AN APPLICATION FOR THE GAUSS-BONNET THEOREM

Erdal Gül

Abstract

The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2 -sphere, S^{2}. We determine an orthonormal basis by applying stereographic projection on S^{2} and we obtain the area of the unit 2 -sphere S^{2} computing connection and curvature matrices.

1. Introduction

One way to define a system of coordinates for the sphere, given by $x^{2}+y^{2}+z^{2}=1$, is to consider the so-called stereographic projection
$\pi_{1}: S^{2} \backslash\{N\} \rightarrow R^{2}$ which carries a point $P=(x, y, z)$ of the sphere S^{2} minus the north pole $N=(0,0,1)$ onto the intersection of the $x y$-plane with the straight line which connects N to $P,[1]$.

By the expression in this coordinates of unit 2 -sphere, S^{2}, we determine an orthonormal basis and calculate connection and curvature matrices. Now, we give some basic notions which are used in this paper.
1.1 Definition: An exterior form of degree 1 in R^{3} is a map w that associates to each $p \in R^{3}$ an element $w(p) \in\left(R_{p}^{3}\right) *$, where $\left(R_{p}^{3}\right) *$ is dual space of the tangent space R_{p}^{3} at the point $p ; w$ can be written as

$$
w(p)=a_{1}(p)\left(d x_{1}\right)_{p}+a_{2}(p)\left(d x_{2}\right)_{p}+a_{3}(p)\left(d x_{3}\right)_{p}
$$

or

$$
w=\sum_{i=1}^{3} a_{i} d x_{i}
$$

where a_{i} are real functions in R^{3}. If the functions a_{i} are differentiable, w is called a differential form of degree 1 .

Now, let $\Lambda^{2}\left(R_{p}^{2}\right)^{*}$ be the set of maps $\varphi: R_{p}^{3} \times R_{p}^{3} \rightarrow R$ that are bilinear and alternate (i.e. $\varphi\left(v_{1}, v_{2}\right)=-\varphi\left(v_{2}, v_{1}\right)$). Denoting the element $\left(d x_{i}\right)_{p} \Lambda\left(d x_{j}\right) \in \Lambda^{2}\left(R_{p}^{3}\right)^{*}$ by $\left(d x_{i} \Lambda d x_{j}\right)_{p}, \Lambda^{2}\left(R_{p}^{3}\right)^{*}$ has properties that

$$
\left(d x_{i} \Lambda d x_{j}\right)_{p}=-\left(d x_{j} \Lambda d x_{i}\right)_{p}
$$

and

$$
\left(d x_{i} \Lambda d x_{i}\right)_{p}=0
$$

1.2 Definition: An exterior form of degree 2 in R^{3} is a correspondence that associates to each $p \in R^{3}$ an element $w(p) \in \Lambda^{2}\left(R_{p}^{3}\right)^{*} ; w$ can be written in the form

$$
w(p)=a_{12}(p)\left(d x_{1} \Lambda d x_{2}\right)_{p}+a_{13}(p)\left(d x_{1} \Lambda d x_{3}\right)_{p}+a_{23}(p)\left(d x_{2} \Lambda d x_{3}\right)_{p}
$$

or

$$
w=\sum_{i<j} a_{i j} d x_{i} \Lambda d x_{j} \quad i=1,2 ; \quad j=2,3
$$

where $a_{i j}$ are real functions in R^{3}. When the functions $a_{i j}$ are differentiable, w is a differential form of degree 2 . Note that we can generalize the notion of differential form to R^{n}, [2].

2. Calculation of the connection and curvature matrices

Let $\pi_{1}(x, y, z)=(u, v)$ where $(x, y, z) \in S^{2} \backslash\{N\}$ and $(u, v) \in R^{2}$. The expression in the local coordinates of unit 2 -sphere, S^{2} which is obtained by stereographic projection from the north pole N and south pole S are respectively
$\varphi(u, v)=\pi_{1}^{-1}(u, v)=\left(2 u /\left(u^{2}+v^{2}+1\right), 2 v /\left(u^{2}+v^{2}+1\right), 1-2 /\left(u^{2}+v^{2}+1\right)\right)$, $\varphi(u, v)=\pi_{1}^{-1}(u, v)=\left(2 u /\left(u^{2}+v^{2}+1\right), 2 v /\left(u^{2}+v^{2}+1\right), 2 /\left(u^{2}+v^{2}+1\right)-1\right)$.

We will consider this study only for the north pole N, since it is the same thing for the south pole S.

Since,

$$
\varphi_{u}=\left(\left(-2 u^{2}+2 v^{2}+2\right) /\left(u^{2}+v^{2}+1\right)^{2},-4 u v /\left(u^{2}+v^{2}+1\right)^{2}, 4 u /\left(u^{2}+v^{2}+1\right)^{2}\right)
$$

and

$$
\varphi_{v}=\left(-4 u v /\left(u^{2}+v^{2}+1\right)^{2},\left(2 u^{2}-2 v^{2}+2\right) /\left(u^{2}+v^{2}+1\right)^{2}, 4 v /\left(u^{2}+v^{2}+1\right)^{2}\right)
$$

the induced metric in this coordinates on S^{2} is

$$
G=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
4 /\left(u^{2}+v^{2}+1\right)^{2} & 0 \\
0 & 4 /\left(u^{2}+v^{2}+1\right)^{2}
\end{array}\right)
$$

Hence, one can define an orthonormal basis given by

$$
w_{1}=2 /\left(u^{2}+v^{2}+1\right) d u, \quad w_{2}=2 /\left(u^{2}+v^{2}+1\right) d v
$$

with $d s^{2}=\sum g_{i j} d x^{i} \otimes d x^{j}$ and so we find

$$
\begin{gathered}
d w_{1}=v w_{1} \Lambda w_{2} \\
d w_{2}=-u w_{1} \Lambda w_{2} .
\end{gathered}
$$

Now, let us choose real valued functions $a_{i j k}$ so that

$$
d w_{k}=\sum_{i j} a_{i j k} w_{i} \Lambda w_{j}
$$

If we set

$$
a_{i j k}=b_{i j k}+c_{i j k}
$$

with

$$
b_{i j k}=1 / 2\left(a_{i j k}+a_{j i k}-a_{k i j}-a_{k j i}+a_{j k i}+a_{i k j}\right)
$$

which is symmetric in i, j, and

$$
c_{i j k}=1 / 2\left(a_{i j k}-a_{j i k}+a_{k i j}+a_{k j i}-a_{j k i}-a_{i k j}\right)
$$

which is skew-symmetric in j, k then we obtain

$$
d w_{k}=\sum_{i j} c_{i j k} w_{i} \Lambda w_{j} .
$$

The 1 -forms

$$
w_{k j}=\sum_{i} c_{i j k} w_{i}
$$

constitute the unique skew-symmetric matrix with

$$
d w_{k}=\sum_{j} w_{k j} w_{j} .
$$

Since we are in the special case of a 2 -dimensional oriented Riemannian manifold, with respect to an oriented local orthonormal basis w_{1}, w_{2} for 1 -forms the connection and curvature matrices are of the form

$$
\left(\begin{array}{cc}
0 & w_{12} \\
-w_{12} & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & F_{12} \\
-F_{12} & 0
\end{array}\right)
$$

with $d w_{12}=F_{12},[3]$.

Now we can compute these in our special case as follows: First, we note that

$$
\begin{aligned}
& a_{121}=-a_{211} \quad\left(a_{121}=v / 2\right), \\
& a_{122}=-a_{212} \quad\left(a_{122}=-u / 2\right) .
\end{aligned}
$$

Moreover, since

$$
c_{i 11}=0 \quad \text { and } \quad c_{i 12}=1 / 2\left(a_{i 12}-a_{1 i 2}+a_{2 i 1}+a_{21 i}-a_{12 i}-a_{i 21}\right)
$$

we have

$$
w_{12}=v w_{1}-u w_{2} .
$$

Thus, we find connection and curvature matrices in the following:

$$
\left(\begin{array}{cc}
0 & v w_{1}-u w_{2} \\
-v w_{1}+u w_{2} & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
0 & d v \Lambda w_{1}+v d w_{1}-d u \Lambda w_{2}-u d w_{2} \\
-d v \Lambda w_{1}-v d w_{1}+d u \Lambda w_{2}+u d w_{2} & 0
\end{array}\right) .
$$

Finally, we obtain

$$
F_{12}=d w_{12}=-\left(w_{1} \Lambda w_{2}\right) .
$$

Although this 2 -form $d w_{12}$ is independent of the choice of oriented orthonormal basis, these computations appear to be new. The form $d w_{12}$ is called the Gauss-Bonnet 2-form as a well-defined global 2 -form on oriented manifold (in our case S^{2}). We can set $d w_{12}=-K w_{1} \Lambda w_{2}$ where K is scaler function called the Gaussian curvature, [2]. By the Gauss-Bonet Theorem we obtain the area of the unit 2 -sphere

$$
\iint_{d w_{12}}=4 \pi
$$

In this paper, it is given an explicit application of Gauss-Bonnet Theorem on 2-dimensional oriented manifold S^{2}. We hope this approach might be a good starting point for all the other 2 -dimensional oriented manifolds.

3. References

[1] Carmo, do M. "Differentiable Curves and Surfaces", Prentice-Hall, New Jersey, 1976, 51-69.
[2] Carmo, do M. "Differential Forms and Applications", Lecture notes from the college of Differential Geometry, Trieste, 1988, 1-13 and 68-76. Translation of Formas Diferenciais é Aplicações, IMPA, Rio Janeiro, 1973.
[31 Chern, S.S. "A simple intrinsic proof of the Gauss-Bonnet formula for closed Rienmannian manifolds", Ann. of Math., 54, 1944, 747-752.
[4] Chern, S.S. "Differentiable manifolds, mimeographed notes", University of Chicago, Reproduced in Textos de Matematica do Refice, 4, 1959.
[5] Milnor, J.W. and Stasheff J.D. "Characteristic Classes", Princeton U.P., 1974, 289-306.
[6] Yang, C.T. "Odd-dimensional wiedersehen manifolds are spheres", J. Diff. Geometry, 15, 1990, 91-96.
[7] Yau, S.T. "Curvature preserving diffeomorphisms", Ann. of Math., 100, 1974, 121-130.

Erdal Gül.
Yildiz Technical University
Faculty of Science
Department of Mathematics
80270, Sisli, Istambul, Turkey.
gul@vildiz.edu.tr

