PROBLEMS IN INCOMPRESSIBLE LINEAR ELASTICITY INVOLVING TANGENTIAL AND NORMAL COMPONENTS OF THE DISPLACEMENT FIELD

Hamilton F. Leckar¹, Rubens Sampaio²

Abstract

We consider the linear system $-\Delta u + grad p = f$ plus the divergence-free condition **div** u = 0, in a bounded and connected but non simply connected open set Ω of \mathbb{R}^3 , with a boundary Γ of \mathbb{C}^{∞} class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω , we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on Γ .

I. Profesor de la Universidade Federal Fluminense, Brasil.
 2. Profesor de la Pontificia Universidade Católica do Rio de Janeiro, Brasil.

1. Introduction

In [5], the method of orthogonal projections on the space $\{L^2(\Omega)\}^3$ of square integrable vector fields on Ω , is suggested to study some constrained problems in elasticity theory. In this work, we are placed on the special case of divergence-free constraint in linear elasticity.

In the sequel, we denote $L^2(\Omega)^3 := L^2(\Omega) \times L^2(\Omega) \times L^2(\Omega)$ with its usual norm

$$|(v_1, v_2, v_3)|^2_{L^2(\Omega)^3} = \int_{\Omega} \left\{ (v_1)^2 + (v_2)^2 + (v_3)^2 \right\} dx.$$

The divergence-free constraint, div u = 0, implies

 $-\Delta = \operatorname{curl} \operatorname{curl} = -\operatorname{div} \operatorname{grad}$

from the classical identify curl curl = -div grad + grad div.

Hodge's decompositions of a given vector field $f \in L^2(\Omega)^3$ ([2] Corollaries 5' and 6), give us $f = \operatorname{grad} p + \operatorname{curl} w$. The isomorphisms of the **curl** operator are used to solve the two problems by similar arguments in [1].

2. Terminology and notations

The results of this section in more detailed form can be found in [2,3,4].

Let Ω a bounded and connected open subset of \mathbb{R}^3 with boundary Γ , which is an regular (of C^{∞} class) oriented surface in \mathbb{R}^3 , with an exterior normal vector field *n*.

i. Ω is not necessarily simply connected and Γ is an union of connected components Γ_0 , Γ_1 , ..., Γ_m (Γ_0 being the boundary of the unbounded connected component of the complement Ω^c of Ω in \mathbb{R}^3).

ii. There exists a cut surface of Ω , that is, a nonoverlapping union of regular surfaces $\Sigma = \sum_{i} \bigcup ... \bigcup \sum_{N}$, with \sum_{i} (cut surfaces) contained in Ω and transversal to the components Γ_{i} of Γ . *N* is the minor positive integer such that $\Omega_{\Sigma} = \Omega \setminus \Sigma$ became a simply connected, lipschitzian open subset of \mathbb{R}^{3} . Thus, Ω_{Σ} has the boundary $\Gamma_{\Sigma} = \Gamma \bigcup \Sigma$. Associated to any \sum_{i} we consider \sum_{i}^{+} and \sum_{i}^{-} , respectively, the two opposites sides of \sum_{i} and we still denote by *n* the normal vector field on \sum_{i} that is directed from \sum_{i}^{+} to \sum_{i}^{-} . If there exists the restrictions $\varphi|_{\sum_{i}^{+}}$ and

 $\phi|_{\Sigma_i^-}$, for a given function ϕ on Ω_{Σ} , the jump of ϕ on Σ_i is denoted by

$$\left[\varphi\right]_{\Sigma_{i}} = \varphi_{\left|\Sigma_{i}^{+}\right|} - \varphi_{\left|\Sigma_{i}^{-}\right|}.$$

For instance, we can think of Ω in \mathbb{R}^3 as a three-dimensional torus (non simply connected) or a simply connected open region interior to two concentric spheres Γ_0 of radius r_0 and Γ_1 of radius r_1 ($r_1 < r_0$).

Traces Theorems and Green Identities

The trace operator of $H^{1}(\Omega)$ $\gamma_{0}: H^{1}(\Omega) \rightarrow H^{\frac{1}{2}}(\Gamma), \varphi \mapsto \gamma_{0}\varphi$ is a continuous linear surjective operator which is denoted by $\gamma_{0}\varphi = \varphi|_{\Gamma}$. The norm on $H^{\frac{1}{2}}(\Gamma)$ is given for φ by $\|\varphi\|_{H^{\frac{1}{2}}(\Gamma)} = inf_{u \in \gamma_{0}^{-1}}(\varphi) \|u\|_{H^{1}(\Omega)}$. It's topological dual is $H^{-\frac{1}{2}}(\Gamma)$, the duality product $<, >_{H^{-\frac{1}{2}}(\Gamma):H^{\frac{1}{2}}(\Gamma)}$, is denoted by $<,>_{\Gamma}$. The norm of a functional ℓ in $H^{-\frac{1}{2}}(\Gamma)$ is given by $\|\ell\|_{H^{-\frac{1}{2}}(\Gamma)} = sup_{\|u\|_{H^{1}(\Omega)}} < \ell, u|_{\Gamma} > \Gamma$.

The normal trace in $H(\operatorname{div}, \Omega)$

We consider H (**div**, Ω) = $\left\{ u \in L^2(\Omega)^3 : \operatorname{div} u \in L^2(\Omega) \right\}$ with the scalar product

$$(u,v)_{H(\operatorname{div},\Omega)} = (u,v)_{L^{2}(\Omega)^{3}} + (\operatorname{div} u, \operatorname{div} v)_{L^{2}(\Omega)}$$

The normal trace γ_n is the continuous linear surjective operator

$$\gamma_n: H(\operatorname{\mathbf{div}}, \Omega) \to H^{-\frac{1}{2}}(\Gamma)$$

which is the continuous extension of the operator $\gamma_n: u \mapsto u_{|\Gamma} \cdot n$ defined on $D(\overline{\Omega})^3$, where $D(\overline{\Omega}) = \{ \phi_{|\Omega}: \phi \in D(\mathbb{R}^3) \}$. We will denote γ_n by $u \cdot n_{|\Gamma}$. We have $\forall \phi = (\phi_0, ..., \phi_m) \in H^{\frac{1}{2}}(\Gamma)$, $\langle u \cdot n_{|\Gamma}, \phi \rangle_{\Gamma} = \langle u \cdot n_{|\Gamma_0}, \phi_0 \rangle_{\Gamma_0} + ... + \langle u \cdot n_{|\Gamma_m}, \phi_m \rangle_{\Gamma_m}$.

Consequently, $u \cdot n_{|\Gamma} = 0 \Leftrightarrow u \cdot n_{|\Gamma_i} = 0, \ 0 \le i \le m$.

In particular,

$$\langle u \cdot n_{|\Gamma}, 1 \rangle_{\Gamma} = \langle u \cdot n_{|\Gamma_0}, 1 \rangle_{\Gamma_0} + \dots + \langle u \cdot n_{|\Gamma_m}, 1 \rangle_{\Gamma_m}$$

where we are taking $\phi \equiv \epsilon H^{\frac{1}{2}}(\Gamma)$. Usually, for all $i, 0 \le i \le m$, we denote

$$< u \cdot n_{|\Gamma_i}, \phi_{|\Gamma_i} > := \int_{\Gamma_i} u \cdot n \phi$$
, for all $\phi \in H^{\frac{1}{2}}(\Gamma)$.

Green identify in $H(\operatorname{div}, \Omega)$

$$\forall u \in H(\operatorname{div}, \Omega), \forall \varphi \in H^{1}(\Omega),$$

$$(\varphi, \operatorname{div} u)_{L^{2}(\Omega)} + (\operatorname{grad}\varphi, u)_{L^{2}(\Omega)^{3}} = \langle u \cdot n_{|\Gamma}, \varphi_{|\Gamma} \rangle_{\Gamma}.$$

In particular, for $u \in H(\operatorname{\mathbf{div}}, \Omega)$ we have

$$\int_{\Omega} \mathbf{div} \, u = \langle u \cdot n_{|\Gamma}, \, 1 \rangle_{\Gamma} \, .$$

The tangential trace in H (curl, Ω)

It's the continuous linear operator

$$\gamma_{t}: H(\mathbf{curl}, \Omega) \rightarrow H^{-\frac{1}{2}}(\Gamma)^{3}$$

which is the continuous extension of the map $u \in D(\overline{\Omega})^3 \to u \wedge n_{|\Gamma} \in D(\Gamma)^3$, where we are using the notation $\gamma_t(u) = u \wedge n_{|\Gamma}$ and

$$H(\operatorname{curl}, \Omega) = \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3 \right\},\$$

has the scalar product

$$(u,v)_{H(\operatorname{curl},\Omega)} = (u,v)_{L^{2}(\Omega)^{3}} + (\operatorname{curl} u, \operatorname{curl} v)_{L^{2}(\Omega)^{3}}.$$

If
$$\psi \in H^{\frac{1}{2}}(\Gamma)^3$$
 for $\psi = (\psi_0, \dots, \psi_m)$, then
 $\langle u \wedge n_{|\Gamma}, \psi \rangle_{\Gamma} = \langle u \wedge n_{|\Gamma_0}, \psi_0 \rangle_{\Gamma_0} + \dots + \langle u \wedge n_{|\Gamma_m}, \psi_m \rangle_{\Gamma_m}$

Green identity in H (curl, Ω)

$$\forall u \in H\left(\operatorname{curl},\Omega\right), \quad \forall \psi \in H^{1}\left(\Omega\right)^{3},$$

$$\left(\psi, \operatorname{curl} u\right)_{L^{2}\left(\Omega\right)^{3}} - \left(\operatorname{curl} \psi, u\right)_{L^{2}\left(\Omega\right)^{3}} = \langle u \wedge n_{|\Gamma}, \psi_{|\Gamma} \rangle_{\Gamma}.$$

The Isomorphisms of the Curl Operator

Let Σ be a cut surface for Ω . The spaces **curl** $(H^1(\Omega)^3) := H^{\Gamma}(\operatorname{div}0; \Omega)$ and **curl** $(H_0^1(\Omega)^3) := H_0^{\Sigma}(\operatorname{div}0; \Omega)$ are closed vector subspaces of $L^2(\Omega)^3$. They have the following characterization:

$$u \in H^{\Gamma}(\operatorname{div} 0; \Omega) \Leftrightarrow \operatorname{div} u = 0, < u \cdot n_{|\Gamma_i}, 1 >_{\Gamma_i} = 0 (0 \le i \le m)$$

and

$$u \in H_0^{\Sigma} (\operatorname{\mathbf{div}} 0; \Omega) \Leftrightarrow \operatorname{\mathbf{div}} u = 0, u \cdot n_{|\Gamma} = 0, < u \cdot n_{|\Sigma_j}, 1 >_{\Sigma_j} = 0 (1 \le j \le N).$$

Using the notations:

$$H^{1}_{r_{0}}(\Omega)^{3} = \left\{ u \in H^{1}(\Omega)^{3} : u \wedge n_{|\Gamma} = 0 \right\}, H^{1}_{n_{0}}(\Omega)^{3} = \left\{ u \in H^{1}(\Omega)^{3} : u \cdot n_{|\Gamma} = 0 \right\}$$

we have the following

Proposition 1 In the diagram:

$$\begin{array}{ccc} H^{1}_{n0}(\Omega)^{3} \cap H^{\Sigma}_{0}\left(\operatorname{div} 0;\Omega\right) & \xrightarrow{\operatorname{curl}} & H^{\Gamma}\left(\operatorname{div} 0;\Omega\right) \\ \downarrow & \uparrow \cdot \\ H^{\Sigma}_{0}\left(\operatorname{div} 0;\Omega\right) & \xleftarrow{\operatorname{curl}} & H^{1}_{t0}(\Omega)^{3} \cap H^{\Gamma}\left(\operatorname{div} 0;\Omega\right) \end{array}$$

the arrows **curl** represent isomorphisms. The domains in each case are closed subspaces of $H^1(\Omega)^3$. The vertical arrows represent compact and dense immersions.

3. The results

In the follows Ω is an open set and Σ is a cut surface for Ω .

Proposition 2 Given $f \in L^2(\Omega)^3$, there exists an unique $u \in H^1(\Omega)^3$ and there exists $p \in H^1(\Omega)$, unique up to additive constant, such that

$$\begin{cases} -\Delta u + \operatorname{grad} p = f, & \text{in } \Omega \\ \operatorname{div} u = 0, & \text{in } \Omega \\ u \wedge n_{|\Gamma} = 0 \\ \operatorname{curl} u \cdot n_{|\Gamma} = 0 \\ < u \cdot n_{|\Gamma_i}, 1 >_{\Gamma_i} = 0, \quad 0 \le i \le m \end{cases}$$

Moreover, if $f \in H(\operatorname{div}; \Omega)$, there exists a positive constant c which depends only on Ω such that

$$\|u\|_{H^{1}(\Omega)^{3}} + \|p\|_{L^{2}(\Omega)} \le c \left\{ \|f\|_{H(\operatorname{div};\Omega)} + \|f \cdot n_{|\Gamma}\|_{H^{-\frac{1}{2}}(\Gamma)} \right\}.$$
 (1)

Proof. We can give for f an unique decomposition $f = \operatorname{grad} p + \operatorname{curl} w$ from ([2] Corollary 5') with $p \in H^1(\Omega)$ unique up to additive constant and $w \in H^1(\Omega)^3$ with $n \cdot \operatorname{curl} w_{|\Gamma} = 0$, unique belonging to $H_0^{\Sigma}(\operatorname{div} 0; \Omega)$. Thus, $w \in H_{n0}^1(\Omega)^3 \cap H_0^{\Sigma}(\operatorname{div} 0; \Omega)$.

From Proposition 1 there exists an unique $u \in H^1_{t_0}(\Omega)^3 \cap H^{\Gamma}(\operatorname{div} 0; \Omega)$ such that **curl** u = w.

From this, $f = \operatorname{grad} p + \operatorname{curl} \operatorname{curl} u$ or, $-\Delta u + \operatorname{grad} p = f$ in Ω .

As a consequence of arguments in the proof, we can see that the vector field *u* satisfies **div** u = 0 in Ω , $u \wedge n = 0$ on Γ and $\int_{\Gamma_i} u \cdot n d\Gamma = 0$, for i = 0, ..., m.

Again from Proposition 1 there exist positive constants c_0 and c_1 such that

$$\|u\|_{H^{1}(\Omega)^{3}} \leq c_{0} \|w\|_{L^{2}(\Omega)^{3}} \text{ and } \|w\|_{H^{1}(\Omega)^{3}} \leq c_{1} \|\operatorname{curl} w\|_{L^{2}(\Omega)^{3}}.$$

This imply $\|u\|_{H^{1}(\Omega)^{3}} \leq c_{0} c_{1} \|\operatorname{curl} w\|_{L^{2}(\Omega)^{3}} = c_{0} c_{1} \|f - \operatorname{grad} p\|_{L^{2}(\Omega)^{3}}.$

Then, we have

$$\|u\|_{H^{1}(\Omega)^{3}} + \|p\|_{L^{2}(\Omega)^{3}} \le c' \left\{ \|f\|_{L^{2}(\Omega)^{3}} + \|p\|_{H^{1}(\Omega)} \right\}, \text{ with } c' = max \{c_{0}c_{1}, 1\}.$$

We have in particular

$$\begin{cases} \Delta p = \operatorname{div} f, & \operatorname{in} \Omega\\ \frac{\partial p}{\partial n|_{\Gamma}} = f \cdot n|_{\Gamma} \end{cases}$$

and by well known result about continuous dependence on initial data for Neumann problem, see ([3] Proposition 1.2).

$$\|p\|_{H^{1}(\Omega)} \leq c'' \left\{ \left\| \operatorname{div} f \right\|_{L^{2}(\Omega)} + \left\| f \cdot n_{|\Gamma|} \right\|_{H^{-\frac{1}{2}}(\Omega)^{3}} \right\}.$$

From this, with $c = max \{c', c''\}$ we have finally

$$\|u\|_{H^{1}(\Omega)^{3}} + \|p\|_{L^{2}(\Omega)^{3}} \le c \left\{ \|f\|_{L^{2}(\Omega)^{3}} + \|\operatorname{div} f\|_{L^{2}(\Omega)} + \|f \cdot n|_{\Gamma}\|_{H^{-\frac{1}{2}}(\Omega)^{3}} \right\}.$$

Remark 1 The potential function p in the Proposition 1 can be taken in the form $p = p_0 + p_1$ where

$$\Delta p_0 = \operatorname{div} f \ in \Omega, \qquad p_{0|\Gamma} = 0$$

and

$$p_1 \in H^1(\Omega)^3$$
, $\Delta p_1 = 0$ in Ω and $p_{1|\Gamma} = constant \ (i = 0, ..., m)$.

Proposition 3 Given $f \in L^2(\Omega)^3$, there exists an unique $u \in H^1(\Omega)^3$ and there exists an unique $\vec{p} \in L^2(\Omega)^3$, such that

$$\begin{cases}
-\Delta u + \vec{p} = f, & \text{in } \Omega \\
\mathbf{div} u = 0, & \text{in } \Omega \\
u \cdot n_{|\Gamma} = 0 \\
\mathbf{curl} u \wedge n_{|\Gamma} = 0 \\
< u \cdot n_{|\Sigma_j}, 1 > \Sigma_j = 0, \quad 1 \le j \le N.
\end{cases}$$

The vector \vec{p} has the form $\vec{p} = \operatorname{grad} p + h$ with $p \in H^1(\Omega)$ and $h \in L^2(\Omega)^3$ is a vector field satisfying

div
$$h = 0$$
, curl $h = 0$ and $h \cdot n_{|\Gamma|} = 0$.

Proof. First of all, we consider an arbitrary cut surface \sum for Ω . We can write the unique decomposition $f = \operatorname{grad} p + h + \operatorname{curl} w$ from ([2] Corollary 6). In this decomposition, we have $p \in H^1(\Omega)$, unique up to additive constant, curl h = 0, div h = 0, $h \cdot n_{|\Gamma} = 0$, and an unique $w \in H_0^1(\Omega)^3$ with $w \wedge n_{|\Gamma} = 0$ and such that $\langle w \cdot n_{|\Gamma_i}, 1 \rangle_{\Gamma_i} = 0$ for $(0 \le i \le m)$ and div w = 0.

By construction $w \in H_{t_0}^1(\Omega)^3 \cap H_0^{\Sigma}(\operatorname{div} 0; \Omega)$. Using Proposition I we deduce that there exists an unique $u \in H_{n_0}^1(\Omega)^3 \cap H_0^{\Sigma}(\operatorname{div} 0; \Omega)$ such that **curl** u = w. That is

 $f = \mathbf{grad} \ p + h + \mathbf{curl} \ \mathbf{curl} \ u$

or

$$-\Delta u + \operatorname{grad} p + h = f$$
 in Ω

and this *u* satisfies

div
$$u = 0$$
 in Ω , $u \cdot n_{|\Gamma} = 0$, **curl** $u \wedge n_{|\Gamma} = 0$

and

$$\int_{\Sigma_j} u \cdot n \, d \, \Sigma = 0 \qquad (j = 1, ..., N).$$

Remark 2 The vector field h in this Proposition is a gradient in the classical sense of a local potential q of C^{∞} class on Ω_{Σ} (In fact $\Delta q = 0$ in Ω_{Σ} , in the classical sense). We have $h = \operatorname{grad} q$ with $q \in H^{1}(\Omega_{\Sigma})$ $(q \notin H^{1}(\Omega))$ solution of the transmission problem

$$\begin{cases} \Delta q = 0, & \text{in } \Omega_{\Sigma} \\ \frac{\partial q}{\partial n|_{\Gamma}} = 0 \\ \left[q\right]_{\Sigma_{i}} = constant, \ i = 1, ..., N \\ \left[\frac{\partial q}{\partial n}\right]_{\Sigma_{i}} = 0, \qquad i = 1, ..., N \end{cases}$$

For more of details, see for instance ([2] Proposition 2).

Now we suppose Ω simply connected. Next result follows immediately from Propositions 2 and 3.

Corollary 1 Given $f \in L^2(\Omega)^3$, there exists an unique $u \in H^1(\Omega)^3$ and there exists $p \in H^1(\Omega)$, unique up to additive constant, such that

$$\begin{cases} -\Delta u + \operatorname{grad} p = f, & \text{in } \Omega \\ \operatorname{div} u = 0, & \text{in } \Omega \\ u \cdot n_{|\Gamma} = 0, \\ \operatorname{curl} u \wedge n_{|\Gamma} = 0. \end{cases}$$

Moreover, if $f \in H(\operatorname{div}; \Omega)$, there exists a positive constant c which depends only on Ω such that

$$\|u\|_{H^{1}(\Omega)^{3}} + \|p\|_{H^{1}(\Omega)} \leq c \left\{ \|f\|_{H(\operatorname{div}; \Omega)} + \|f \cdot n|_{\Gamma} \|_{H^{-\frac{1}{2}}(\Gamma)} \right\}.$$

4. Conclusion

The solutions for these problems depend on the topology of the open set Ω . For instance, as Proposition 3 shows, if Ω is not simply connected, the \vec{p} vector field corresponding to the solution of the Stokes problem having only tangential component on the boundary, is not a global gradient in Ω .

5. References

[1] Bossavit, A. Les deux isomorphismes du rotationnel et les deux formes du problème de la magnétostatique dans un domaine borné. EDF-Bulletin de la Direction des Études et Recherches, Série C, Mathematiques, Informatique, N° 1, pp 5-20, 1986.

- [2] Cessenat, M. Chap. 9(Exemples en Electromagnétisme et en Physique Quantique) in Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. (R. Dautray et J-L. Lions, eds), Masson (Paris), 1985.
- [3] Girault, V., Raviart, P-A. Finite Element Methods for Navier Stokes Equations, Theory and Algorithms. Springer -Verlag, 1986.
- [4] Teman, R. Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, 1979.
- [5] Weyl, H. *The method of orthogonal projection in potential theory*. Duke Math. J., 7, pp 411-444, 1940.

Hamilton F. Leckar Universidade Federal Fluminense Departamento de Matemática Aplicada IMUFF. Brasil gmahafl@vm.uff.br

Rubens Sampaio Pontifícia Universidade Católica do Rio de Janeiro Départamento de Engenharia Mecânica rsampaio@mec.puc-rio.br