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PROBLEMS IN INCOMPRESSIBLE 
LINEAR ELASTICITY INVOL VING 

TANGENTIAL AND NORMAL 
COMPONENTS OF THE 
DISPLACEMENT FIELD 
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Abstract 

We consider the linear system 
-L1 u + grad p = f plus the divergence-free 

condition div u = O, in a bounded and 
conJJ,ected but non simply connected open 

set .Q of /f(/3, with a boundary r of e= class. 
Using orthogonal decompositions ofthe 

Hilbert space of square integrable vector 
fields on .Q, we show well posedness for two 
boundary value problems involving normal 

or tangential components of the 
displacement field on r. 
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l. Introduction 

In [5], the method of orthogonal projections on the space { L2 (Q)} 3 of 

square integrable vector fields on Q, is suggested to study sorne constrained 
problems in elasticity theory. In this work, we are placed on the special case 
of divergence-free constraint in linear elasticity. 

In the seque), we denote L2 (Q)3 
: = L2 (Q) x L2 (Q) x L2 (Q) with its 

usual norm 

The divergence-free constraint, div u= O, implies 

- ~ = curl curl = -div grad 

from the classical identify curl curl = -div grad + grad div. 

Hodge's decompositions of a given vector field f E L2 (0)3 ([2] 
Corollaries 5' and 6), give us f = grad p + curl w. The isomorphisms of 
the curl operator are used to solve the two problems by similar arguments in 
[1]. 

2. Terminology and notations 

The results of this section in more detailed form can be found in [2,3,4]. 

Let Q a bounded and connected open subset of !Rl3 with boundary r, 
which is an regular (of C = class) oriented surface in !Rl3, with an exterior 
normal vector field n. 

i. Q is not necessarily simply connected and r is an union of connected 
components 1 0, I¡, ... , 1m (10 being the boundary of the unbounded 
connected component of the complement nc of Q in 1Rl3). 

92 



ii. There exists a cut surface of O, that is, a nonoverlapping union of 

regular surfaces L, = LJ U ... U LN, with L; (cut surfaces) contained 

in O and transversal to the components r; of r. N is the minar positive 

integer such that O¿ = 0\L, became a simply connected, lipschitzian 

open subset of 1Rl3 • Thus, O¿ has the boundary r ¿ =r U I,. Associated 

to any L; we consider L, t and L,¡, respectively, the two opposites 

sides of L; and we still denote by n the normal vector field on L; that 

is directed from L, t to L, j . lf there exists the restrictions <p J L.t and 

<p 1 L.i , for a given function <p on 0~:, the jump of <p on L; is denoted by 

Por instance, we can think of O in 1Rl3 as a three-dimensional torus 
(non simply connected) or a simply connected open region interior to two 
concentric spheres ro of radius r0 and r 1 of radius r 1 (r1 < r0). 

Traces Theorems and Green ldentities 

The trace operator of H 1 (0) 
l 

Yo : H 1 (O) ~ H 2 ( r), <p f--7 y0<p is a continuous linear surjecti ve 
l 

operator which is denoted by y0<p = <j>lr· The norm on H2 (r) is given for 
l 

<1> by 11<1> 11 l ( ) = inf _1 ( ) \\u\\H 1 (n). It's topological dual is H -2 (r), the 
H 2 r UEYo <1> 

duality product < , > 1 1 , is denoted by < ,>r. The norm of a 
H-2 (r).H2 (r) 

l 

functional € in H-2 (r) isgivenby lifiiH-1(r)=suplluiiHt(n)=l<€,u¡r>r. 
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The normal trace in H (div, Q) 

We consider H (div, Q) = {u E L2 (n)
3 

:div u E L2 (n)} with the 

scalar product 

(u,v) ( . )=(u,v) 2 ( ) 3 +(div u, div v) 2 ( )' 
H dtv,n L n L n 

The normal trace Yn is the continuous linear surjective operator 
1 

y": H(div, Q) ~ H-2 (r) 

which is the continuous extension of the operator y": u H u¡ r · n defined on 

D(n)
3

, where D(n)= { <l>¡n:<l> E D (~3)} .. We will denote y" by u·n¡r· 

1 

Wehave 'v'<!>=(<!>o, ... ,<!>m)E H2(r), 

<u·~r.<l>>r =<u·~~ ,<!>o>~ + ... +<u·~r • <l>m >r · 
1 1 O O 1 m m 

Consequently,u·n¡r=Ü<=>u·n¡r¡ =0, O~i~rn. 

In particular, 

< u· n¡ r, 1 > r =<u· n¡ , 1 > r
11 

+ ... +<u· n¡ , 1 > r 
G1 ~ m 

1 

where we are taking <1> =E H 2 (r). Usually, for all i, O~ i ~ m, we denote 

< u·'lr; ·~r; >:= J r u·n<l>, forall <1> E H~ (r). 
1 

Green identify in H (div, Q) 

\iuE H(div,n), \i<pE H 1(n), 

(<p,divu) L2 (n) +(grad<p, u) L2 (n) 3 =< u·n¡r•<pir > r· 
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In particular, for u E H (div, 0) we have 

fn divu=<u·n¡r• 1>1 . 

The tangential trace in H ( curl, O) 

It's the continuous linear operator 

1 

Yt: H (curl, O) ~ H-2 (r)
3 

which is the continuous extension of the map UE D( O) 
3 ~ u 1\ n¡ 

1 
E D( r) 3 , 

where we are using the notation y, (u) = u 1\ n¡ 1 and 

H(curl, 0)= {u E L2 (o Y: curluE L2 (0}1
}, 

has the scalar product 

(u, v) ( ) = (u, v) 2 ( ) 3 + ( curl u, curl v) 2 ( ) 3 . 
H curl, Q L Q L Q 

1 
- 3 

If\j!E H2(r) for \jl=(\jf0, ..• ,\jlm).then 

Green identity in H (curl, O) 

V u E H ( curl, O) , V \ji E H 1 
( O) 

3
, 

( \jf, curl u) L2 (n) 3 - ( curl \ji, u) L2 (n)3 =<u A n¡1 , '~'Ir >1 . 

The Isomorphisms of the Curl Operator 

Let .2. be a cut surface forO. The spaces curl (H1 (0)3
) : =H r(divO; 

0) and curl(Hó(oY):=H1~(divO;O) are closed vector subspaces of 

L\0)3
• They have the following characterization: 
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uE Hr(divO;n)~divu = O,<u·n¡r; ,l>r¡ =O(O~i~m) 
and 

uE H<~(divO:n)~divu=O,u·n¡r=O,<u·n¡ ,1>~;. =0(1~j~N). 
I.,; J 

Using the notations: 

H/0 (n)
3 
={u E H 1 (n)

3
: uAn¡r=o}, H~0 (Q) 3 

={u E H 1 (n)
3

: u·n¡r=o} 

we have the following 

Proposition 1 In the diagram: 

H,~ 0 (n) 3 n H(~( divo;n) 

J, 

H<~( divO;n) 

curl 
~ 

curl 
f--

Hr( divO;n) 

¡. 

Hfo(n)
3n Hr( divO;n) 

the arrows curl represent isomorphisms. The domains in each case are 
closed subspaces of H\nl The vertical arrows represent compact and 
dense immersions. 

3. The results 

In the follows n is an open set and L is a cut surface for n. 

Proposition 2 Given f E U(Q)3
, there exists an unique u E H1 (Q)3 and 

there exists p E H 1 (Q), unique up to additive constant, such that 

-L1 u+ gradp 
divu 

u A n Ir 

curl u·n¡r 

<u·n¡r;'l >r; 
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Moreover, if f E H(div; .Q), there exists a positive constant e which 

depends only on .Q such that 

lluiiH 1 (n) 3 +llriiL'(n) :5 c{jj¡jjH(div,<>) + lk n¡riiH-± (r)} · (!) 

Proof. Wecan give for f an unique decomposition f = grad p + curl w 

from ([2] Corollary 5') with p E H 1(.Q) unique up to additive constant and 

w E H1(.Q)3 with n·curlw¡r=O, unique belonging to H1~{divO;.Q). 
Thus, w E H~0 (.Q) 3 n H1~(div0;.Q). 

From Proposition 1 there exists an unique uE H/
0
(.Q) 3nHr{divO;.Q) 

such that curl u = w. 

From this, f = grad p + curl curl u or, -!J.u + grad p = f in .Q. 

As a consequence of arguments in the proof, we can see that the vector 

field u satisfies div u= O in .Q, u 1\n =O on r and f u·ndr=O, for 
r; 

i =0, ... , m. 

Again from Proposition 1 there exist positive constants c0 and c1 such 
that 

lluiiHI (n)~ ~ collwiiLz (n)3 and llwiiHI (n)3 ~ c¡llcurl wL2 (!2) 3 . 

This imply lluiiHI (n)3 ~ c0 c1llcurl wll L2 (n) 3 =c0c1ll! -grad pllr2 (!2) 3 . 

Then, we have 

lluiiHI (nl3 +iiPIILz (nl3 ~c'{ilfi!rz (nl3 +IIPIIH~ (nl }, with e'= max {coc¡, 1 }. 

W e ha ve in particular 

{ 

!J.p 
dp 
an¡r 

= 

= 

div f, 

f·n¡r 

in .Q 
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and by well known result about continuous dependence on initial data for 
Neumann problem, see ([3] Proposition 1.2). 

From this, with e= max { c:c'1 we have finally 

Remark 1 The potential function p in the Proposition 1 can be taken in the 

form p = Po + PI where 

!!.. Po = div f in O., Po¡r=O 

and 

PI E H 1(0.)
3

' !l.p] =o in n and PI¡r = constant (i =O, ... , m). 

Proposition 3 Given fe L2(0.)3
, there exists an unique u e H1(0.)3 and 

there exists an unique pe L2 (0.)
3

, such that 

-!!..u+ p = f, in n 
div u = O, in n 

u·n¡r = o 

curl u A n Ir = o 

<u·n¡ ,1>~;. = O, 1 '5:j'5:N. 
Lj J 

The vector p has the form p = grad p + h with p e H 1(0.) and 

he L 2(0.)3 is a vector field satisfying 

div h =O. curl h =O and h · n¡r =0. 
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Proof. First of all, we consider an arbitrary cut surface L, for Q. W e can 

write the unique decomposition f = grad p + h + curl w from 

([2] Corollary 6). In this decomposition, we ha ve p E H 1 (Q), unique up to 

additive constant, curl h = O, div h = O, h · nlr = O, and an unique 

w E HJ(n)
3 

with w A nlr =O and such that < w· n¡r; , 1 >r; =0 for 

(O::; i ::; m) and div w =O. 

By construction WE H/o(n)
3 nH~~(divO;n). Using Proposition 1 

we deduce that there exists an unique u E H1~ 0 (0) 3 n H1~( divO; O) such 

that curl u= w. That is 

f= grad p + h + curl curl u 
or 

-~ u + grad p + h = f in Q 

and this u satisties 

div u = O in Q, u· n 1 r =O, curl u A n 1 r =O 

and 

f u·ndL.=O 
L; 

(j = 1' ... , N). 

Remark 2 The vector field h in this Proposition is a gradient in the 

classical sense ofa local potential q of e= class Oll QL ( In fact ~ q = o in 

QL, in the classical sense). We have h = grad q with q E H1(QL) 

(q é H1 (Q)) solution of the transrnission problem 

~q = O, inQL 

dq 
o 

dnlr 
= 

(q]L¡ = constant, i= 1, ... ,N 

í dq l 
O, i = 1' ... , N. l dnJL¡ 

= 
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Por more of details, see for instance ([2] Proposition 2). 

Now we suppose Q simply connected. Next result follows immediately from 
Propositions 2 and 3. 

Corollary 1 Given fE L2 (0/, there exists an unique u E H1(0)3 and 

there exists p E H 1 (Q), unique up to additive constant, such that 

{ 
-~u+ gradp = f, in n 

div u = O, in n 
u·n¡r = O, 

curl uAn Ir = o. 

Moreover, if f E H(div; Q), there exists a positive constant e which 

depends only on n such that 

4. Conclusion 

The solutions for these problems depend on the topology of the open set 

Q. Por instance, as Proposition 3 shows, if Q is not simply connectcd, thc p 
vector field corresponding to the solution of the Stokes problem having only 

tangential component on the boundary, is nota global gradient in n. 
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