderón's conditions) 

1 k(x,y) 1::; e lx-yr" (3) 

IV, k(x,y) 1 +IV y k(x,y) 1::; elx-yr<n+tl (4) 

(the gradient is in the distribution sense). 
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Definition. The operator T: V(R") ~ V'(R") is called a Calderón

Zygmund operator ( CZO) if: 

(i) T is extended to L\R") as a linear bounded operator; and 

(ii)there exists a standard kernel k such that VjEL=0 E(R") (compact 

support), we ha ve the representation T f(x) = f k (x, y) f (y )dy a.e. on 

the complement of supp f 

Now we ha ve the fundamental (C-Z) result: << if T is a CZO, then 

T: U(R") ~ U(R") is a linear bounded operator, 1 < p < oo >>. A deep 

problem at the beginning 80's years was to find necessary and sufficient 
conditions to assure that T is bounded on L2(R"). In 1982, G. David - J.L. 

Journé find a solution to the problem. 

Clasical examples of singular integral operators are the Hilbert and M. Riesz 
transforms. Thus, 

- 1 f f(t) 
f(x)=-lim --dt, 

n t:---70 lx-tl>t: x- t 

is the Hilbert transform of f; and the Riesz transform is its natural 
extension to R", 

f xj -tj 
(R¡f)(x) = lim c

11 
E---70 lx-ti>E lx-tln+l 

j(t)dt. 

In this way we have an interesting relation between singular integral operators 
and differential operators. Let a = (a¡, ... ,a0 )E N", lal = a 1+ ... +an; if x = 

(x¡, ... ,X0 )E R" we write 

and (!_)a f =Da f =[-a ]a' [-a Jan f ax a X¡ ... a X
11 

• 

Let the polynomial P(x) La a (x)xa and its associated partial 
lat:s;m 

differential operator P(D) = L a a (x)[~ r 
lat,;m a X) 
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lf fE S (rapidly decreasing distributions), we know that (using Fourier 

transforrn) [-a_¡]"(~)= 2 n ¡ ~ d (~), and more generally 
dx¡ 

A A 2 ) 2 
[P(D)f] (S)= P(2n i S) f (S). Asan example, Jet P(x) = x 1 + ... +x,~ = lxl, 

a2¡ a2¡ . ' ,A 
then P(D)f= -

2
-+ ... +-?- =N, and therefore [~JY (S)= -4n-lsl- f (S)-

ax1 dx,; 

If we define the operator A as 

[AJY <S)= 2n ls 1} (S) 

then we obtain the representation Af (x) = i I Ri a~. f . 
./ 

(5) 

In this direction we also have the relation Ri =- i ~- (-M- 112
, which was used 

./ 

by Calderón in his study about the uniqueness of Cauchy problem. If we 

reiterates (5) we obtain [Arn j( (S)= (2n ls 1 )'n j (S); thus, in particular [A 2 f 
(<S)= (2n ls 1 )2 j (s) =- [/o,.f] 1 @; i.e. we have obtained A2 = -~, a nice 

formula. 

In a similar way, 

[( ~x )a¡(@= (2ni s)a j Cs) =e 1~ 1 )a ¡'aJ C2n ls l)'aJ j Cs) = 
= ¡'aJ Cs')a [A'aJ !fes) (6) 

wherc (s')a =e,~, )a E e~ (R"- {O}) is an homogeneous function of zero

degree; therefore (it is known that) there exists a (generalized) singular 
integral operator Ta such that (x')a is the symbol O"r a of Ta (by definition, 

ara (x) = c(x) +k (x)). Therefore, [(~,f j( (s) = i1aJ ara (s) [A1a'!f<s), 

from which ( Kx )a f = i1aJ Ta A1a1f, where more precisely 

Taf(x) = a(x)f(x) + f ka (x, x-y)f(y) dy, XE R". 

Thus we have the interesting relation 

P(D)f= I,aa <Kx)a f = I,ilalaa Ta Alalf. 

lal:<;;m lal:<;;m 

In particular, if lal = m wc have 
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lal=m lal=m 

a link between partía! differential operators and singular integral operators. 
See [O] for other related commentaries. 

B. Pseudo-Differential Operators. 

We observe that 

P(D)f(x) = La a (x)( fx)a f (x) = La a (xd e·Zmx~ [( :~ t Jf@ d~ = 
la~m lalsm 

= La a (x) J e-Zmxé, (2n:i~t j @d~ = J e-Zmxé, [ La a (x)(2n:i~tJ} (~)d~. 
lalsm lalsm 

The idea of the pseudo-differential operators is to replace the polynomials 

La a (x)(2n:i~)a for more general functions p(x,~), called symbol of the 
lalsm 

operator P(D), lal :S: m, such that the new class of operators (which contain 
the differential operators) must contain products (algebra), inverses, 
compositions, . .. In the case of differential operators we ha ve these properties 
if the coefficients are C"; therefore this way does not work for operators with 
coefficients which are not infinite differentiable. Thus, we must look another 

method as the following: we write Laa (x)(2n:i~t = [Lq(x,~) + ~ (x,~)] <l>m 
lalsm 

@, where <1> is a positive function, C" and such that <!>(~) = 1~ 1 if 1~ 1 ~ 1, and 
q(x,~) = 1~ ¡-m La a ( x) (2n:i~)a. If we pul 

lalsm 

Tf(x) = J q(x,~) e-Z7tix.é, j (~)d~ + S f (x) and S f(x) = J ~(x,~) e-Z1tix.é, j (~)d~, 
we obtain, as before, 

Now one observes that q(x,~) is homogeneous of zero degree in~. and it can 
be shown that the operators S and S ~r are bounded on L2 or on LP, 1 < p < 

=, provided that the aa (x)' s are bounded. 
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How to generalize the operator T? ... we replace q(x,é,) by any 
homogeneus function of zero-degree in é, and al so S is replace by an arbitrary 
operator with the boundedness condition mentioned above. Respect the 
smoothness of q(x,é,) in x, it is smaller than the smoothness of the coefficients 
in the differential operators which we are interested. In this way Calderón 
[C l] has considered a class of pseudo differential operators as follows. 

Let the Lebesgue space (or Sobolev space) 

L~ (R11)=L~ ={fE S'(R")/(l+l'f,l)k }('f,)EL2 (R")), kER, 

where we consider the norm 11 f 11 2 = ll(l + lf, l)k j 11 ? • Let m be a positive 
Lk e 

integer and fE S. We say that the operator T belongs to the class Sm if 

11 

T f(x) = L J Pi (x,é,) e-Znixl; j (é,)dé, +S f (x) (7) 

j=O 

where the Pi (x,é,) are bounded and for lzl > e the Pi (x,é,) are homogeneous 
functions in z for each x and of degree -di with O :S: di < di+I < m; moreover 

d~ af Pi (x,é,) are continous bounded functions for lal :S: 2m - [di], V~. 

Moreover, the operator S: S~ L;,, is such that S, S ( /.; )a and ( /.; t S are 

bounded on L2
, Va with lal =m; i.e. liS f 11 2 :S: Cl!f 11 ? , liS ( !¡¡; )a f 11 2 :S: C 

L e uo, L 

l!fll L2 and 11( /.; )a S fll L2 :S: Cl!fll L2 . For this reason (and in general for L~, 

1 < p < oo) we say that S belongs to the class of operators 1m . 

The operator Tf, according (7), is well defined since Pi (x,é,) e-Znix.l; j ('E,) E L 1 

and S is assumed well defined. Sm is a self-adjoint algebra. 

Now, following before motivation, we define pseudo-differential 
operators using singular integral operators and the operator A. In effect, Jet <p 
E C' be a real function, <p(x) ~ 1 and <p(x) = lxl for lxl ~ 2. If sisa real (or 

complex) number we define (as before) N via [Nj( (é,) = [<p(f,)]' j @.{N 

} sER is a group, and As : L; ~ L ;_ s is continuous and onto. 

Definition. T is called a seudo-differential operator of class m and 
ordersER if T=AsP (or=PAs),where PESm· 
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We say that T is a pseudo-differential operator of mixed type if T = A'' 1 P A''.2 

(See also [O] for other comentaries). 

A wide class of pseudo differcntial operators was considered by L. 
Hormander [H], who introduced the class of operators of the form 

Tf (x) = J e zmx E, p(x,s) j @ds, where fE Zl(Q), xE Q ( open subset of R") and 

where (the Kernel)· p(x,s)E s'~.8 (Q), being s'~.8 (Q) the set of p(x,s)E L 

(QxR") such that for every compact K e Q and every multi índices a,~, 

there exists a constant Ca,¡3,K = e such that lo~ a~ p(x,s)l :::; C( 1 +lsl)111
·plal+ol¡3l 

with m,p,o real numbers, p > O, o :::: O, xE K, sER". 

Also, between other, Calderón-Vaillancourt [C-V] had considered pseudo
differential operatos; they proved that a bounded symbol p(x,s), with 
bounded derivatives, define a pscudo-differential operator 

T f(x) = J e·Zrrixé, p(x,s) j @ds, fE S, such that Tf is extended to a bounded 

operator from L2 to L2
• If p(x,s) E s~,Ü' p >O, then p(x,s) is a symbol in 

the sense C-V. The cited work of C-V is related to Cotlars's lemma, to see 
later. 

C. Wavelets. 

Wavelcts is an amazing discovery which is a synthesis over the last 
eighteen years of severa! ideas related to many different roads, like harmonic 
analysis, quantum physics, electrical enginecring. The wavelet transforms are 
a too! for de composition functions or distributions and they have various and 
interesting applications in a growing number of fields, in pure and applied 
mathematics. Wavelets is an alternative to the classical Fourier analysis. We 
follow the standard way to construct orthonormal bases of wavelets for L2 

(R), which is due to S. Mallat [Ma]; see also Meyer [M.l] where the reader 
finds a complete exposition about this theory. The Daubechies's book [D 1] is 
an excellent work about wavelets; she mades a profound presentation about 
severa! topics of the theory and its detour. A very useful concept is the 
multiresolution (Mallat-Meyer), as follows. 
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Definition. A multiresolution analysis ( MRA) for L2 (IR) on IR is a sequen ce 

(Vi) ·ez of closed subspaces of L2 (IR) such that 
./ 

[1] vi e vi+l ... VjEZ 

[2] f(x) E vi~ f(2x) E ~+1 ... VjEZ, ie.f(x) E vi~ f(Ti x) EVo 

[3] There exists gE V0 such that the family (g(x-k))kez is a Riesz 

basis of V0 • This means that the finite linear combinations L. ck 
g(x-k) are dense in L2 (IR) and there exist two constants e1 and 

e2 su eh that for every finite sequence (ck) we ha ve 

el CL. lckl2 ) "
2 

::; 11 ""' ck g(x-k)ll ry ::; e 2 CL. k\ 12 ) 
112 

. 
..t.. e 
k 

We note that if e 1 = e 2 = 1 then we obtain an orthonormal basis 
for L2 (R) (11 g 11 = 1). 

[4] n Vi= {O} 
jER 

--2 
[5] Uv.i = L2 

(R). 
jEZ 

In particular, we are interested in ~-regular MRA's , wich means that g 

and Dag are of decreasing rapid for lal ::; ~, ie. 3 a constant 
e 

IDag(x)::; M.aM , Va, la 1::; ~ and M 2 O entire. 
(l+lxl) 

We note that f (x) E V0 ~ f (x-k) E V0 , and in general f (x) E 

eM.a such that 

E Vi , VjE Z. Also, {g(x-k) hez is called an unconditional basis 
since 2:, L\ g(x-k) is absolutely convergent (ie. it is independent of the 

keZ 

form of summation). We must remark that under the above considerations, 
one can prove that there exists two positive constants e 1 and e 2 such that 

e 1 ::; ( 2:, 1 g (~ + 27t k)l2 
) 

112 
::; e 2. Thus, if we define the scaling function 

kEZ 

<pby ~(~)=(L.Ig(~+27tk)¡2) 2 g@ then (<p(x-k))kez isan 

orthonormal basis for V0 ; and if g satisfies the ~-regular condition, then <p 

thus do. By dilation property, if <pi (x-k) = 2
112 

<p(2i x-k) then the sequence 

(<j)¡ (x-k)) kez is an orthonormal basis for V¡ . We can think that the family 
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{ Vj } allows us to approximate any function fE L2 (R), with more and more 

accurately. lt is clear that (L., lg (~ + 2rr k)¡2 = 1 (orthonormality 
kEZ 

condition). lf we put 

c¡,k = 2¡ J f (y)cp(2 J y- k) dy, the projection Pj: L2 (R) ~ V¡ , }E Z, is defined 

as Pj f (x) = L Cj,k <p(2j x-k) . If <p is a regular function satisfying IDa<p(x)l ::; 
k 

_e_, then J L., <p(x-k)cp(y-k)dy = 1 <=> IIPj/- fll 2 <E. 
(l+lxi)M L 

kEZ 

Examples: 

l. Haar System. The oldest construction of a "wavelet basis" is due to A. 
Haar (1909). We begin with the characteristic function of the unit interval, 

<p(x) = { l. .. O~x~ 1 
• We can see that J= <p(x) <p(x-k)dx =O, k=t=O, which 

0 ... othervise -~ 

is also true for <p(2j x) and <p(2j x-k), 'lijE Z. We use <p to construct "the 
wavelet" \ji and its dilation-translation forms. One constructs \ji by the 
relation \jf(x) = <p(2x) - <p(2x-l ). Graphically we ha ve 

1 :---------¡ 
' ' 
' 
' 

~ 

' ' . ' 
1 ' 

: : 
' ' ___J ..__ ___j L__ 
o 1 o 1 1 

<p(x) <p(2x) 

And more generally, 

1 ....---, 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

: 1 
_____¡ 1 

o : 1 1 1 

:4 : 2 
1 1 
1 
1 
1 
1 

1 ' 

·1~ 

\!f(2x) 

,....--, 
1 1 

' ' ' ' 1 ' 

' ' 

~ ' . 
' : : : 
' ' 
' ----' '--- ----o~rr-0 1 1 

' 1 ' 

-1 :.___j 

<p(2x-l) \!f(X) 

¡.,.....-, 

o 

' ' 
1 ' 
1 1 
1 
1 

1 
1 
1 
1 
1 
1 
1 

1 :!~ 
2 : "- : 

1 

1 1 

1 ' 
L-.....1 -1 

'lf(2x-J) 
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We observe that all is okey with these \jf(x)'s, ie \jf(x) and \¡f(x-k) are 
orthogonal for k:;tO; al so <p(x-k 1) and \¡f(x-k2) are orthogonal Vk1 ,k2 E Z. 

By dilation all this is also true for <p(2ix-k1) and <p(2ix-k2) VjEZ. 

Conclusion: 
fl . . . 

{'Vj,k} = {2J- \jf(2Jx-k)}j,kEz IS an orthonormal sequence m 

L2 (R). 

2. Splines. We shall talk on E-splines of arder m, which can be seen as a 
"regularization"of the Haar system. We start with go , the characteristic 
function of [0, 1 ), and by definition the E-spline, of arder m, is 
gm = gm-1 * go ... V m::=: 1 entire. 

Then we construct v;' as the closure (in L2 (R)) of the finite linear 

combinations of the functions (gm (x-k)) kEz, and as befare V';' is defined 

by f (x)E V'7 <=> f (2-i x)E v;'. Now we consider the space Sm of the 

functions fE C m-Z SUCh that their restrictions tO the interval [ k,k+ 1 ), k 

entire, is a polynomial of degree at most m-l. In particular, we consider 
S1 the space of piecewise constant functions, where the most convenient 

basis is {g0 (x-k) hEz. People can see that 

l fcRJ 
gm(x) = ~ gm-1 (x-t)dt, v;' = S m n L2 

(R) and gm E Sm. Between 

the properties of gm we have: gm (x) >O if O< x <m, supp gm = [O,m], 

L,gm (x-k)= 1, Vx. A more general situation is to consider the space S~, 
k 

of the splines with knot sequences 2·1 z, jEZ, and to obtain the chain 

---e s:1 
e S~, e S~, e--- with S~,= Sm. Now we define 

. L
2
(R) 

Vm 'n 2 > • 111 m m _¡=S~, L (R) and agam ---e V_ 1 e V0 e V1 e--- a chain 

of closed (cardinal) spline subspaces of L2 (R). 

An interesting result is to pro ve that " { V
111 

} .E z is a MRA", wherc { 2il2 
J J 

gm (2i x-k)} kEZ is a Riesz basis for V7. By a similar idea to Haar 

system, this way also permit us to construct "certain wavelet". In Chui's 
book [Ch], the splines are presented in their relation with wavelet theory. 
Splines are one road leading to wavelets. 
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3. The Shannon Wavelets. In this case the scaling function is <p(x) 
sinn x 
nx ' ie q5 is thc characteristic function of [ -n,n], sin ce 

7r 

<p(x) = 2~ J eixs q5 @ds = 2~ J e¡,_¡; ds = si~:x . 

-¡¡; 

Then, <p(x) and <p(x-k) are orthogonal since 

¡¡; 

f <p(x)<p(x-k)dx= 2~ fq> (S) fjj(~) e-ixsds= 2~ J e-ixsds=O, k-:FO. 

-n 

2 ' Now, Jet fE L (R) such that f (S) = O for ls 1 > n, then we ha ve the 
¡¡; 

Fourier series j (S) = L, ck eil;k , ls 1 :<:; n, with ck = 2~ J j (S) e ix s ds. 

k -n 

As f(x) = 2~ f J (S) eixs ds, xER, we see that ck = f(-k), ie. J (S)= 
7r ¡¡; 

"f(-k)eisk. Thercfore f(x)=-f- J J (s)eixsd~ =" f(-k)-
2
1 J eiké,eixs ds, 

~- -lr ~ ¡¡; 

k -lf -n 
thus we obtain the Shannon sampling theorem 

f(x) =" f(-k) sinn(x+k) , 
~ n(x+k) 
k 

which enable us to recover (the signal) f from its values on the integers. 

This allow us to construct the linear closed space V0 = {j EL
2 1 j (S)= O 

for ls 1 > n) = {fEL2 1 f(x) =" f(-k) sinn(x+kl }. Now, the idea is to 
~ n(x+k) 
k 

consider V1 = {fE L2 (R) 1 j (S)= O for ls 1 > 21 n), and in general we 

obtain thc V¡'s with "2i n; ", which is again an increasing chain, and thc 
sequence {Vi } jE z is a MRA associated with the cited <p. 

With this setting, the wavelet 'Vis defined by 

" .s 

Vf(S) = e _,2 m0 ( t + n) q5 ( t) , where m0 is the 2n-periodic function m0 

Ct)= Lfjj (~+4nk). 
kEZ 
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These functions are illustrated in the following figure. 

........., 
1 
1 
1 
1 

' 

-21t -1t o 

lq) @1 

-71t -61t -51t -41t -31t -21t -1t o 
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Observing that supp cp n supp V/= <)l, and considering the respective 
dilation-translation argument, it is obtained an orthonormal sequencc 
{ 'lfi.d of wavelets. 

Before examples say us how to construct the wavelet as soon as we have <p 
(the scaling function). In general we ask the question: "how to construct the 
wavelet '11 (in dimension 1) such that \llj.k (x) = 2i'2 'lf(2i x-k), j,kE Z, form an 

orthonormal basis for L2 (R) ? 

The general idea is a follows: for each }E z we define Wi as the orthogonal 

complement of Vi in Vi+!, ie. V¡+ 1 =Vi E8 Wi. We then obtain 

j(x) E W¡ ~ j(x- 2·i k) E W¡. 

On the contrary of the V¡ 's, the \;\!¡ 's are orthogonals and we havc the 
important result: 
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The closed subspace W0 is the 'house" where "live" the wavelet \ji to be 
construct. The following central result answer the above question. 

"Let {V¡ } jE z be a '!'-regular MRA of L 2 (IR-); then there exists a function 

\ji E Wc , satisfying IDa \jf(x)l :::; e M ,aM Va, lal :::; '~', V M ::?: O en tire. 
(l+lxl) 

Moreover, {\jf(x-k)}kEZ forms an orthonormal basis of W0 ". 

Thus, by dilation property, the family {'l'i.d is an orthonormal basis of L2(R), 

as we want. An important corollary says that \ji satisfies fxk \jf(x)dx=O for k = 
O, l , ... ,'!'. Just, as f \j/=0, the \ji is called a wavelet (a "small wave"). 

4. Compactly Supported Wavelets. 

Of special interest for practica! problems, for example, involving time, are the 
wavelets of compact support, whose existence and properties was established 
by l. Daubechies [D2] in 1988. Before, Ph. Tchamitchian [Tch 1] constructed 
two functions <p and \jf, with compact support and prescribed regularity, such 
that for every fE L 2 

(R) we ha ve f = L: ci.k <ri.k where 

Cj,k = f f(x) lfl¡,k (x)dx. The Daubechies's result is: "there exists a constant 

e ::?: O such that, for each integer '~' ::?: O, there is MRA of L2 (R), of 

regularity '1'>0, such that the functions <p and \jf, before seen, are compactly 

supported, with supports in [-el!', e'~'] " . 

We note that '~'=O is the Haar case. Also we observe that is imposible to 

ha ve \ji E e; = D sin ce it would follow, from the fact that the { \j/¡,d is an 

orthonormal basis, that all moments of \ji are zero, which is not possible if \ji 
is supported in [-M,M] (using the density of the polynomials). 

D. The Cotlar and Schur's Lemmas. 

The Cotlar's lemma is a useful too! for proving sorne delicate questions in 
operator theory. In this way we have the Zygmund problem (see [Me 3]): 
'prove that the Hilbert transform H: L2 (R) ~ L2 (R), where (equivalently) H 

f (x) = (.;.p. v.-? )* f , is a bounded operator without using the Plancherel 

fórmula". 
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We note that Hf(f:,) = (-i sign S) j@ = C>H @](S), where C>H is called the 

symbol of H. In other words, we can write H = F 1 C>H F, being F the Fourier 
transform and F 1 the anti-Fourier transform. (We look that crH is as a 

"multiplier"). We can observe that lcrH 1 = 1, crH2 = -1 and Hf(x)=[C>H .i f(x) 

= (ó'H ~j)(x) and therefore ó'H (x) = p.v. 7 or crH (S)= (p.v. 7 )"(s). 

Also, one can prove that H* = -H (H* adjoint of H), and that -H = H -t. 

Therefore H is a unitary operator in L2 (R). In fact, using Plancherel formula 
we have IIH fll 2 = llfll 2 , ie. H is a bounded operator on L2 (R). 

L L 

M. Cotlar gave a first answer to Zygmund's problem. Let -;?1 be a hilbert 
space and 1j :-;?~ ~-;?~ a farnily of bounded linear operators, where jEl (an 
index set). We consider the nurnbers 

w(j,k) = 117j* Tk 11 and w (j,k) = liT¡ Tk* 11, with j,kE J. 

Then we have Cotlar's lemma: "We suppose that there exist two constans C0 

and C1 such that 

l l 

sup L (w(j,k)) 2 ::; C0 and sup L ( w (j,k)) 2 ~ Ct (8) 

then we have 
l 

11 LT¡ 11 ::; ( C0 Ct ) 2 , 
jEJ 

and for each xE-;?1, the series LT¡ (x) is convergent ". 
jEJ 

Looking the Zygrnund's problern, one consider 

¡_!_ if l <; lxl <; 2 
<p (x) = n x 

O elsewhere 

and one consider the dilation <pj (x) = 2j <p(2j x) and al so Hif = <pj *f. Thus 

H = LH¡. After sorne considerations it follows that Hk* H¡ = <pj * <pk = HK 
jEZ 

Hj*, and sorne technical argurnents give us that ll<pj * <pk IIL1 ::; 21 ~kl. 

Then by Cotlar's lemrna, IIH 11::; C, as we want. 
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Cotlar's lemma also was applied to pseudo differential operators by 
Calderón-Vaillancourt in their cited paper. We remark that pseudo
differential operators are "almost diagonal" in the "Fourier basis". Let us 
consider the particular case p = 8, with O :::: 8 < 1, and m = O; thus the 
symbols satisfying 

1 a~ a~ cr(x,~)l :::; Ca.l3 (1 + 1~1) o(l¡3l-lal) . 

Calderón-Vaillancourt cut the cr(x,~) into elementary pieces, thus 

cr(x,~)cpj(x,~),jEl, where (the cut-off functions) epi (x,~) E e; (R" xR") and 

sorne other properties. Then they made a Cotlar argument. 

If 8 = 1 people has problems since the corresponding operator T is not 
bounde9 on L 2 (R ") in general, but it still has the "integral operator 

representation" J k(x,y)f(y)dy with kan appropriate kernel. More precisely, T 

is an integral operator if T: L2 (R") -7L2 (R") is a bounded linear operator 

and its kernel k is a signed measure. The idea is that the integral operator 
remain bounded after suppresing all the cancellations that there exist in k. 

In that situation we use the Schur's lemma: "Jet k(x,y) be a non-negative 
measurab1e function defined on R" x R" and we assume the existence of two 
positive measurable functions w(x) and w (x), finites evcrywhere, satisfying 

J k(x,y) w(y)dy:::; w (x) a.e. and J k(x,y) w (x)dx:::; w(y) a.e. 

Then the integral operator Tf(x) = J k(x,y)f(y)dy is bounded on L2 (R") and 

IIT!I:::; 1 ". 

The general plan is to span the kernel k(x,y) as a series Lk j (x,y), which 
jEJ 

is not easy to obtain, such that the operators 7j f (x) = J k¡ (x,y) f(y)dy are 

integral operators '\fjEl, and Tk* 7j f (x) = J Aj.k (x,y) f(y)dy, and the 
corresponding non-negative operator defined by the kernel (A¡,k (x,y)) has a 
norm-bounded by w(j,k). We do the same for Tk lj* (using w (j,k)). 
Moreover, w(j,k) and w (j,k) satisfy (8). Now one applies Schur's lemma. S. 
Semmes had provided also a solution of the Zygmund's problem, using the 
Schur's lemma and the Haar basis. 
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E. Calderón-Zygmund Operators and Matrices. 

There exist an interesting relation between bases of wavelets and operator 
theory. Now we shall try to describe such relations. For more commentaries 
see [Ja-La]. Let {\llj.d be a basis of wavelets for L2 (R") and consider 

operators PE such that PE (\llj,k) = Ej,k \lfj,k, where E= (Ej,k) with j,kEZ. 
More generally, we consider the following class of operators 

9 = {T 1 T (\lfj,k) = 't j,k, j,kE Z, satisfies the standard estimates: 

there exist the constants e > O and a > O such that 
1 'tj,k (x)l ::;; e 2j/2 

Wa (2jx-k) and 

l'tj,k (X)- 'tj,k (x')l::;; e 2j/Z 2ja lx-x'la (Wa (2j X-k)+ Wa (2j X' -k)] (9) 

where Wa (x) = 1 
l+a } . 

(l+lxl) 

Al so, by construction, we consider the kernel k(x,y) of T as 

k(x,y) = L 'tj,dx) lflj,k (y), 
j,k 

which satisfies the standard estimates (or classical e-z estimates): k is a 
continuous function on R x R- { (x,y) 1 x =y} and ::3 e,8 positive constants 

such that lk(x,y)l::;; lx=vl if x *y and 

lk(x,y)- k(x' ,y)l + lk(y,x)- k(y,x')l::;; e lr-\~/j if 21x-x'l::;; lx-yl. 
ix-yi 

If, moreover, T is continuous on L2 and Tfis in the sense 

<Tf,g> = Jf k(x,y)f(y) g(x)dx dy f,gEV 

with disjoint supports, then T is called a ealderón-Zygmund operator ( eZO). 

It is useful to know that if f 'tj,k = O \ij,kE Z, then T is continuous on L2
• In 

the prove of this result there is a recipe which means to use sorne related 
matrices. Thus, as (\llj,k) is a basis for L2 we have that T is continuous on L

2 

{::::} V(cJ· k)E l2 we have 112. el· k 'tJ· k 11 o ::;; e llcJ k 11 2 , which lead us to consider 
' ' ' L- ' 1 

the matrix ( <'tj,ko 'tf,k' >) j.k,f,k'. 
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By convenience one considera change of notation, thus 

k+l 
A = { numbers A= -----f , j,kE z, which are in a 1-1 

2 

correspondence with the points ( ....L, , _L)}. 
2 21 

Therefore, instead 'Jii.b 'ti,k we write 'Jf~c, 't~c ,. 

Now we consider the main class of matrices: 

"?lt is the space of matrices M= (m~c,~c· h.~c·e A such that :3 two 
constants C, r > O with 

lm~c~c· 1 ~e 1 

' 21)-j'l(~+r) 
_L +-L.- l+r 

( 2
1 

2
1 

) 
_L +-L.-+ 1-1.-A.'I , 
21 2 1 

For example, if ('tic) is a set of functions satisfying the standard estimates 

(9), and such that f 't~c = O 'íllv, then the matrix ( <'t~c, 't~c· >) belongs to ?/t. 

The class ?lt has interesting properties, like mis an algebra (ie if T¡ E m and 

Tz E m then T¡ Tz E m); also every matrix in m defines a continuous 
1 = 1 { )2 operatoron lw(A)andon l1_(A) where 1,/A)= (c~c)/I.~clc~ci2.J <oo) 

w 

= n } and !1_ (A) = { (c~c) 1 sup 1 c~c 1 21 < oo . 
w A. 

To examine the relations between wavelets, MRA and CZO we shall takc 
MRA leading to 'JI, a wavelet compactly supported in [-M, M], anda scaling 
function <p of regularity ~ ;:::: 1 with ( H 1) moments vanishing. There are two 

ways to analyse operators 

T . h 
1 

. { the standard decomposition and 
wtt wave ets. the non- standard decomposition. 

Before do that, we considera few of general ideas. We have seen that 

lim IIPi f- f 11 2 = O, where Pi is the projection Pi : L2 ~ V¡ . With 
J_o;+= L 

operators a similar method works. Thus, Jet T be a continuous linear 
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operator on L2 (R) and one consider the sequence of operators T¡ =Pi T Pi , 

VjE Z, which is a continuous linear operator o ver V¡ . Then we ha ve that 
V fE L2 (R), lim 11 Pi T Pi f- T f 11 2 = O, thus informations on T will be 

j-++= L 

obtained from the propierties of T¡ . Therefore, the idea is to develop 
algoritms to study (7j )¡EZ. 

To motive the standard and non-standard (introduced by Beylkin-Coifman
Rokhlin in 1991) decompositions, one consider sorne general ideas. Let ~be 

a Hilbert space (for example L2 (R)), (EÜ~c be an orthonormal basis for~ (for 

example (\lfj.k)), and Jet T: ~~~a linear operator (for example, T a CZO). 
Then: 

(i) We have Tx = 2: <x,E~c > Tt~c = ¿ ¿ · <Tt~c, E~c·> E~c· ; thus appear an 
A .< A 

"infinite matrix" whose coefficients are (T E~c, E~c· ), which is useful to depict 
the operator T (look the form of the coefficients of the matrix M in 1/{). 

Therefore, as we choose basis in~. the study of those coefficients can reveal 
certain properties of the operator T. 

(ii) We suppose ~ = E1 EB H 1, where E1 and H1 are two non-trivial subspaces 

of ~ (think in V¡+1 = V¡ EB Wi ). Now Jet the projections 
PE 1 : ~ ~E1 and PH 1 : ~ ~H1 (think in Pi: L2 ~V¡ and Q¡: L 2 ~ W¡ ). 
Then T can be written in the form T = PE 1 TPE 1 + PE 1 TPH 1 + 
PH 1 TPE 1 + PH 1 TPH 1 thus T is depicted by an "infinite matrix" 

PE¡ TPH¡ J . d. 'd d . f bl k p TP a matnx IVI e m our oc s. 
H¡ H1 

Now we repeat the argument with H 1, ie. H 1 is written as the orthogonal sum 
of two non-trivial subspaces and we obtain a decomposition for PH 1 TP11 1 , 

and we iterate the algorithm. Thus we obtain an infinite matrix; the study of 
its coefficients m ay give information of the properties of T. 

(i) leads us to the standard decomposition, and (ii) to thc non-standard 
decomposition. 

The Standard Decomposition. We resume the arguments m the 
following proposition: "Jet Tbe an operator whose matrix is 
(m ~ex ) = ( <7\¡l~c , 'lf~c· > ), well defined by Ohypothesis. Then we ha ve 
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[i] M= (m J..).: ) E 11{ ~ [ii] T\!f"A = 'tA. satis ti es the standard estimates (9) 

and f 'tJ.. = O, '\/ A.~ 

[ii] T is a CZO with T(l) =O= T*(l), where by detinition T(l) = L f <h\!IJ.. 

and T*(l) = L f PJ..\!IJ.. being <JJ,. (x) = cr¡,k(x) = L ~l,k<p¡,J(x) and P"A (x) 

= P¡,k(x) = L Y{k <p¡,J (x) ". 
,1. 

The Non-Standard Decomposition. As we know, in a MRA for 
L\R) we have V¡+i = V¡ EB W¡ and the respective projections P¡ and Q¡ on V¡ 

and W¡, where we observe that P¡+l = P¡ + Q¡ . As before, we have the 
telescopic series 

T = :2, (P¡+1 Tp¡+1 - P¡ TP¡ ) = :2, (Q¡ TQ¡ + Q¡ TP¡ + P¡ TQ¡ ) 
.i=~ .i=-= 

which involves three kinds of scalar products 

aL = < T \lf¡,k ' \!lj.l > ' ~ L = < T <p¡,k ' \!lj.l > and rL = <T\!f¡.k ' <j}j.J >. 
(10) 

Now we return to sorne additional commentaries on CZO. In thc 
n-dimensional case, Calderón considered operators 

Tf(x) = p.v. f k(x,y)j(y)dy, where the kernel k(x,y) satisfies 

Ca 
lk(x,y)I:0;--

11 
, k(x,y)=-k(y,x) 

lx-vl 

:3 8 E (0, 1) and a constant C su eh that 

clx'-xl0 
lk(x',y)-k(x,y)I:O; 

11
+0 lx-yl 

l 
and 1 

~. (C) 

j 
We remark that the claim is to show how the wavelet based methods 

permit a complete description of that Calderón class of operators. Since these 
C-operators are not, in general, boundcd on L\R), it is amazing how the 
wavelet analysis leads to a necessary and sufficient conditions for 
boundedness. For to obtain the goal, we need to consider the n-dimensional 
wavelets \VA. . 
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There are two approaches for constructing wavelets in general dimensions. 
The first consists in generalizing the idea of MRA in R

1 and follows the way 

of one-dimensional construction case. The second method consists in 
obtaining the wavelets using the ]-dimensional construction. Since the 
general dimensional case follows from what we do in 2-dimensional case, we 
explain the 2-dimension. 

Thus, Jet {V¡ } )¡EZ be a MRA for L\R). We construct the subspace 'V¡ of 

L 2(R2
) by 'V¡= Vi (8) Vi (tensorial product), ie 

1 . 1 . 
'V¡ = { finite linear combinations of the functions ( 2 2 rp ( 2 1 x- k )2 2 rp (2 1 y- 1) 2 } 

(k.[)EZ 

( - means closure). Then {V¡} EZ is a MRA for L2(R\ 
./ 

An orthonormal basis for V¡ is given by {<\> ¡,(k
1

,k
2

)(x,y)} 2 where 
· (k¡,kz)EZ 

<1>¡,(k1 ,k2 ¡Cx,y) = 'P¡,k1 (x) 'P¡,k2 (y). 

(Remember that if (ek (x)) is an orthonormal basis for a Hilbert space ?', then 

(e k¡ (x) e k
2 

(y)) is an orthonormal basis for ?' (8) ?' ). 

Now we construct the wavelets. For this, Jet 'U'¡ be the orthogonal 

complement of 'V¡ in 1'¡+1 , ie. 1'¡+1 ='V¡ EB 'U'¡ . Therefore, 

1'¡+1 = Vi+l ® V¡+i =(Vi EB Wi) ® (Vi EB W¡ ) 

= V¡ ® V¡ EB (Vi ® ~ EB Wi ® V¡ EB ~ ® W¡ ) 
='V¡ EB ( ... ). 

Therefore 

anda basis for 'U'¡ is given by the functions 
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'lfj.~ = 2i 'ljf(i) (2i x-k) where 'j1< 1l (x,y) = 'l'O.Ol (x,y) = 'ljf(x) <p(y), 

'l'(Zl (x,y) = 'l'co. ll (x,y) = <p(x) 'jf(y ), and 

'l'Ol (x,y) = 'l'O.Il (x,y) = 'jf(x) 'jf(y), where ÍE {0,1 }2
- (0,0). 



Thus in the 2-dimensional case we have a basis with three wavelets. In the 
general case the basis has 2" - 1 wavelets. More precisely, if x = (xJ, ... ,x11 ) 

then <jl(x) = cp(x1) cp(xz) ... cp(xn) and \!fE (x) =\!fE¡ (x,) \!fEz (xz) ... \!fE, Cxn) with 

e= (e1 , ... , e11 ) in {O, 1}" , e :;t (0, ... ,0) and \!fo(t) = cp(t), \!f1(t) = \!f(t). 

Now A.E A = zxz" xE, with E= {O, 1 } "- { (0, ... ,0)), and A.= (j,k,E). 

The following theorem resumes the non-standard representation for CZO 
(we return to n = 1 case to do notations as simple as possible) where one 
uses the en tries (1 0). Note the relations between the operator theory and 
wavelets. 

Theorem. " The kernel k of the operator T, T f (x) = p. v. f k(x,y) f(y)dy, 
satisfies the conditions (C) 

<:::} la j 1 < e ly.i 1 < e , and 
k,! - (l+lk-11)1+8 , k,l - (l+lk-11) 1+8 

a ; a; r:t.i yi 
k,/=- l.k' 1-'k,l =- k.t· 

Moreover, the kernel k(x,y) is given by 

k(x,y) = III rL %.1 ex) o/j.k (y) + III ~L '1/¡.1 ex) crj.k (y) 
j k l 

+ III 
j k l 

j k l 

aL \!fJ,I (x) o/j,k (y) ". 

Under certain conditions we take an operator T in the class considered in 
the last theorem, defined by T (o/j,k) = A.j,k cpj,k where the sequen ce A.¡, k ( of 
real numbers) characterizes T. It is striking that there exist necessary and 
sufficient conditions for the L2

- continuity of T. 
For this we need to establish the Carlesson condition. Let 1 be the family of 
all dyadic intervals, and Jet 

A.(J) = 2·j/Z A.j,k where 1 = [..Ji.,., l.±l ) E 1. 
2.1 2.1 

Then we say that A.(/), lE 1, satisfies the earleson condition if 3 e positive 
constant such that 

I IA.(/)12 ~ e 111 ... lE 1. 
!el 
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Thus we arrive to the important resull, where it is the spirit of the 
Zygmund's problem, the motivation of this writing. 

Theorem. The operator T ('Jfj,k) = Aj.k <¡}j,k is bounded on L2 
(R) <=>A (R) = 

2-j/2 Aj,k satisfies the Carleson condition. 
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