DISCRETE ANALOGUE OF CAUCHY'S INTEGRAL FORMULA

Mumtaz Ahmad K., M. Najmi

I. Introduction

In an earlier paper [3], in 1993, a class of functions named (p, q)-analytic functions and defined on a suitable geometric lattice was introduced. In yet another paper [4] we made a study on complex integrals of discrete functions. The present paper is a continuation of [4] and here a discrete analogue of Cauchy's integral formula has been established.

2. Notations, Definitions and The Lattice

In order to introduce the concept of (p, q)-analytic function the following geometric lattice was considered in [3]:

[^0]$K=\left\{\left(p^{m} x_{0}, q^{n} y_{0}\right) ; m, n \in \mathbb{Z}\right.$, the set of integers, $0<p<1$.
\[

$$
\begin{equation*}
\left.0<q<1,\left(x_{0}, y_{0}\right) \text { fixed, } x_{0}>0, y_{0}>0\right\} \tag{2.1}
\end{equation*}
$$

\]

where the complex number z is used synonymously with its components (x, y). Thus if $z \in K$ then $z=(x, y)=\left(p^{m} x_{0}, q^{n} y_{0}\right)$.

We also recall here, for convenience, some of the definitions given in [3].

Definition 2.1. The 'discrete plane' Q ' with respect to some fixed point $z^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ in the first quadrant, is defined by the set of lattice points,

$$
Q^{\prime}=\left\{\left(p^{\prime \prime \prime} x^{\prime}, q^{\prime \prime} y^{\prime}\right) ; m, n \in \mathbb{Z}, \text { the set of integers }\right\}
$$

Definition 2.2. Two lattice points $z_{i}, z_{i+1} \in Q$ ' are said to be 'adjacent' if z_{i+1} is one of $\left(p x_{i}, y_{i}\right),\left(p^{-1} x_{i}, y_{i}\right),\left(x_{i}, q y_{i}\right)$ or $\left(x_{i}, q^{-1} y_{i}\right)$.

Definition 2.3. A 'discrete curve' C in Q ' connecting z_{0} to z_{n} is denoted by the sequence

$$
C \equiv\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle,
$$

where $z_{i}, z_{i+1} ; i=0,1, \ldots,(n-1)$, are adjacent points of Q^{\prime}.

If the points are distinct ($z_{i} \neq z_{j} ; i \neq j$) then the discrete curve C is said to be 'simple'.

Definition 2.4. A 'discrete closed cruve' C Q' is given by the sequence $<z_{0}, z_{1}, z_{2}, \ldots, z_{n}>$ where $<z_{0}, z_{1}, \ldots, z_{n-1}>$ is simple and $z_{0}=z_{n}$.

Denote by \bar{C} the continuous closed curve formed by joining adjacent points of the discrete closed curve C. Then \bar{C} encloses certain points of Q ', denoted by Int. (C).

Definition 2.5. A 'finite discrete domain' D is defined as

$$
D=\left\{z \in Q^{\prime} ; \quad z \in C \cup \ln (C)\right\} .
$$

In general a 'discrete domain' D is defined as a union (infinite or otherwise) of finite discrete domains.
$\partial(D)$ denotes the discrete closed curve around the finite discrete domain D.

$$
\text { i.e. } \quad \partial(D)=D-\operatorname{lnt}(D) \text {. }
$$

Definition 2.6. A 'basic set' with respect to $z \in Q$ is defined as

$$
S(z)=\{(x, y),(p x, y),(p x, q y),(x, q y)\},
$$

and the discrete closed curve around $S(z)$ is denoted by

$$
\begin{equation*}
\partial(S)=\langle(x, y),(p x, y),(p x, q y),(x, q y),(x, y)\rangle \tag{2.2}
\end{equation*}
$$

The order of points of $\partial(S)$ as in (2.2) is said to be positive direction. The reverse sequence is denoted by $-\partial(S)$.

It is evident from the above definitions that a discrete domain D is composed of a union of basic sets.

Definition 2.7. Function defined on the points of a discrete domain D are said to be 'discrete functions'.

Definition 2.8. The p -difference and q -difference operator $D_{p, x}$ and $D_{q, y}$ are defined as follows:

$$
\begin{align*}
& D_{p, x}[f(z)]=\frac{f(z)-f(p x, y)}{(1-p) x} \tag{2.3}\\
& D_{q, y}[f(z)]=\frac{f(z)-f(x, q y)}{(1-q) i y} \tag{2.4}
\end{align*}
$$

where f is a discrete function.
Definition of (p, \boldsymbol{q}) - Analytic Functions. The two operators (2.3) and (2.4) involve a 'basic triad' of points denoted by

$$
\begin{equation*}
T(z)=\{(x, y),(p x, y),(x, q y)\} \tag{2.5}
\end{equation*}
$$

Let D be a discrete domain. Then a discrete function f is said to be ' (p, q) - analytic' at $z \in D$ if

$$
\begin{equation*}
D_{p, x}[f(z)]=D_{q, y}[f(z)] \tag{2.6}
\end{equation*}
$$

If in addition (2.6) holds for every $z \in D$ such that $T(z) \subseteq D$ then f is said to be (p, q) - analytic in D.

For simplicity if (2.6) or (2.7) holds, the common operator D is used where

$$
\begin{equation*}
D \equiv D_{p, x} \equiv D_{q, y} \tag{2.8}
\end{equation*}
$$

Further, the operator $R_{p, q}$ is defined as

$$
\begin{equation*}
R_{p, q}[f(z)]=\{(1-p) x-i(1-q) y\} f(x, y)-(1-p) x f(x, q y)+i(1-q) y f(p x, y), \tag{2.9}
\end{equation*}
$$

where $f: K \rightarrow \mathbb{C}$ (the field of complex numbers).
$R_{p, q} f(z)$ is called (p, q) - residue of the function at z.
From (2.7) it is easily seen that f is (p, q)-analytic in a discrete domain D iff

$$
\begin{equation*}
R_{p, q}[f(z)]=0, \tag{2.10}
\end{equation*}
$$

for cvery $z \in D$ with $T(z) \subseteq D$.
Since a discrete domain D is the union of basic sets S so if the discrete domain D is given by

$$
D=\bigcup_{i=1}^{N} S\left(z_{i}\right),
$$

then the 'subdomain D_{N} ' is defined by

$$
\begin{equation*}
D_{N}=\left\{z_{i} ; i=1,2, \ldots, N\right\} \tag{2.11}
\end{equation*}
$$

3. (r, s) - Analytic Functions

In order to develop a discrete analogue of Cauchy's integral formula it is also necessary to introduce the concept of (r, s)-analytic function.

If $r=p^{-1}$ and $s=q^{-1}$ then $r>1$ and $s>1$. Let the operators $\theta_{r, x}, \boldsymbol{\theta}_{s, y}$ be defined in a manner similar to the operators $D_{p, s}, D_{q, y}$.

$$
\begin{aligned}
& \theta_{r, x}[f(z)]=\frac{f(z)-f(r x, y)}{(1-r) x}, \\
& \theta_{r, y}[f(z)]=\frac{f(z)-f(x, s y)}{(1-s) i y} .
\end{aligned}
$$

A discrete function f, defined on Q ' is said to be ' (r, s)-analytic' at z if

$$
\begin{equation*}
\theta_{r, x}[f(z)]=\theta_{s, y}[f(z)] \tag{3.1}
\end{equation*}
$$

and the common operator is denoted by θ.
Now equation (3.1) is equivalent to $B_{p, q}[g(z)]=0$, where the operator $B_{p, 4}$ is defined as

$$
\begin{align*}
B_{p, q}[g(z)]= & \{(1-r) x-(1-s) i y\} g(z)-(1-r) x g(x, s y)+(1-s) i y g(r x, y) \\
= & \left\{\left(1-p^{-1}\right) x-\left(1-q^{-1}\right) i y\right\} g(z)-\left(1-p^{-1}\right) \times g\left(x, q^{-1} y\right) \\
& +\left(1-q^{-1}\right) i y g\left(p^{-1} x, y\right) \tag{3.2}
\end{align*}
$$

4. Cauchy's.integral formula

The following definition of a 'conjoint line integral' is the (p, q)function analogue of the one introduced by Isaacs [2].

If $C=\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle$ is a discrete curve in D, and if f and g are two discrete functions, then the conjoint line integral along C is defined as

$$
\int_{z_{0}}^{z_{n}}(f \oplus g)(t) d(t ; p, q)=\sum_{j=0}^{n-1} \int_{z_{j}}^{z_{j+1}}(f \oplus g)(t) d(t ; p, q)
$$

where

$$
\int_{z_{j}}^{z_{j+1}}(f \oplus g)(t) d(t ; p, q)=\left\{\begin{array}{l}
\left(z_{j+1}-z_{j}\right) f\left(z_{j}\right) g\left(z_{j+1}\right) ; \text { for } \tag{4.1}\\
z_{j+1}=\left(p x_{j}, y_{j}\right) \text { or }\left(x_{j}, q y_{j}\right) \\
\left(z_{j+1}-z_{j}\right) f\left(z_{j+1}\right) g\left(z_{j}\right) ; \text { for } \\
z_{j+1}=\left(p^{-1} x_{j}, y_{j}\right) \text { or }\left(x_{j}, q^{-1} y_{j}\right)
\end{array}\right.
$$

The following two theorems are (p, q)-analogues of monodiffric results given by Kurowski [5] and Berzseuyi [1]. The proofs are essentially the same and so are omitted.

Theorem 4.1. If f is (p, q)-analytic and g is (r, s)-analytic in D then,

$$
\int_{C}(f \oplus g)(t) d(t ; p, q)=0
$$

where C is any closed curve in D.
Theorem 4.2. If D is a finite discrete domain and if f and g are discrete functions defined on D, then

$$
\int_{\partial(D)}(f \oplus g)(t) d(t ; p, q)=\sum_{t \in D_{N}}\left[f(t) B_{p, q} g(p \rho, q \sigma)\right]
$$

$=\quad \sum_{t \in D_{N}}\left[f(t) B_{p, 4} g(p \rho, q \sigma)-g(p \rho, q \sigma) R_{p, 4} f(t)\right]$
where D_{N} is given by (2.11) and $t=\rho+i \sigma$ so that $f(t) \equiv f(\rho, \sigma)$.
The latter theorem is the (p, q) - analogue of Green's Identity.
If f is (p, q) - analytic, then since $R_{p, q} f=0$ the following holds.
Corollary 4.1. If f is (p, q) - analytic on some finite discrete domain D then,

$$
\int_{\partial(D)}(f \oplus g)(t) d(t ; p, q)=\sum_{t \in D_{N}} f(t) B_{p, q} g(p \rho, q \sigma) .
$$

A discrete function G_{a} is called a 'singularity function' if it satisfies

$$
B_{p, q}\left[G_{a}(t)\right]= \begin{cases}1 ; t=a, & a=a_{1}+i a_{2} \tag{4.2}\\ 0 ; t \neq a ; & a, t \in Q^{\prime}\end{cases}
$$

If such a function can be found then Corollary (4.1) reduces to

$$
\int_{\partial(D)}\left(f \oplus G_{a}\right)(t) d(t ; p, q)=f\left(p^{-1} a_{1}, q^{-1} a_{2}\right)
$$

an analogue of Cauchy's integral formula.

5. References

[1] Berzsenyi, G. "Convolution products of monodiffric functions", J. Math. Anal. Appl., 37 (1972) 271-287.
[2] Isaacs, R. P. "A finite difference function theory", Univ. Nac. Tucuman Rev., 2 (1941) 177-201.
[3] Khan, M. A. "(p, q) - Analytic functions and Discrete 'bibasic' Hypergeometric series", Math., Notae, Vol. 37 (1993-94) 43-56.
[4] Khan, M. A. and Najmi, M. "On complex integrals of discrete function", Math. Notae, vol, 38 (1995-95) 113-135.
[5] Kurowski, G. J. "Further results in the theory of monodiffric functions",.Pacific J. Math., 18 (1966) 139-147.

> Mumtaz Ahmad Khan
> Department of Applied Mathematics,
> Faculty of Engineering A.M.U., ALIGARH - 202002,U.P. INDIA.

[^0]: σ
 Department of Applied Mathematics, Faculty of Engineering, India.

