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WEIERSTRASS FORMULA FOR 
MINIMAL SURFACES IN 

HEISENBERG GROUP 

Christian Figueroa 

Abstract 

In this paper we study the Gauss map of minimal 
surfaces in the Heisenberg group, 16. We obtain a 

representation formula for minimal surfaces in f6 
by means of the Gauss map. As consequence we 

conclude that: The Gauss map of a minimal 
surface of f6 is antiholomorphic if 

the minimal surface is aplane. 

l. Introduction 

The purpose of this paper is to study the Gauss map of minimal surfaces 
in the Heisenberg group, tl.3, analytically. By the existence of isothermal 
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coordinates and considering the unit 2-sphere as the Riemann sphere, the 
Gauss map, for surfaces in a Lie group, is a complex mapping. W e now 
review the contents of the paper. 

In section 2 we present the basic Riemannian geometry of fl.3 equipped 
with a left-invariant metric and a relationship between the Gauss map and the 
extrinsic geometry of surfaces in fl.3• In the same section we describe, in 

charts, the tension field of mini mal surfaces in fl.3 and get sorne consequence. 

In section 3 we shall prove that the Gauss map of a minimal immersion 
in fl.3 must satisfy a first order differential equation of Beltrami type. 

Section 4 carry out a representation formula for minimal surfaces in fl.3 

by means of the Gauss map. 

Finally, in section 5 we shall show that the Gauss map of an arbitrary 
minimal surface in fl.3 satisfies a second order differential equation which is a 
complete integrability condition of the above obtained representation 
formula. In the same section we give sorne consequences of this 
representation. 

2. Basic Riemannian Geometry of tl3 

The Lie algebra, h3, of fl.3 is isomorphic to IR3 with the Lie product: 

{
[el,ez]=e3 
[e;,e3 ]=0, i=l,2,3. 

where {e;} is the canonical basis in IR3
. 

The exponential map, exp : h3 ~ f(.3, is given by: 

exp (A)= 1 + A 2 + A 3 

and it is a diffeomorphism which induces on h3, by the Campbell-Hausdorff 
formula, the group structure on f(.3 : 

(1) 
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where x = xe1 + ye2 + ze3• Notice that the 1-parameter subgroups are straight 
lines. 

From now on, modulo the identification given by exp, we consider tf.3 

as IR3 with the product given in ( 1 ). Using {e¡} as the orthonormal frame at 

the identity, we have an orthonormal basis of left-invariant vector fie1ds: 

a Y a El=----ax 2 az 
E2 = jL + ~jL 

a y 2 az 
a 

E3 az 
and the left-invariant metric, induced by the Euclidean metric at the identity, 
is given by 

(2) 

Then the Riemann connection of di, in terms ofthe basis {E;}, is given by: 

V E¡ E2 = ~E3 -V E¡ E2 

VE E3 = _lg., 
1 • 2 -

VE El= lEI 
2 • 2 

V E¡ E¡= O. 

Let M be an 2-dimensional connected Riemannian manifold and 

f: M ~ tf.3 an isometric immersion of M into tf.3. At a neighborhood of any 
point of M we shall use an isothermal coordinate z = u + iv, 

M 

i /' X 

u 
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and making use of it, the first fundamental form is now written by 

ds 2 = !.? 1 dz 1

2
, 'A > O. The coordinate fields, X 11 = f* (;u ) and 

X"= f• ( ;v )·are given by: 

Xu = x11 E1 + y11 E2 + aE3 

Xv = x.,E1 + y,.E2 + ~E3 

y X 
where we set a= -xu-- )'11 +Z 11 d A y X H . an ¡...r=-x.,--yv+z.,. ence, It 

2 2 2 2 
follows that 

< Xu, Xu > = <X,., X,.> = 'A2 
; < Xu, X,.> O. (3) 

A unit normal vector field of the immersion f is given by: 

T]=~2 [(~y 11 =ay,.)E 1 +(ax,.-~X11 )E2 +(x11 y,.-x,,y 11 )E3 ] 

where we will denote the coordinates of T], in the basis { E¡ } , by (a, b, e). 

Then the tension field of the immersion fis given by: 

't (f) = 'A-2 (Y'x11 X 11 + Vx., X,.) = 2H 

where H is the mean curvature vector. Ifjis mínima!, H =0, we have: 

& =-(ayu+~yv) 

~Y = ax11 + ~x,. 

Z~x-~~y+~z =O. 
2 2 

(4) 

Remark l. Let us make he following conunents of the above system. The 
third equation of the system of ( 4) is equivalent to: 

au+~v=O. (5) 

lf the coordinates x and y of the minimal immersion f are harmonic functions, 
we have that 

[x, ~·· l (al= O. 
y, ),. ~ 
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Recall that (xu y,, - x,, )'11 ) = '),} e, hence we have two cases: lf e =F- O we have 
a = ~ = O, that is, the Gauss map is constant and equal to the North Po/e, 
but this a contradiction, because there is no mínima! suifaee in /4 with this 
property (se e [ 1 ]). Now, if e = O we ha ve that the image of the Gauss map is 
the Equator and the rank of the Gauss map is one, which again can not 
happen (se e [ 1 ]). 

Finally we recall in the Euc1idean case the differential of the Gauss map 
is just the second fundamental form for surfaces in IR3

• This fact can be 
generalized for hypersurfaces in any Lie Group. The following theorem 
(see [3]) establishes a relationship between the Gauss map and the extrinsic 
geometry of S. 

Theorem l. Let S be an orientable hypersuifaees of a Lie group. Then 

dLP odyl'(v)=-A11 (v)+a 11 ), veTPS, 

where A11 is the Weingarten operator, all (v) =V vll and T) is a left 

invariant vector field su eh that 11 ( p) = T\ ( p) . 

3. The Beltrami Equation 

In this section we shall prove that the Gauss map of any minimal 
immersion in tl3 satisfies a Beltrami equation. 

We indicate the matrices of the Weingarten operator and a 11 by (h;¡) 

and (hu) , respectively, in the basis {X u, X,,}. If we set (Y;¡)= (h¡¡ + 1;¡¡) , 

by Theorem ( 1 ), we ha ve 

In particular, the coefficients of a 11 is given by: 

(6) 

Now we compute the derivatives of a, b ande with respect to u: 
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-y,,x"- Yz,x,. 

-y,,y" - Y21Y•· 
-y~~a- Yz1~ (7) 

and the derivatives of a, b and e with respect to v: 

-y,zxu- Ynx .. 
-Yl2Yu- Y22Y•· 
-y,z a- Yn ~- (8) 

Let S 2 be the unit sphere in h3 ~ T0 fl3 and we consider S 2as the 
standard Riemann sphere: We cover S 2 by the union of the two open sets U;, 
where we set U1 = S 2 

- { north poi e} and U2 = S 2
- { south poi e}. Let \j/; be 

the coordinate functions on U;. Then we know 

x1 +ix2 
'1'1 (X) = , if X E U 1 

I-x3 

x1 - ix2 'l'z(x) = 
1 

, if x E U2• 
+ x3 

We consider, for any surface in tl3, the following sequence of mappings: 

M~ J(M) Gauss Map S2 ~ w- plane 

The composed map, which will be also called the Gauss map of M, 

\ji : M ~ Riemman sphere 

is considered as a complex mapping of a !-dimensional complex manifold M 
to the Riemann sphere. 

Lemma 2. Under the above notations, we have 

i(h,z - hz,) 
where 0= . 

2 

Proof. W e know that 
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() 
a(z)+ib(z) 

\ji¡ z = . 
1- c(z) 

Smce we put -_~ = ~ -- + t-~ we have, usmg (7), . a'ljl¡ 1 ¡a'ljl¡ .a\jl¡ l . 
a z 2 a u av 

a'ljl¡ 1 . . 
-~=--~{[(-xu + Yr) + l(Yu +x,. )]y¡¡ -[(xv +Y" )+z(y,, -x" )]Y2I} · au (1-c) 2 

By similar way, using (8), we have that 

i a; 1 = -~1-7 { [(x., +Y u )+i(y" -xu )]y12 +[( -xu +y,,)- i(x" +y" )]Yn} . 
ov (1-c)-

Observe that (- xu + y,,) - i(x,, + y,¡} = - i[(x,. + Yu) + i(_v,. - x,)]. Then, 
substituting in the above two equation and summing up we obtain that 

2 ( 1 ~c) 2 { (YI2- Y21) -i(y¡¡ + Y22) [(x,. +Y u )+i(yv- X 11 )] } • 

Notice that y1 1 + y22 = 2H + (h
1 1 +h22 ) =O because H = O (minimal 

immersion) and /;1 1 + h22 is the trace of the matrix a 11 , which in tl3 is egua! 

to zero. Now, a real part is y12 -y 21 = h12 -/;21 , because the Weingarten 

operator is symmetric in the basis {X u, X,.}. Then, 

a'l'l h¡2 _,;21 . 
-_~ = { (X 1' +Y u ) + l (Y 1' -X 11 ) } · az 2(1-c) 2 

Now (x, +y,)+ i(y,- x, )=- z{ ~; + i ~~ l and using the factthat 

(1+'1j1 1\j/1)(1-c)=2, 

follow the result. • 

Remark 2. Note that e is afunction oj'ljl. lnfact, by using (6) we can see 

that e= j__(c 2 ). Then we have 
2 
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(9) 

and, by remark ( 1 ), e* O. 

We define here the following functions: 

Lemma 3. Under the above notations, we have 

--=- (1+'\jf¡'\jf¡ - -=+t-= a'V 1 (<I>+<i>) _ )? ¡ax .ay) 
az 2 az az 

Proof. Since we have d'lf¡ =_!_[d'lf¡ -id'lf¡ J· we can prove the Lemma 3 
dZ 2 dll av 

in the same way as its of Lemma 2. • 

W e can cale u late the norms of these complex vectors 

Corollary 4. Let '1' be the Gauss map of an arbitrary minimal su¡face in 
tf.3• Then we have 

l a~¡ az 1 

la 'VI ¡az-

'A . 1 - o+ 'lf\jf) ¡e 
2 

Proof. Firstly we prove that 

4¡ax +i~~z 
,az az 

In fact, 

ax .ay 1 . az +t az =l[(xu- Yr)+t(xv + Yu)]. 
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Then, using (3), we have 

4¡ax +iayl2 
a-z a-z 

In other hand 

¡..} (a2 +b2)=(a2 +~2). 
Substituting in the abo ve equation and using the fact that a2 + b2 + c2 = 1, 
follows the result. • 

Now we establishes and prove the main result of this section, 

Theorem 5. The Gauss map 'V of a minimal suiface in ft3 satisfies a 
Beltrami equation: 

(10) 

Proof. By Lemmas 2 and 3 we obtain [<t>+<i>]a~, =0a'l', in U
1

• On 
dZ dZ 

r ~]a'l'2 a'l'2 U1 n U2 we have also L<l> + <1> -_- = 0-- by virtue of 'Jf1'Jf2 = l. By 
dZ dZ 

the continuity we ha ve the same formula on U2• • 

4. The W eierstrass Formula 

In this section we shall give a Weierstrass formula for minimal surfaces 
in ft3• Sin ce \jf1 \jf2 = 1, we ha ve 

1+\jf,\ji, 

1+'lf2\jf2 
d'lf2 d'lfl 

'VI a-z +'lf2 a-z 

\ji 1 (\ji 2 + 'V 1 ) 

'V 2 (\ji 2 + 'V 1 ) 

O. 

This, together with Lemmas 2 and 3, yields the following equation, 
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2 _ 2 [ a X • ay ) - 2 - ? ( ax . ay ) O e'l'' e 'V 2) e 'V 2 + 'V' ) a z - l az + e'l' 2 e 'V' ) e 'V 2 + 'V' >- az + l az = . 

Since (\j/2 + \j/ 1 )
2 -:t. O and e -:t. O, we have 

( 1 1) 

Lemma 6. Let f : M ~ tl3 be a minimal immersion of M into tl3 and 

\ji : M ~ S 2 be the Gauss map of M into S 2 considered as the Riemann 
sphere. Then we ha ve, on U1, 

ax 2i(I-\V?) a \ji 1 

az (\ji¡ \ji¡ -1)2 az 
ay 2(1+\V?) a \ji 1 

az (\jf¡\j/¡-1)2 az (12) 

a~ -4\j/, a \ji 1 

az (\jf¡\j/'¡-1)2 az 
where ~ is such that ~u = -~ and ~,. = a. 

Proof. From ( 11) we ha ve 

-2 ) ax . (1 - 2 ) ay 
(1+\jf¡ -= = l -\ji¡ -=· az az (13) 

Since 1 +\ji? ;t. O , by virtue of Lemma 2 and equation (13), we ha ve 

whence we obtain 

using (9) follows the second formula of (12). By the similar way we have 
also the first formula of (12). The last formula of (12) follows from the next 
formula: 
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(14) 

We shall prove at first this equation. By mean the definition of \j/ 1 we get 

The real part of the above formula is equal to 

l{a(x11 -y,,)+~(xv+Y 11 )- J.} (1-c)a}= 
4 

± {a X 11 - a Y 1, + ~X 1• + ~Y 11 - [] - ~2 (X 11 Y v - X 1' Y 11 ) )e~ Y 11 - a}' v ) } = 

] 2 A 2 A 2 2A 
- 2 {axuA +1-'x.,A +(x,Yvi-'Yu-XuYva-X.,Yui-'+XvYuaYv)}=O. 
41.. 

The last equal held using the relations of (3). By the similar way we can see 
that the imaginary part of (15) is also zero. This prove the formula. 

Under the condition that aa~' :F. O, we have 

¡.,_2\if [ ax + i ay l 
Y) az: az: • 2 

] ( 'A) 1 ax . ay 1 2 a + ll-' a z + 1 a z 

Using (14), we obtain 

But we know, see remark (1 ), aa + a~ =O; then, there exist a differential au av 
function ~ such that ~~~ = -~ and ~,. = a. Hence, 
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This concludes the proof. • 

S. Integrability Condition 

We shall show in this section that the Gauss map of a mínima! 
immersion in tl3 satisfies a second order differential equation which help us 
to find a integrability condition for the system (12). 

Theorem 7. Let f: M ~ tl3 be an isometric immersion of M into tl3. 

Then f is minimal if the Gauss map 'JI satisfy 

a 2 'V 2o/ a'V a'V _ 0 -----------
a za z 'VW - 1 a z a z 

(16) 

Proof. Firstly we derive the system (12) with respect a z. From the tirst 
equation of this system we ha ve 

a2x 2i(l-\j/ 2
) [ a2 'Jf 2\jf a'Jf a'Jfl 4i('Jf-\j/) a'Jf aw 

a za z = <'VW -1) 2 a za z - <'VW -1) a z a;.- - <'VW- I)3 a z a;.-· 

Notice that the second term of the right side is real and equal to 

').} be - ((X y u + ~y 1' ) b . . . . . a 2 X --= and y the ftrst equat10n of (4) tt ts equal to --_ . 
4 4 a za z 

By the similar way, from the second equation of (12), we ha ve 

a 2 
Y 2; o + w 2 

) [ a 2 
'V 2 o/ a 'V a'V ] 4 <'V + o/) a'V aw 

aza-z= ('Jfo/-1) 2 azaz- ('Jfo/-1) a-za;.-- ('Jfo/-1) 3 a-z az · 
In this case the second term of the right side is real and equal to 

? A az 
-'A-ac = axu + pxv and it is equal to _Y_ Finally, from the third 

4 4 ~~ 

equation of (12) we have: 
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') 

The second term of the right side is equal to A,-c and, by using the fact that 
4 

~u=-~ and ~v =a, this is equal to ()
2

~_ . Then the Gauss map '1' satisfy 
dZdZ 

(16) if f is a minimal immersion of M into tl3. • 

Furthermore we can see that equation (16) is just the complete integrability 
condition for the system ( 12). Therefore we ha ve the following 

Theorem 8. Let M be a simply connected 2-dimensional smooth 
Riemannian manifold and 'lf: M ~ 52 be a smooth mapping which satisfies 
the differential equation (16). Then '1' is a Gauss map of the following 
minimal surface of tl3 : 

X =9\ 
Í 2i(l-1¡1f) d'lft 

('!' 1 \ji, - J)2 
a z d z +e, 

o 

1 

y =9\ f 2(~+'1ff) 7 d'lft dz +e 
(o/,"'' - 1)- az. 2 

o 

Proof. This follows from Theorems (6) and (7). • 

We have found a correspondence from the set of solution of the 
differential equation (16) to set of minimal surfaces of tl3. Now we shall 
study the uniqueness of the correspondence. 
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Theorem 9. Let 'lf(Z) (resp. \ji (z)) be a smooth mapping satisfying ( 16) on 

a simply connected 2-dimensional manifold M. We define a minimal 

immersion X(z) (resp. X (z)) by the above theorem. Then the two condition 
are equivalent: 

l. There exist a holomorphic mapping w = f (z) with f' (z) "* on M such 

that X (f(z)) = X(z), z E M. 

2. There exist a holomorphic mapping w = f (z) with f' (z)) "* on M such 
that \ji (f (z)) = '1' (z), z E M. 

Proof. We can repeat the proof of Theorem 5 of [2]. • 

At last we shall give sorne examples: 

Example l. Let '1' : e ~ e be '1' (z) = z . Then the minimal immersion 
obtained by this '1' is the horizontal plane: 

X(z)= -_-, - ,cte. 'z E e- {S}. 
(

2(z+z 2i(z-z l 1 

zz-1 zz-1 

More generally, if we set X (w) = g(w) where g(w) is holomorphic 

function with g' ( w) "*O on a simply connected D, we ha ve that the mini mal 

immersion made by this X (w) is a horizontal plane. In fact, this follows 
Theorem (9) and by noting that '1' ( g(w)) =X (w). Therefore: The Gauss 

map of a minimal suiface of 11; is antiholomorphic if the minimal suiface is 
aplane. 
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