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PROBLEMS IN INCOMPRESSIBLE
LINEAR ELASTICITY INVOLVING
TANGENTIAL AND NORMAL
COMPONENTS OF THE
DISPLACEMENT FIELD

Hamilton F. Leckar', Rubens Sampaio?

Abstract

We consider the linear system
-Au + grad p = f plus the divergence-free
condition div u = 0, in a bounded and
connected but non simply connected open
set Q of A3, with a boundary I' of C” class.
Using orthogonal decompositions of the
Hilbert space of square integrable vector
fields on Q, we show well posedness for two
boundary value problems involving normal
or tangential components of the
displacement field on I'.
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1. Introduction

In [5], the method of orthogonal projections on the space {L2 (Q)}3 of

square integrable vector fields on €2, is suggested to study some constrained
problems in elasticity theory. In this work, we are placed on the special case
of divergence-free constraint in linear elasticity.

In the sequel, we denote L’ Q) : = L*(Q) x L (Q) x L* () with its
usual norm

‘ (vl,vz,v3)’i2(g)3 :ng{(vl) 2 +(v2) 2 +(v3)2}dx.

The divergence-free constraint, div # = 0, implies

— A = curl curl = —div grad
from the classical identify curl curl = —div grad + grad div.

Hodge’s decompositions of a given vector field f € L* (Q) ([2]
Corollaries 5’ and 6), give us f = grad p + curl w. The isomorphisms of
the curl operator are used to solve the two problems by similar arguments in

[1].

2. Terminology and notations
The results of this section in more detailed form can be found in [2,3.4].

Let © a bounded and connected open subset of R’ with boundary T,

which is an regular (of C ” class) oriented surface in R®, with an exterior
normal vector field .

i. €2 is not necessarily simply connected and I” is an union of connected
components Ty, T, ..., T}, (I'y being the boundary of the unbounded
connected component of the complement Q° of Q in R?).

92



ii. There exists a cut surface of €2, that is, a nonoverlapping union of
regular surfaces 3, = >; U ... U X, with X; (cut surfaces) contained
in Q and transversal to the components I'; of I". N is the minor positive
integer such that Qy = Q\Y, became a simply connected, lipschitzian
open subset of R*. Thus, Qs has the boundary I's =I" U X. Associated
to any Y, we consider 2,7 and X7, respectively, the two opposites
sides of 2; and we still denote by # the normal vector field on X; that
is directed from X[ to X7 . If there exists the restrictions (p’z;r and

) ‘Z" , for a given function @ on Qy, the jump of Q on Y, is denoted by

For instance, we can think of Q in & as a three-dimensional torus
(non simply connected) or a simply connected open region interior to two
concentric spheres I'y of radius ry and I'y of radius r; (r; < ro).

Traces Theorems and Green Identities

The trace operator of H' (Q)

1
Yo :H! (Q)— H2 (I'),p— Yo is a continuous linear surjective
' 1
operator which is denoted by Y@ = @|r. The norm on H 2 (F) is given for
1
0 by ”(b HH%(F):infueya'(d)) H”“H‘(Q)- It’s topological dual is H 2 (I'), the

duality product < , > , 1s denoted by < ,>r. The norm of a

H—%(I‘),H%(I‘)

1
functional / in H 2 (F) is given by “K”H—%(r):supuu“ Y )_l<€,M|1—>r.
HQ)=

93



The normal trace in H (div, Q)
We consider H (div, Q) = {u € LZ(Q)3:divu e I? (Q)} with the
scalar product
(M'V)H(div,n) =(u,v) 2()? +(div u, div v) 2(Q)
The normal trace ¥, is the continuous linear surjective operator
Y. : H(div, Q) - H_% (1)

which is the continuous extension of the operator v,: u— Up-n defined on

D(§)3, where D(ﬁ): { ¢IQ:¢ e D (B*)}.. We will denote v, by -y

1
We have V¢=(¢(,,...,¢m)e HE(I"),

<u-n11_,(])>r =<u-n,“_0 0, >l‘(, +...+<u~n1rm , ¢m >rm .
Consequently, u i =0 u'n‘r' =0, 0<i<m.
t

In particular,

s
"

< u-nlr,]>r =<u-n‘;r“ s 1>l"“ +...+<Lt-l‘l| N >r

n

1
where we are takingp=e H?2 (T) Usually, for all {,0 <i < m, we denote

1
<wne .o >:=J- u-nd ,  forall pe H2(I).

T

Green identify in H (div, Q)
Vue H{div,Q), Voe H'(Q),

((p,div u) 2(Q) +(grad(p, “)Lz(( 3 =<u-mp, Q> r.

b))
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In particular, for u € H (div, £2) we have
J. divu =<u-n|]—, I>r.
Q

The tangential trace in H (curl, Q)

It’s the continuous linear operator

1
Yo : H (curl, Q) — H 2 (I“)3

—\3
which is the continuous extension of the map ue D( Q) - UAN LE D( 1")3.

where we are using the notation Y, (u) =unnr and

H(curl, Q)= {u e I? (Q)3 s curlue 7 (Q)z} ,

has the scalar product

(u,v)H(cm_l’Q) =(u,v)L2(Q)3 +(curl u, curl v) 2

1
Ifye H? (F)3 for W = (Wy,...,Wm), then
<uUA ”\r"V>I‘ =< bl/\n‘r“ Wy >, F et <u /\nll-m s Wi 21

m’

Green identity in H (curl, Q)

Yue H(curl,Q), Yye H! (9)3,
(w,curlu)Lz(Q)3 - (curl\u, u)Lz(Q)3 =<UARL W >

The Isomorphisms of the Curl Operator

Let 2. be a cut surface for Q. The spaces curl (H' (Q)*) : =H "(div0;
Q) and curl (H(l) (Q)S).:H(?: (div0;Q) are closed vector subspaces of
LY. They have the following characterization:



ue H'(div0; Q) & divu = 0,<um_ 1>, =0{0<i<m)

and

ue HY(divo:Q)esdivu=0,u-n =0,< wns 13, =0(1<j<N).
i ’
Using the notations:

H(@)"={ue H'(0)"unnmp =0}, 1, (0)"={ue H'(0)une=0)

we have the following

Proposition 1 In the diagram:

curl

H,,(Q)’N AT (divo;0) H™(divo; Q)
\J T
HZ(divo; Q) 2 HL(QPNH(aivo; Q)
the arrows curl represent isomorphisms. The domains in each case are

1 on? .
closed subspaces of H (£2)". The vertical arrows represent compact and
dense immersions.

3. The results
In the follows Q is an open set and 2, is a cut surface for Q.

Proposition 2 Given f € LX(Q), there exists an unique u € H' (Q)* and
there exists p € H'(Q), unique up to additive constant, such that

[ —-Au+gradp = f, inQ
divu = 0, inQ
uAm- = 0
\ curlu-nh_ = 0
<”'”}1—,»1>r,- = 0, 0Zi<m.
9
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Moreover, if f € H(div; L), there exists a positive constant ¢ which
depends only on L such that

n j (1)
HOZ(T)

Proof. We can give for fan unique decomposition f = grad p + curl w
from ([2] Corollary 5°) with p € HI(Q) unique up to additive constant and

w e H'(Q) with n-curl w,r=0, unique belonging to an(divO; Q).
Thus, we H),(Q)’ N HE(divo; Q).

| |
H““H‘(Q)”")puﬁ(g) sc lf[H(div,.Q)’L”f'”W

3 .
From Proposition | there exists an unique u€e H! (Q) ﬂHr(leO,'Q)

o
such that curl « = w.

Fromthis, f=gradp +curlcurlu or, —Au+gradp=f in Q.

As a consequence of arguments in the proof, we can see that the vector

field u satisfies divu =0 in Q, uann =0 onT and j u-ndl'=0, for
T

i

i=0,..,m

Again from Proposition 1 there exist positive constants ¢y and ¢, such
that

HMHHI(Q)B <¢, “W”Lz O and HWHH[ (@) < ¢y chrlw 12

This imply [u] ;13 <cg ey jeurl vf 2 ()} ~ 0 V -eady L)

Then, we have

Hu“H1 (Q)? +Hp”L2(Q)3 Sc'{“f“ﬁ (@) +Hp“HI(Q) },with c’=max {cocy, 1}.

We have in particular

Ap = divf, in Q
op
a7|r f 'l’l‘r
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and by well known result about continuous dependence on initial data for
Neumann problem, see ([3] Proposition 1.2).

ol

2(

"uHHl(Q)3+|lp“L2(Q)3 SC{HfHL2(Q)3 "'”divf“L2(Q)+“f'"[r

Pyl 1},

From this, with ¢ = max {c’c”’} we have finally

H'%(Q)3 }

Remark 1 The potential function p in the Proposition 1 can be taken in the
formp = po + p1 where

Apy=div f inQ,  py =0

and

Pl E Hl(Q)3, Ap;=0 inQ and Py = constant (i=0,..,m).

Proposition 3 Given f € L*(Q)’, there exists an unique u € H'(Q)* and
there exists an unique pe I? (9)3, such that

~-Au+p = f, inQ
divu = 0, inQ
wenp = 0
{ curlu/\n|r = 0
<u-n_ ,1>v. = 0, 1<j<N.
§ [ 7 !

The vector p has the form p = grad p + h with p € H'(Q) and
he LX(QY is a vector field satisfying

divh=0, curl A= 0 and h-n]I-:O.
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Proof. First of all, we consider an arbitrary cut surface Y, for . We can
write the unique decomposition f = grad p + h + curl w from
([2] Corollary 6). In this decomposition, we have p € H'(2), unique up to
additive constant, curl h = 0, div A = 0, h'”lr = 0, and an unique

we H(I)(Q)Bwith W/\n“_=0 and such that <w-n‘r>,l>r'. =0 for
i
O0<i<m)anddivw=0.

3 . . ..
By construction we H}(,(Q) ﬂH(,Z(leO;Q). Using Proposition |
3 . '
we deduce that there exists an unique U€ H,l“,(.Q)' ﬂH‘,z(dlv();Q) such
that curl i = w. That is

f=grad p + h + curl curl «
or

—Au+gradp+h=f in Q
and this u satisfies
divu=0in Q, U-n|p =0, curl u AR =0

and

J undd»=0 (=1 .,N).
Y.

I

Remark 2 The vector field h in this Proposition is a gradient in the
classical sense ofa local potential q of C* class on Qs (Infact Ag=0in
Qy, in the classical sense). We have h = grad g with g € HI(QZ)
(g & H' (Q)) solution of the transmission problem

P Ag = 0, in Qy
dgq
éﬁjr = v
< [q]Z,- = constant, i=1,..,N
[9q |
l_b%J = 0, i=1,..,N
. Y
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For more of details, see for instance ([2] Proposition 2).

Now we suppose €2 simply connected. Next result follows immediately from
Propositions 2 and 3.

Corollary 1 Given fe L? (Q), there exists an unique u € H'(Q) and
there exists p € H' (Q), unique up to additive constant, such that

-Au+gradp = f, in Q
div u = 0, in Q
u-np = 0,

curlu/\n‘r = 0.

Moreover, if f € H(div; Q), there exists a positive constant ¢ which
depends only on ) such that '

bl 2= a1 o

4, Conclusion

The solutions for these problems depend on the topology of the open set
Q. For instance, as Proposition 3 shows, il € is not simply connected, the p
vector field corresponding to the solution of the Stokes problem having only
tangential component on the boundary, is not a global gradient in €.
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