PROBLEMS IN INCOMPRESSIBLE LINEAR ELASTICITY INVOLVING TANGENTIAL AND NORMAL COMPONENTS OF THE DISPLACEMENT FIELD

Hamilton F. Leckar ${ }^{1}$, Rubens Sampaio ${ }^{2}$

> Abstract
> We consider the linear system
> $-\Delta \boldsymbol{u}+\boldsymbol{g r a d} p=\boldsymbol{f}$ plus the divergence-free condition div $\boldsymbol{u}=0$, in a bounded and connected but non simply connected openset Ω of 臆, with a boundary Γ of C^{∞} class.
> Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on Γ.

[^0]
1. Introduction

In [5], the method of orthogonal projections on the space $\left\{L^{2}(\Omega)\right\}^{3}$ of square integrable vector fields on Ω, is suggested to study some constrained problems in elasticity theory. In this work, we are placed on the special case of divergence-free constraint in linear elasticity.

In the sequel, we denote $L^{2}(\Omega)^{3}:=L^{2}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega)$ with its usual norm

$$
\left|\left(v_{1}, v_{2}, v_{3}\right)\right|_{L^{2}(\Omega)^{3}}^{2}=\int_{\Omega}\left\{\left(v_{1}\right)^{2}+\left(v_{2}\right)^{2}+\left(v_{3}\right)^{2}\right\} d x
$$

The divergence-free constraint, $\boldsymbol{\operatorname { d i v }} \boldsymbol{u}=0$, implies

$$
-\Delta=\text { curl curl }=- \text { div grad }
$$

from the classical identify curl curl = - div grad + grad div .
Hodge's decompositions of a given vector field $f \in L^{2}$ ($\left.\Omega\right)^{3}$ ([2] Corollaries 5' and 6), give us $f=\operatorname{grad} p+\operatorname{curl} w$. The isomorphisms of the curl operator are used to solve the two problems by similar arguments in [1].

2. Terminology and notations

The results of this section in more detailed form can be found in [2,3,4].
Let Ω a bounded and connected open subset of R^{3} with boundary Γ, which is an regular (of C^{∞} class) oriented surface in \mathbb{R}^{3}, with an exterior normal vector field n.
i. $\quad \Omega$ is not necessarily simply connected and Γ is an union of connected components $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ (Γ_{0} being the boundary of the unbounded connected component of the complement Ω^{c} of Ω in \mathbb{R}^{3}).
ii. There exists a cut surface of Ω, that is, a nonoverlapping union of regular surfaces $\sum=\Sigma_{1} \cup \ldots \cup \Sigma_{N}$, with \sum_{i} (cut surfaces) contained in Ω and transversal to the components Γ_{j} of Γ. N is the minor positive integer such that $\Omega_{\Sigma}=\Omega \backslash \Sigma$ became a simply connected, lipschitzian open subset of \mathbb{R}^{3}. Thus, Ω_{Σ} has the boundary $\Gamma_{\Sigma}=\Gamma \cup \Sigma$. Associated to any Σ_{i} we consider Σ_{i}^{+}and Σ_{i}^{-}, respectively, the two opposites sides of \sum_{i} and we still denote by n the normal vector field on Σ_{i} that is directed from Σ_{i}^{+}to Σ_{i}^{-}. If there exists the restrictions $\varphi \mid \Sigma_{i}^{+}$and $\left.\varphi\right|_{\Sigma_{\bar{i}}}$, for a given function φ on Ω_{Σ}, the jump of φ on \sum_{i} is denoted by

$$
[\varphi]_{\Sigma_{i}}=\varphi_{\mid \Sigma_{i}^{+}}-\varphi_{\mid \Sigma_{i}^{-}}
$$

For instance, we can think of Ω in Ω^{3} as a three-dimensional torus (non simply connected) or a simply connected open region interior to two concentric spheres Γ_{0} of radius r_{0} and Γ_{1} of radius $r_{1}\left(r_{1}<r_{0}\right)$.

Traces Theorems and Green Identities

The trace operator of $H^{1}(\Omega)$
$\gamma_{0}: H^{1}(\Omega) \rightarrow H^{\frac{1}{2}}(\Gamma), \varphi \mapsto \gamma_{0} \varphi$ is a continuous linear surjective operator which is denoted by $\gamma_{0} \varphi=\varphi_{\mid \Gamma}$. The norm on $H^{\frac{1}{2}}(\Gamma)$ is given for ϕ by $\|\phi\|_{H^{\frac{1}{2}(\Gamma)}}=\inf \underbrace{}_{u \in \gamma_{0}^{-1}(\phi)}\|u\|_{H^{\prime}(\Omega)}$. It's topological dual is $H^{-\frac{1}{2}}(\Gamma)$, the duality product $<,\rangle_{H^{-\frac{1}{2}}(\Gamma) \cdot H^{\frac{1}{2}}(\Gamma)}$, is denoted by $<,>_{\Gamma}$. The norm of a functional ℓ in $H^{-\frac{1}{2}}(\Gamma)$ is given by $\|\ell\|_{H^{-\frac{1}{2}}(\Gamma)}=\sup _{\|u\|_{H^{1}(\Omega)}=1}<\ell, u_{\mid \Gamma}>_{\Gamma}$.

The normal trace in $H(\operatorname{div}, \Omega)$
We consider $H(\boldsymbol{\operatorname { d i v }}, \Omega)=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{div} u \in L^{2}(\Omega)\right\}$ with the scalar product

$$
(u, v)_{H(\operatorname{div}, \Omega)}=(u, v)_{L^{2}(\Omega)^{3}}+(\operatorname{div} u, \operatorname{div} v)_{L^{2}(\Omega)} .
$$

The normal trace γ_{n} is the continuous linear surjective operator

$$
\gamma_{n}: H(\operatorname{div}, \Omega) \rightarrow H^{-\frac{1}{2}}(\Gamma)
$$

which is the continuous extension of the operator $\gamma_{n}: u \mapsto u_{\mid \Gamma} \cdot n$ defined on $D(\bar{\Omega})^{3}$, where $D(\bar{\Omega})=\left\{\phi_{\mid \Omega}: \phi \in D\left(\mathbb{R}^{3}\right)\right\}$. We will denote γ_{n} by $u \cdot n_{\mid \Gamma}$. We have $\forall \phi=\left(\phi_{0}, \ldots, \phi_{m}\right) \in H^{\frac{1}{2}}(\Gamma)$,

$$
<u \cdot n_{\Gamma}, \phi>_{\Gamma}=<u \cdot n_{\Gamma_{0}}, \phi_{0}>_{\Gamma_{0}}+\ldots+\left\langle u \cdot n_{\mid \Gamma_{m}}, \phi_{m}>_{\Gamma_{m}} .\right.
$$

Consequently, $u \cdot n_{\mid \Gamma}=0 \Leftrightarrow u \cdot n_{\mid \Gamma_{i}}=0,0 \leq i \leq m$.
In particular,

$$
\left\langle u \cdot n_{\mid \Gamma}, 1\right\rangle_{\Gamma}=\left\langle u \cdot n_{i \Gamma_{0}}, 1\right\rangle_{\Gamma_{\|}}+\ldots+\left\langle u \cdot \eta_{\mid \Gamma_{m}}, 1\right\rangle_{\Gamma_{m}}
$$

where we are taking $\phi \equiv \in H^{\frac{1}{2}}(\Gamma)$. Usually, for all $i, 0 \leq i \leq m$, we denote

$$
<u \cdot \eta_{\Gamma_{i}}, \phi_{\Gamma_{i}}>:=\int_{\Gamma_{i}} u \cdot n \phi, \quad \text { for all } \phi \in H^{\frac{1}{2}}(\Gamma)
$$

Green identify in $H(\operatorname{div}, \Omega)$

$$
\begin{aligned}
& \forall u \in H(\operatorname{div}, \Omega), \forall \varphi \in H^{1}(\Omega), \\
& \qquad(\varphi, \operatorname{div} u)_{L^{2}(\Omega)}+(\operatorname{grad} \varphi, u)_{L^{2}(\Omega)^{3}}=<u \cdot n_{\mid \Gamma}, \varphi_{\mid \Gamma}>_{\Gamma} .
\end{aligned}
$$

In particular, for $u \in H(\operatorname{div}, \Omega)$ we have

$$
\int_{\Omega} \operatorname{div} u=\left\langle u \cdot n_{\mid \Gamma}, 1\right\rangle_{\Gamma} .
$$

The tangential trace in H (curl, Ω)

It's the continuous linear operator

$$
\gamma_{t}: H(\text { curl }, \Omega) \rightarrow H^{-\frac{1}{2}}(\Gamma)^{3}
$$

which is the continuous extension of the map $u \in D(\bar{\Omega})^{3} \rightarrow u \wedge n_{\mid \Gamma} \in D(\Gamma)^{3}$. where we are using the notation $\gamma_{t}(u)=u \wedge n_{\mid \Gamma}$ and

$$
H(\operatorname{curl}, \Omega)=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}\right\}
$$

has the scalar product

$$
(u, v)_{H(\operatorname{curl}, \Omega)}=(u, v)_{L^{2}(\Omega)^{3}}+(\operatorname{curl} u, \operatorname{curl} v)_{L^{2}(\Omega)^{3}} .
$$

If $\psi \in H^{\frac{1}{2}}(\Gamma)^{3}$ for $\psi=\left(\psi_{0}, \ldots, \psi_{m}\right)$, then

$$
<u \wedge n_{\mid \Gamma}, \Psi>_{\Gamma}=<u \wedge n_{\Gamma_{0}}, \psi_{0}>_{\Gamma_{0}}+\ldots+<u \wedge n_{\mid \Gamma_{m}}, \psi_{m}>_{\Gamma_{m}}
$$

Green identity in H (curl, Ω)

$$
\begin{aligned}
& \forall u \in H(\operatorname{curl}, \Omega), \quad \forall \psi \in H^{1}(\Omega)^{3} \\
& (\psi, \operatorname{curl} u)_{L^{2}(\Omega)^{3}}-(\operatorname{curl} \psi, u)_{L^{2}(\Omega)^{3}}=<u \wedge n_{\mid \Gamma}, \psi_{\mid \Gamma}>_{\Gamma} .
\end{aligned}
$$

The Isomorphisms of the Curl Operator

Let \sum be a cut surface for Ω. The spaces curl $\left(H^{1}(\Omega)^{3}\right):=H^{「}(\operatorname{div} 0$; $\Omega)$ and $\operatorname{curl}\left(H_{0}^{1}(\Omega)^{3}\right):=H_{0}^{\Sigma}(\operatorname{div} 0 ; \Omega)$ are closed vector subspaces of $L^{2}(\Omega)^{3}$. They have the following characterization:

$$
u \in H^{\Gamma}(\operatorname{div} 0 ; \Omega) \Leftrightarrow \operatorname{div} u=0,\left\langle u \cdot n_{\mid \Gamma_{i}}, 1>_{\Gamma_{i}}=0(0 \leq i \leq m)\right.
$$

and
$u \in H_{0}^{\Sigma}(\operatorname{div} 0: \Omega) \Leftrightarrow \operatorname{div} u=0, u \cdot n_{\mid \Gamma}=0,<u \cdot n_{\mid \Sigma_{j}}, 1>_{\Sigma_{j}}=0(1 \leq j \leq N)$.
Using the notations:
$H_{f 0}^{1}(\Omega)^{3}=\left\{u \in H^{1}(\Omega)^{3}: u \wedge n_{\mid \Gamma}=0\right\}, H_{n 0}^{1}(\Omega)^{3}=\left\{u \in H^{1}(\Omega)^{3}: u \cdot n_{\mid \Gamma}=0\right\}$
we have the following
Proposition 1 In the diagram:

$$
\begin{array}{ccc}
H_{n 0}^{1}(\Omega)^{3} \cap H_{0}^{\Sigma}(\operatorname{div} 0 ; \Omega) & \xrightarrow{\text { curl }} & H^{\Gamma}(\operatorname{div} 0 ; \Omega) \\
\downarrow & & \uparrow . \\
H_{0}^{\Sigma}(\operatorname{div} 0 ; \Omega) & & \text { curl } \\
\longleftrightarrow & H_{t 0}^{1}(\Omega)^{3} \cap H^{\Gamma}(\operatorname{div} 0 ; \Omega)
\end{array}
$$

the arrows curl represent isomorphisms. The domains in each case are closed subspaces of $H^{1}(\Omega)^{3}$. The vertical arrows represent compact and dense immersions.

3. The results

In the follows Ω is an open set and Σ is a cut surface for Ω.

Proposition 2 Given $f \in L^{2}(\Omega)^{3}$, there exists an unique $u \in H^{1}(\Omega)^{3}$ and there exists $p \in H^{\prime}(\Omega)$, unique up to additive constant, such that

Moreover, if $f \in H(\mathbf{d i v} ; \Omega)$, there exists a positive constant c which depends only on Ω such that

$$
\begin{equation*}
\|u\|_{H^{1}(\Omega)^{3}}+\|p\|_{L^{2}(\Omega)} \leq c\left\{\|f\|_{H(\text { div }, \Omega)}+\left\|f \cdot n_{\mid \Gamma}\right\|_{H^{-\frac{1}{2}}(\Gamma)}\right\} . \tag{1}
\end{equation*}
$$

Proof. We can give for f an unique decomposition $f=\operatorname{grad} p+\operatorname{curl} w$ from ([2] Corollary 5') with $p \in H^{1}(\Omega)$ unique up to additive constant and $w \in H^{1}(\Omega)^{3}$ with $n \cdot \operatorname{curl} w_{\Gamma}=0$, unique belonging to $H_{0}^{\Sigma}(\operatorname{div} 0 ; \Omega)$. Thus, $w \in H_{n 0}^{1}(\Omega)^{3} \cap H_{0}^{\Sigma}(\operatorname{div} 0 ; \Omega)$.

From Proposition 1 there exists an unique $u \in H_{t 0}^{1}(\Omega)^{3} \cap H^{\Gamma}(\operatorname{div} 0 ; \Omega)$ such that curl $u=w$.

From this, $f=\operatorname{grad} p+\operatorname{curl} \operatorname{curl} u$ or, $-\Delta u+\operatorname{grad} p=f$ in Ω.
As a consequence of arguments in the proof, we can see that the vector field u satisfies $\operatorname{div} u=0$ in $\Omega, u \wedge n=0$ on Γ and $\int_{\Gamma_{i}} u \cdot n d \Gamma=0$, for $i=0, \ldots, m$.

Again from Proposition 1 there exist positive constants c_{0} and c_{1} such that

$$
\|u\|_{H^{1}(\Omega)^{3}} \leq c_{0}\|w\|_{L^{2}(\Omega)^{3}} \text { and }\|w\|_{H^{1}(\Omega)^{3}} \leq c_{1}\|\operatorname{curl} w\|_{L^{2}(\Omega)^{3}}
$$

This imply $\|u\|_{H^{1}(\Omega)^{3}} \leq c_{0} c_{1} \mid \operatorname{curl} w\left\|_{L^{2}(\Omega)^{3}}=c_{0} c_{1}\right\| f-\operatorname{grad} p \|_{L^{2}(\Omega)^{3}}$.
Then, we have
$\|u\|_{H^{1}(\Omega)^{3}}+\|p\|_{L^{2}(\Omega)^{3}} \leq c^{\prime}\left\{\mid f\left\|_{L^{2}(\Omega)^{3}}+\right\| p \|_{H^{\prime}(\Omega)}\right\}$, with $\mathrm{c}^{\prime}=\max \left\{c_{0} c_{1}, 1\right\}$.
We have in particular

$$
\left\{\begin{aligned}
\Delta p & =\operatorname{div} f, \quad \text { in } \Omega \\
\left.\frac{\partial p}{\partial n} \right\rvert\, \Gamma & =f \cdot n_{\mid \Gamma}
\end{aligned}\right.
$$

and by well known result about continuous dependence on initial data for Neumann problem, see ([3] Proposition 1.2).

$$
\mid p \|_{H^{1}(\Omega)} \leq c^{\prime \prime}\left\{\|\operatorname{div} f\|_{L^{2}(\Omega)}+\left\|f \cdot n_{\mid \Gamma}\right\|_{H^{-\frac{1}{2}}(\Omega)^{3}}\right\}
$$

From this, with $c=\max \left\{c^{\prime}, c^{\prime \prime}\right\}$ we have finally

$$
\|u\|_{H^{1}(\Omega)^{3}}+\|p\|_{L^{2}(\Omega)^{3}} \leq c\left\{\|f\|_{L^{2}(\Omega)^{3}}+\|\operatorname{div} f\|_{L^{2}(\Omega)}+\|f \cdot n \mid r\|_{H^{-\frac{1}{2}}(\Omega)^{3}}\right\}
$$

Remark 1 The potential function p in the Proposition 1 can be taken in the form $p=p_{0}+p_{1}$ where

$$
\Delta p_{0}=\operatorname{div} f \text { in } \Omega, \quad p_{0 \mid \Gamma}=0
$$

and

$$
p_{1} \in H^{1}(\Omega)^{3}, \Delta p_{1}=0 \text { in } \Omega \text { and } p_{1 \mid \Gamma}=\operatorname{constant}(i=0, \ldots, m) .
$$

Proposition 3 Given $f \in L^{2}(\Omega)^{3}$, there exists an unique $u \in H^{1}(\Omega)^{3}$ and there exists an unique $\vec{p} \in L^{2}(\Omega)^{3}$, such that

$$
\left\{\begin{array}{rlrl}
-\Delta u+\vec{p} & =f, & \text { in } \Omega \\
\operatorname{div} u & =0, & \text { in } \Omega \\
u \cdot n \mid \Gamma & =0 & \\
\operatorname{curl} u \wedge n \mid \Gamma & =0 \\
<u \cdot n_{\Sigma_{j}}, 1>\Sigma_{\Sigma_{j}} & =0, \quad 1 \leq j \leq N .
\end{array}\right.
$$

The vector \vec{p} has the form $\vec{p}=\operatorname{grad} p+h$ with $p \in H^{1}(\Omega)$ and $h \in L^{2}(\Omega)^{3}$ is a vector field satisfying
$\operatorname{div} h=0, \operatorname{curl} h=0$ and $h \cdot n_{\mid \Gamma}=0$.

Proof. First of all, we consider an arbitrary cut surface Σ for Ω. We can write the unique decomposition $f=\operatorname{grad} p+h+\operatorname{curl} w$ from ([2] Corollary 6). In this decomposition, we have $p \in H^{\prime}(\Omega)$, unique up to additive constant, curl $h=0$, $\operatorname{div} h=0, h \cdot \eta_{\mid \Gamma}=0$, and an unique $w \in H_{0}^{1}(\Omega)^{3}$ with $w \wedge n_{\mid \Gamma}=0$ and such that $\left\langle w \cdot n_{\mid \Gamma_{i}}, 1\right\rangle_{\Gamma_{i}}=0$ for $(0 \leq i \leq m)$ and $\operatorname{div} w=0$.

By construction $w \in H_{t 0}^{1}(\Omega)^{3} \cap H_{0}^{\Sigma}(\operatorname{div} 0 ; \Omega)$. Using Proposition I we deduce that there exists an unique $u \in H_{n \prime \prime}^{1}(\Omega)^{3} \cap H_{0}^{\sum}(\operatorname{div} 0 ; \Omega)$ such that curl $u=w$. That is

$$
f=\operatorname{grad} p+h+\operatorname{curl} \operatorname{curl} u
$$

or

$$
-\Delta u+\operatorname{grad} p+h=f \text { in } \Omega
$$

and this u satisfies

$$
\operatorname{div} u=0 \text { in } \Omega, u \cdot n_{\mid \Gamma}=0, \operatorname{curl} u \wedge n_{\mid \Gamma}=0
$$

and

$$
\int_{\Sigma_{j}} u \cdot n d \Sigma=0 \quad(j=1, \ldots, N)
$$

Remark 2 The vector field h in this Proposition is a gradient in the classical sense of a local potential q of C^{∞} class on Ω_{Σ} (In fact $\Delta q=0$ in Ω_{Σ}, in the classical sense). We have $h=\operatorname{grad} q$ with $q \in H^{\prime}\left(\Omega_{\Sigma}\right)$ $\left(q \notin H^{1}(\Omega)\right)$ solution of the transmission problem

$$
\left\{\begin{array}{rlr}
\Delta q & =0, & \text { in } \Omega_{\Sigma} \\
\left.\frac{\partial q}{\partial n}\right|_{\Gamma} & =0 & \\
{[q]_{\Sigma_{i}}} & =\text { constant, } i=1, \ldots, N \\
{\left[\frac{\partial q}{\partial n}\right]_{\Sigma_{i}}} & =0, & i=1, \ldots, N .
\end{array}\right.
$$

Now we suppose Ω simply connected. Next result follows immediately from Propositions 2 and 3 .

Corollary 1 Given $f \in L^{2}(\Omega)^{3}$, there exists an unique $u \in H^{\prime}(\Omega)^{3}$ and there exists $p \in H^{1}(\Omega)$, unique up to additive constant, such that

$$
\left\{\begin{aligned}
-\Delta u+\operatorname{grad} p & =f, \quad \text { in } \Omega \\
\operatorname{div} u & =0, \quad \text { in } \Omega \\
u \cdot n_{\mid \Gamma} & =0, \\
\operatorname{curl} u \wedge n_{\mid \Gamma} & =0 .
\end{aligned}\right.
$$

Moreover, if $f \in H(\mathbf{d i v} ; \Omega)$, there exists a positive constant c which depends only on Ω such that

$$
\|u\|_{H^{1}(\Omega)^{3}}+\|p\|_{H^{1}(\Omega)} \leq c\left\{\|f\|_{H(\text { div } ; \Omega)}+\left\|f \cdot n_{\mid \Gamma}\right\|_{H^{-\frac{1}{2}}(\Gamma)}\right\} .
$$

4. Conclusion

The solutions for these problems depend on the topology of the open set Ω. For instance, as Proposition 3 shows, if Ω is not simply connected, the \vec{p} vector field corresponding to the solution of the Stokes problem having only tangential component on the boundary, is not a global gradient in Ω.

5. References

[1] Bossavit, A. Les deux isomorphismes du rotationnel et les deux formes du problème de la magnétostatique dans un domaine borné. EDFBulletin de la Direction des Études et Recherchẹs, Série C, Mathematiques, Informatique, $\mathrm{N}^{\circ} 1$, pp 5-20, 1986.
[2] Cessenat. M. Chap. 9(Exemples en Electromagnétisme et en Physique Quantique) in Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. (R. Dautray et J-L. Lions, eds), Masson (Paris), 1985.
[3] Girault, V., Raviart, P-A. Finite Element Methods for Navier Stokes Equations. Theory and Algorithms. Springer -Verlag, 1986.
[4] Teman, R. Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, 1979.
[5] Weyl, H. The method of orthogonal projection in potential theory. Duke Math. J., 7, pp 411-444, 1940.

Hamilton F. Leckar Universidade Federal Fluminense Departamento de Matemática Aplicada IMUFF. Brasil gmahaf!@vm.uff.br

Rubens Sampaio
Pontifícia Universidade Católica do Rio de Janeiro
Departamento de Engenharia Mecânica
rsampaio@mec.puc-rio.br

[^0]: \Leftrightarrow 1. Profesor de la Universidade Federal Fluminense, Brasil.
 2. Profesor de Ia Pontificia Universidade Católica do Rio de Janeiro. Brasil.

