A SEPARATION AXIOM BETWEEN SEMI-T₀ AND SEMI-T₁*

Miguel Caldas

Dedicated to Professor Chaim S. Hönig on the occasion of his 70th birthday

Abstract

The author introduces a new separation axiom and studies some of their basic properties.

The implication of these new separation axiom among themselves and with the well known axioms $semi-T_2 semi-T_1$ and $semi-T_0$ are obtained.

1. Introduction¹

Semi-open sets where introduced and investigated by N. Levine [6] in 1963. In 1975, S.N. Maheshwari and R. Prasad [7] used semi-open sets to define and investigate three new separation axioms, called semi- T_2 , semi- T_1 and semi- T_0 . Moreover, they have shown that the following implications hold.

Universidade Federal Fluminense IMUFF, RJ-Brasil.

^{*} AMS (1980) subject classification (1985-Revision): 54D10

¹ Key Words: Topology, semi-open sets, map semi-continuous map irresolute, sg-closed sets.

$$\begin{array}{ccc} T_2 \rightarrow & semi - T_2 \\ \downarrow & & \downarrow \\ T_1 \rightarrow & semi - T_1 \\ \downarrow & & \downarrow \\ T_0 \rightarrow & semi - T_0 \end{array}$$

Later, in 1982 P.Bhattacharyya and B.K. Lahiri [1] used semi-open sets to define the axiom semi- $T_{1/2}$ and further investigated the separation axioms semi- T_2 , semi- T_1 and semi- T_0 . For other properties of semi- $T_{1/2}$, see [4]. The purpose of this paper is to introduce a new separation axiom semi- D_1 which is strictly between semi- T_0 and semi- T_1 , and discuss its relations with the axioms mentioned above.

Listed below are definitions that will be utilized. We identify the separation axioms with the class of topological spaces satisfying these axioms.

Definition 1.1 If (X,τ) is a topological space and $A \subset X$, then A is called semi-open [6] if, there exists $O \in \tau$ such that $O \subset A \subset Cl(O)$. The family of all semi-open set will denoted by $SO(X,\tau)$.

Definition 1.2 Let (X,τ) be a topological space and let $A,B \subset X$. Then A is semi-closed [2] if, its complement A^c (or X - A) is semi-open and the semi-closure of B, denoted by sCl(B), is the intersection of all semi-closed sets containing B.

Definition 1.3 A mapping $f: (X,\tau) \to (Y,\sigma)$ is said to be irresolute [5] if, for every semi-open set A its inverse image $f^{-1}(A)$ is also semi-open.

Definition 1.4 A topological space (X,τ) is semi- T_0 (resp. semi- T_1) [7] if, for $x,y \in X$ such that $x \neq y$ there exists a semi-open set containing x but not y or (resp., and) a semi-open set containing y but not x.

Definition 1.5 A topological space (X,τ) is semi- T_2 [7] if, for $x,y \in X$ such that $x \neq y$ there exist semi-open sets O_1 and O_2 such that $x \in O_1$, $y \in O_2$ and $O_1 \cap O_2 = \emptyset$.

Definition 1.6 If (X,τ) is a topological space and $A \subset X$, then A is sg-closed [1] if, $sCl(A) \subset O$ holds whenever $A \subset O$ and $O \in SO(X,\tau)$.

Definition 1.7 A topological space (X,τ) is semi- $T_{1/2}$ [1] if, every sg-closed set in (X,τ) is semi-closed in (X,τ) .

2. The separation axiom semi- D_1

Definition 2.1 Let X be a topological space. A subset $S \subset X$ is called a semi-Difference set (in short sD-set) if there are two semi-open sets O_1 , O_2 in X such that $O_1 \neq X$ and $S = O_1 \setminus O_2$.

A semi-open set $O \neq X$ is sD-set since $O = O \setminus \emptyset$.

If we replace semi-open sets in the usual definitions of semi- T_0 , semi- T_1 , semi- T_2 with sD-sets, we obtain separation axioms semi- D_0 , semi- D_1 , semi- D_2 respectively as follows.

Definition 2.2 A topological space (X,τ) is semi- D_0 (resp. semi- D_1) if, for $x,y \in X$ such that $x\neq y$ there exists a sD-set of X containing x but not y or (resp., and) a sD-set containing y but not x.

Definition 2.3 A topological space (X,τ) is semi- D_2 if, for $x,y \in X$ such that $x \neq y$ there exist disjoint sD-sets S_1 and S_2 such that $x \in S_1$ and $y \in S_2$.

Remark 1. (i) If (X,τ) is T_i , then (X,τ) is semi- T_i , i=0,1,2, and the converse is false [2].

- (ii) If (X,τ) is semi- T_i , then it is semi- T_{i-1} , i=1,2, and the converse is false [2].
- (iii) Obviously, if (X,τ) is semi- T_i , then (X,τ) is semi- D_i , i=0,1,2.
- (iv) If (X,τ) is semi- D_i , then it is semi- D_{i-1} , i=1,2.

Theorem 2.4 Let (X,τ) be a topological space. Then,

- (i) (X,τ) is semi- D_0 iff, (X,τ) is semi- T_0 .
- (ii) (X,τ) is semi- D_1 iff, (X,τ) is semi- D_2 .

Proof. (i) The sufficiency is Remark 2.1(iii). To prove necessity. Let (X,τ) semi- D_0 . Then for each distinct pair $x,y \in X$, at least one of x,y, say x, belongs to a sD-set S but $y \notin S$. Let $S = O_1 \setminus O_2$ where $O_1 \neq X$ and

 $O_1, O_2 \in SO(X, \tau)$. Then $x \in O_1$, and for $y \notin S$ we have two cases: (a) $y \notin O_1$; (b) $y \in O_1$ and $y \in O_2$.

In case (a), O_1 contains x but does not contain y;

In case (b), O_2 contains y but does not contain x.

Hence X is semi- T_0 .

(ii) Sufficiency. Remark 1(iv).

Necessity. Suppose X semi- D_1 . Then for each distinct pair $x, y \in X$, we have sD-sets S_1 , S_2 such that $x \in S_1$, $y \notin S_1$; $y \in S_2$, $x \notin S_2$. Let $S_1 = O_1 \setminus O_2$, $S_2 = O_3 \setminus O_4$. From $x \notin S_2$ we have either $x \notin O_3$ or $x \in O_3$ and $x \in O_4$. We discuss the two cases separately.

- (1) $x \notin O_3$. From $y \notin S_1$ we have two subcases:
- (a) $x \notin O_1$. From $x \in O_1 \setminus O_2$ we have $x \in O_1 \setminus (O_2 \cup O_3)$ from $y \in O_3 \setminus O_4$ we have $y \in O_3 \setminus (O_1 \cup O_4)$. It is easy to see that

$$(O_1 \setminus (O_2 \cup O_3)) \cap (O_3 \setminus (O_1 \cup O_4) = \emptyset$$

- (b) $y \in O_1$ and $y \in O_2$. We have $x \in O_1 \setminus O_2$, $y \in O_2$. $(O_1 \setminus O_2) \cap O_2 = \emptyset$.
- (2) $x \in O_3$ and $x \in O_4$. We have $y \in O_3 \setminus O_4$, $x \in O_4$. $(O_3 \setminus O_4) \cap O_4 = \emptyset$. From the discussion above we know that the space X is semi- D_2 . \square

Theorem 2.5 If (X,τ) is semi- D_1 , then it is semi- T_0 .

Proof. Remark 1(iv) and Theorem 2.4(i). \square

We give an example which shows that the converse of Theorem 2.5 is false.

Example 2.6 Let $X = \{a,b\}$ with topology $\tau = \{\emptyset, \{a\}, X\}$. Then (X,τ) is semi- T_0 since is T_0 but not semi- D_1 since there is not a sD-set containing b but not a.

The following example shows that semi- D_1 space need not be semi- T_1 .

Example 2.7 Let
$$X = \{a,b,c,d\}$$
 with topology $\tau = \{\emptyset, \{a\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}\}\}$

$$\tau = \{\emptyset, \{a\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}, X\}.$$

Then we have

 $SO(X,\tau) = \{\emptyset, \{a\}, \{a,d\}, \{a,b\}, \{a,c\}, \{a,b,d\}, \{a,c,d\}, \{a,b,c\}, X\}.$ Since $\{b\} = \{a,b,d\}\setminus\{a,d\},\{c\} = \{a,c,d\}\setminus\{a,d\},\{d\} = \{a,d\}\setminus\{a\}, hence (X,\tau)$ is semi- D_1 space but not semi- T_1 since each semi-open set containing b contains a.

Definition 2.8 Let x_0 be a point in a topological space X. If x_0 has not semi-neighborhood other than X, then call x_0 a sc.c (common to all semi-closed sets point).

The name comes from the fact that x_0 belongs to each semi-closed set in X.

Theorem 2.9 A semi- T_0 space X is semi- D_1 , iff there is not sc.c point in X.

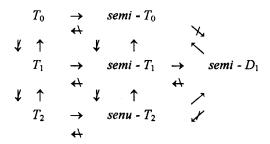
Proof. Necessity. If X is semi- D_1 then each point $x \in X$, belongs to a sD-sets $S = O_1 \setminus O_2$, hence $x \in O_1$. Since $O_1 \neq X$, x is not sc.c point.

Sufficiency. If X is semi- T_0 , then for each distinct pair of points $x,y \in X$, at least one of x,y, say x has a semi-neighborhood U such that $x \in U$ and $y \notin U$, hence $U \neq X$ is a sD-set. If X has not sc.c point, then y is not a sc.c point, hence there exists a semi-neighborhood V of y such that $V \neq X$. Now $y \in V \setminus U$, $x \notin V \setminus U$ and $V \setminus U$ is a sD-set. Therefore X is semi- $D_1 \, . \, \square$

Corollary 2.10 A semi- T_0 space X is not semi- D_1 iff, there is a unique sc. c point in X.

Proof. Only the uniqueness of the sc.c point is to be proved. If x_o , y_o are two sc.c points in X then since X is semi- T_0 , at least one of x_o , y_o , say x_o , has a semi-neighborhood U such that $x_o \in U$, $y_o \notin U$, hence $U \neq X$, x_o is not a sc.c point, contradiction. \square

Remark 2. From ([7], Examples 3.1; 4.1; and 5.1), Example 2.6 and Example 2.7, we have the following diagram:



The following example shows that semi- D_1 space does not imply D_1 space in the sense of J.Tong [8].

Example 2.11 If $X = \{a,b,c,d\}$ and let $\tau = \{\emptyset,\{a\},\{b\},\{a,b\},X\}$ be the topology on X. Then X is a semi- D_1 space which is not D_1 .

Definition 2.12 A topological space (X,τ) will be termed semi-symmetric [4] if, for x and y in X, then $x \in SCl(\{y\})$ implies that $y \in SCl(\{x\})$.

Theorem 2.13 [4]. Let (X,τ) be a topological space. Then,

- (i) (X,τ) is semi-symmetric iff, $\{x\}$ is sg-closed for each x in X,
- (ii) If (X,τ) is a semi- T_1 space, then (X,τ) is semi-symmetric,
- (iii) (X,τ) is semi-symmetric and semi- T_0 iff, (X,τ) is semi- T_1 .

Theorem 2.14 Let (X,τ) be a semi-symmetric space. Then the following are equivalent.

- (i) (X,τ) is semi- T_0 ,
- (ii) (X,τ) is semi- $T_{1/2}$,
- (iii) (X,τ) is semi- T_1 .

Proof. ([4], Theorem 3.2). □

From Remark 1 (iii), Theorem 2.5, Theorem 2.13 (iii) and Theorem 2.14, we have the following theorem.

Theorem 2.15 Let (X,τ) be a semi-symmetric space then the following are equivalent,

- (i) (X,τ) is semi- T_0
- (ii) (X,τ) is semi- D_1 ,
- (iii) (X,τ) is semi- $T_{1/2}$,
- (iv) (X,τ) is semi- T_1 .

Theorem 2.16 If $f: X \to Y$ is a irresolute and surjective mapping, S is a sD-set in Y, then $f^{-1}(S)$ is a sD-set in X.

Proof. Let S be a sD-set in Y. Then there are semi-open sets O_1 and O_2 in Y such that $S = O_1 \setminus O_2$ and $O_1 \neq Y$. By the irresolute of f, $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are semi-open in X. Since $O_1 \neq Y$, we have $f^{-1}(O_1) \neq X$. Hence $f^{-1}(S) = f^{-1}(O_1) \setminus f^{-1}(O_2)$ is a sD-set. \square

Theorem 2.17 If (Y,σ) is semi- D_1 and $f:(X,\tau) \to (Y,\sigma)$ is irresolute and bijective, then (X,τ) is semi- D_1 .

Proof. Suppose that Y is a semi- D_1 space. Let x and y be any pair of distinct point in X. Since f is injective and Y is semi- D_1 , there exist sD-sets S_x and S_y of Y containing f(x) and f(y) respectively, such that $f(y) \notin S_x$ and $f(x) \notin S_y$. By Theorem 2.16, $f^{-1}(S_x)$ and $f^{-1}(S_y)$ are sD-sets in X containing x and y respectively. This implies that X is a semi- D_1 space. \Box

We finish our article giving a other characterization of semi- D_1 spaces.

Theorem 2.18 A space X is semi- D_1 iff, for each pair of distinct points x and y in X, there exists a irresolute, and surjective mapping f of a space X into a semi- D_1 space Y such that $f(x) \neq f(y)$.

Proof. Necessity. For every pair of distinct point of X, it suffices, to take the identity mapping on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hipothesis, there exists a irresolute, surjective mapping f of a space X into a semi- D_1 space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint sD-sets S_x and S_y in Y such that $f(x) \in S_x$ and $f(y) \in S_y$. Since f is irresolute and surjective, by Theorem 2.16, $f^{-1}(S_x)$ and $f^{-1}(S_y)$ are disjoint sD-sets in X containing x and y, respectively. Hence and Theorem 2.4 (ii), X is semi- D_1 space. \square

Remark 3. Theorem 2.17, can be obtained as a consequence from Theorem 2.18.

Corollary 2.19 Let $\{X_{\alpha}/\alpha \in I\}$ be any family of Topological spaces. If X_{α} is semi- D_1 , for each $\alpha \in I$, then, the product space ΠX_{α} is semi- D_1 .

Prof. Let (x_{α}) and (y_{α}) be any pair of distinct points in ΠX_{α} . Then there exists an index $\beta \in I$ such that $x_{\beta} \neq y_{\beta}$. The natural projection P_{β} : $\Pi X_{\alpha} \to X_{\beta}$ is continuous and open (therefore irresolute [5]) and P_{β} $((x_{\alpha})) \neq P_{\beta}$ $((y_{\alpha}))$. Since X_{β} is semi- D_1 , by Theorem 2.18, ΠX_{α} is semi- D_1 . \square

References

- [1] P. Bhattacharyya and B.K. Lahiri. Semi-generalized Closed Set in Topology. Ind. Jr. Math.29 (1987). 375-382.
- [2] N. Biswas. On Characterization of Semi-continuous Function. Ati Accad. Naz Lincei Ren Sci.Fis.Mat.Natur. 48(1970). 399-402.
- [3] M. Caldas. On g-Closed Sets and g-Continuous Mappings. Kyungpook Math. Jr.33 (1993). 205-209.
- [4] M. Caldas. Semi-T_{1/2} Spaces. Pro Math. 8 (1994). 115-121.
- [5] S.G.Crossley and S.K. Hildebrand. Semi-Topological Properties. Fund. Math. 74 (1974). 233-254.
- [6] N. Levine. Semi-open Sets and Semi-Continuity in Topological Spaces. Amer. Math. Monthly 70 (1963). 36-41.
- [7] S.N. Maheshwari and R. Prasad. Some new Separation Axioms. Ann. Soc. Sci. Bruxelles.89(1975). 395-402.
- [8] J.Tong. A Separation Axiom Between T₀ and T₁. Ann.Soc.Sci. Bruxelles. 96 (1982). 85-90.

Miguel Caldas Cueva gmamccs@vm.uff.br Universidade Federal Fluminense Departamento de Matemática Aplicada - IMUFF Rua São Paulo S/N°24020-005, Niteroi, RJ-Brasil