A DISCRETE ANALOGUE OF MACLAURIN SERIES

Mumtaz Ahmad K.

Abstract

In the present paper a (p, q)-analytic function analogue of Maclaurin's series has been obtained.

1. Introduction

In 1993, the present author [1] defined and studied (p, q)-analytic functions. Some of its definitions required in this paper are as given below:

Definition 1. The discrete plane Q^{\prime} with respect to some fixed point $z^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ in the first quadrant, is defined by the set of lattice points,

$$
Q^{\prime}=\left\{\left(p^{m \prime \prime} x^{\prime}, q^{n} y^{\prime}\right) ; m, n \in Z \text { the set of integers }\right\} .
$$

Definition 2. Two lattice points, $z_{i}, z_{i+1} \in Q$ ' are said to be 'adjacent' if z_{i+1} is one of $\left(p x_{i}, y_{i}\right),\left(p^{-1} x_{i} y_{i}\right)\left(x_{i} q y_{i}\right)$ or $\left(x_{i} q^{-1} y_{i}\right)$.

[^0]Definition 3. A 'discrete curve' C in Q ' connecting z_{0} to z_{n} is denoted by the sequence

$$
C \equiv\left\langle z_{0}, z_{1}, z_{2}, \ldots, z_{i n}\right\rangle
$$

where $z_{i}, z_{i+1} ; i=0,1,2, \ldots,(n-1)$, are adjacent points of Q '.
If the points are distinct $\left(z_{i} \neq z_{j} ; i \neq j\right)$ then the discrete curve C is said to be 'simple'.

Definition 4. A 'discrete closed curve' C in Q ' is given by the sequence $\left\langle z_{0 .} z_{1}, z_{2}, \ldots, z_{n}\right\rangle$ where $\left\langle z_{0,}, z_{l}, \ldots, z_{n-l}\right\rangle$ is simple and $z_{0}=z_{i l}$.

Denote by \bar{C} the continuous closed curve formed by joining adjacent points of the discrete closed curve C. Then \bar{C} encloses certain points of Q^{\prime}, denoted by $\operatorname{lnt}(C)$.

Definition 5. A 'finite discrete domain' B is defined as

$$
B=\left\{z \in Q^{\prime} ; z \in C \dot{U} \operatorname{Int}(C)\right\} .
$$

Definition 6. Functions defined on the points of a discrete domain B are said to be 'discrete functions'.

Definition 7. The p-difference and q-difference operators $D_{p, x}$ and $D_{4, \text {, }}$ are defined as follows.

$$
\begin{align*}
& D_{p, x}[f(z)]=\frac{f(z)-f(p x, y)}{(1-p) \cdot x} \tag{1.1}\\
& D_{q, y}[f(z)]=\frac{f(z)-f(x, q y)}{(1-q) i y} \tag{1.2}
\end{align*}
$$

where $f(z) \equiv f(x, y), \quad z=x+i y$.
The two operators (1.1) and (1.2) involve a 'basic triad' of points denoted by

$$
\begin{equation*}
T(z)=\{(x, y),(p x, y),(x, q y)\} . \tag{1.3}
\end{equation*}
$$

Let B be a discrete domain. Then a discrete function f is said to be ' (p, q)-analytic' at $z \in B$ if

$$
\begin{equation*}
D_{p, x}[f(z)]=D_{q, y}[f(z)] . \tag{1.4}
\end{equation*}
$$

If in addition (1.4) holds for every $z \in B$ such that $T(z) \subseteq B$ then f is said to be (p, q) - analytic in B.

For $0<q<1$, we also have
$\left(q^{\alpha}\right)_{n} \equiv\left(1-q^{\alpha}\right)_{n .4}=\left(1-q^{\alpha}\right)\left(1-q^{\alpha+1}\right)\left(1-q^{\alpha+2}\right) \ldots\left(1-q^{\alpha+n-1}\right) ;\left(q^{\alpha}\right)_{0}=1$
From (1.1), we have

$$
\begin{equation*}
D_{p, x}\left[x^{n}\right]=\frac{1-p^{n}}{1-p} x^{n-1} \tag{1.7}
\end{equation*}
$$

and

$$
D_{p, x}^{j}\left[x^{n}\right]=\left\{\begin{array}{l}
\left(1-p^{n-j+1}\right)\left(1-p^{n-j+2}\right) \ldots\left(1-p^{n-1}\right)\left(1-p^{n}\right) x^{n-j} ; j \leq n \tag{1.8}\\
0, \quad j>n
\end{array}\right.
$$

The continuation operator C_{y} and the convolution operator * were studied by Khan and Najmi in their papers [2] and [3] respectively. To use them in this paper, their definitions are reproduced here. The continuation operator C_{y} is defined as

$$
\begin{equation*}
C_{y} \equiv \sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j, q}}(i y)^{j} D_{p, x}^{j} \tag{1.9}
\end{equation*}
$$

and $f(z)=C_{y}[f(x, 0)]=\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j, q}}(i y)^{j} D_{p, x}^{j}[f(x, 0)]$

Similarly,

$$
\begin{equation*}
C_{x}[f(0, y)]=\sum_{j=0}^{\infty} \frac{(1-p)^{j}}{(1-p)_{j, p}} x^{j} D_{q, y}^{j}[f(0, y)] \tag{1.11}
\end{equation*}
$$

A discrete analogue $z^{(n)}$ of the classical function z^{n} was defined by Khan and Najmi [4] as
$z^{(n)} \equiv C_{y}\left(x^{n}\right) ; n$ a non-negative integer
which by virtue of (1.8) and (1.9) becomes

$$
\begin{equation*}
z^{(n)}=\sum_{j=0}^{n} \frac{(1-p)_{n, p}(1-q)^{j}}{(1-p)_{n-j, p}(1-q)_{j, q}(1-p)^{j}}(i y)^{j} x^{n-j} \tag{1.12}
\end{equation*}
$$

The convolution operator * is defined as

$$
\begin{align*}
(f * q)(z) & \equiv C_{y}[f(x, 0) g(x, 0)] \\
& =\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j . q}}(i y)^{j} D_{p, x}^{j}[f(x, 0) g(x, 0)] \tag{1.13}
\end{align*}
$$

for all $z \in R$ ' such that the series converges, where the 'discrete rectangular domain' R^{\prime} is defined by

$$
\begin{equation*}
R^{\prime}=\left\{\left(p^{m} x^{\prime}, q^{n} y^{\prime}\right) ; m=0,1,2, \ldots ; n=0,1,2, \ldots\right\} \tag{1.14}
\end{equation*}
$$

If X^{+}, Y^{+}are defined by

$$
\begin{align*}
& X^{+} \equiv\left\{\left(p^{m} x^{\prime}, 0\right) ; m=0,1,2, \ldots\right\}, \tag{1.15}\\
& Y^{+} \equiv\left\{\left(0, q^{n} y^{\prime}\right) ; n=0,1,2, \ldots\right\}, \tag{1.16}
\end{align*}
$$

then the extended rectangular domain \bar{R} is defined as

$$
\begin{equation*}
\bar{R}=R^{\prime} \cup X^{+} \cup Y^{+} \tag{1.17}
\end{equation*}
$$

The following theorem from the author's earlier paper [5] is also required:

Theorem 1.1. If lim sup $\left|a_{j}\right|^{\frac{1}{j}}=a$, then the series

$$
f(z)=\sum_{j=0}^{\infty} \frac{(1-p)^{j}}{(1-p)_{j, p}} a_{j} z^{(j)}
$$

converges absolutely for all z such that

$$
\|(1-p) x+(1-q) i y\|<\frac{1}{a} .
$$

2. Discrete Maclaurin Series

To include the point $(0,0)$, extend the definition of \bar{R} (from (1.17)) as follows:

$$
\begin{equation*}
\bar{R}_{\boldsymbol{o}} \equiv \bar{R} \cup(0,0) \tag{2.1}
\end{equation*}
$$

A discrete function f is said to be (p, q)-analytic on \bar{R}_{0} if it is (p, q)-analytic on \bar{R} and, in addition, $\lim _{(x, y) \rightarrow(0,0)} D^{j}[f(x, y)]$ exists. The limit is denoted by $D^{j} f(0,0)$.

Under certain conditions the discrete Maclaurin series can be shown to represent a (p, q)-analytic function, provided the series converges. For example the following theorem holds:

Theorem 2.1. Let f be (p, q)-analytic in \bar{R}_{b}. If $f(z)=C_{y}[f(x, 0)]=C_{x}[f(0, y)]$, the series representations of C_{y}, C_{r} being uniformly and absolutely convergent in \bar{R}_{θ}, then

$$
f(z)=\sum_{j=O}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j . q}} D^{j}[f(0,0)] z^{(j)}
$$

the series being absolutely convergent for all $z \in \bar{R}_{\sigma}$.

Proof: $\quad f(z)=C_{x}[f(0, y)]$,
whence by (1.11),

$$
f(z)=\sum_{j=0}^{\infty} \frac{(1-p)^{j}}{(1-p)_{j, p}} x^{j} D_{q, y}^{j}[f(0, y)]
$$

Hence,

$$
f(x, 0)=\lim _{y \rightarrow 0} \sum_{j=0}^{\infty} \frac{(1-p)^{j}}{(1-p)_{j, p}} x^{j} D_{y, y}^{j}[f(0, y)]
$$

and by uniform convergence,

$$
f(x, 0)=\sum_{j=0}^{\infty} \frac{(1-p)^{j}}{(1-p)_{j, p}} x^{j} \lim _{y \rightarrow 0} D_{q, y}^{j}[f(0, y)] .
$$

By (2.2),

$$
f(x, 0)=\sum_{j=0}^{\infty} \frac{(1-p)^{j}}{(1-p)_{j . p}} x^{j} D^{j}[f(0,0)]
$$

Now $f(z)$ is also given by

$$
\begin{aligned}
f(z) & =C_{y}[f(x, 0)] \\
& =\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j, q}}(i y)^{j} D_{p, x}^{j}[f(x, 0)]
\end{aligned}
$$

and so by above,

$$
\begin{aligned}
f(z) & =\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j \cdot q}}(i y)^{j} D_{p, x}^{j} \sum_{k=0}^{\infty} \frac{(1-p)^{k}}{(1-p)_{k, p}} x^{k} D^{k}[f(0,0)] \\
& =\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j, q}}(i y)^{j} \sum_{k=0}^{\infty} \frac{(1-p)^{k}}{(1-p)_{k, p}} x^{k} D^{k+j} f(0,0) .
\end{aligned}
$$

By absolute convergence, the summation can be rearranged to give

$$
\begin{aligned}
f(z) & =\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j, q}} D^{j} f(0,0) \sum_{k=0}^{j} \frac{(1-q)_{j, q}(1-p)^{k} x^{k}(i y)^{j-k}}{(1-q)_{j-k, q}(1-q)^{k}(1-p)_{k, p}} \\
& =\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j, q}} D^{j}[f(0,0)] z^{(j)} . \text { This proves the theorem. }
\end{aligned}
$$

Theorem 1.1 provides as a direct consequence a condition for convergence of the discrete Maclaurin series as follows:

Theorem 2.2. If lim sup $\left\{\left|D^{j} f(0,0)\right|^{\frac{1}{j}}\right\}=a$, then the series

$$
\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j . q}} D^{j}[f(0,0)] z^{(j)}
$$

converges absolutely for all z such that

$$
\|(1-p) x+(1-q) i y\|<\frac{1}{a} .
$$

References

[1] Khan, M. A. (p,q) - Analytic functions and Discrete 'bibasic' Hypergeometric series. Math. Notae, Argentina, vol. 37, pp. 43-56, 1993-94.
[2] Khan, M. A. and Najmi, M. Discrete analytic continuation of a (p, q) analytic function. Communicated for publication.
[3] Khan, M. A. and Najmi, M. On a convolution operator for (p, q)analytic functions. Communicated for publication.
[4] Khan, M. A. and Najmi, M. On Discrete powers and Polynomials. Communicated for publication.
[5] Khan, M.A. A note on discrete exponential and trigonometric functions. Communicated for publication.

> Mumtaz Ahmad Khan
> Department of Applied Mathematics, Faculty of Engineering
> A.M.U., ALIGARH-202002, U.P., INDIA

[^0]: \Leftrightarrow Department of Applied Mathematics. Faculty of Engineering, U.P., India.

