Pro Mathematica Vol. XIV, Nos. 27-28, 2000

DISCRETE ANALYTIC
CONTINUATION OF A (p, q)-
ANALYTIC FUNCTION

Mumtaz Ahmad K. and M. Najmi

Abstract

In this paper a method is devised for
the continuation into the discrete plane
Q’ of functions defined on the positive

half-axes and the properties of
continuation operator
discussed.

1. Introduction

In 1993 the first author [7] introduced the concept of (p, g)-analyticity
by considering fuctions defined on the following geometric lattice:

mn n . . : —
K ={(p" xy,q9" y,);m,n,€Z, the set of integers, (1.1

O0< p<|, O<g< 1, (xg yo) fixed, xo> 0, yo > 0}.
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In what follows z € K, z=(x, y}=(p" x4, ¢ ¥g)-

We recali here some of the definitions given in [7].
Definition 1. The ‘discrete plane’ Q' with respect to some fixed
point 2" =(x’, y’) in the first quadrant, is defined by the set of lattice points.,

@ ={(p"xg" y)im n e Zihe set ol integers}.

Definition 2. Two lattice points z;, ;. € Q' are said 10 be ‘adjacent’ if
. . -1 -1
Zjy Iy one of (pxi, yi). (P77 xi i), (ki gy or (xi, g yi)-
Definition 3. A ‘discrete curve’ C in Q' connecting 710 2, is denoted by
the sequence
C=<zg. 3 5, >

where z;, 2,3 i=0,1, ..., (n—1) are adjacent points of Q"

If the points arc distinct (z; # z; 3 { # j) then the discretc curve Cis
said to be “simple’.

Definition 4. A ‘discrete closed curve’ C in Q' is given by the sequence
<Zs > Tps e Iy > where <Zgs Lo e 3y > is simple and zy = z,,.

Denote by C the continuous closed curve formed by joining adjacent
points of the discrete closed curve C. Then C encloses certain points of Q.
denoted by Ini(C).
Definition 5. A ‘finite discrete domain’ B is defined as
B={ze Q: z CU Int(O}.
Definition 6. A ‘basic set’ respectto z € Q' is defined as

S(z) = {(x, y), (px. ¥). (px, qy), (x, gy)}.

and the discrete closed curve around S(z) is denoted by

d(s)=<(x, ¥) (pe y), (px, gy). (x, gv), (x, y) > (1.2)
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Definition 7. Functions defined on the points of a discrete domain B are
said to be ‘discrete functions’.

Definition 8. The p-difference and g-difference operators D, and D,
are defined as follows:

&) = flpxy)

D, f)) = s (1.3)
oy J@ - flxgy) ;
D, [f)] = Tason (1.4)

where f is a discrete function.

We now recall the definition of (p, ¢)-analytic function as introduced
in [7]. The two operators (1.3) and (1.4) involve a ‘basic triad’ ol points
denoted by

T(z) = {(x ). (px. y), (x. gy)}. (1.5)

Definition 9. Ler B be a discrete domain. Then a discrete function f is said
to be *(p, g)-analvtic’ at z € B if

D, Lf(D =D, [[f. (1.6)

If in addition (1.6) holds for every z e B such that

T(z) B then f issaid to be (p, g)-analytic in B. .7

For simplicity if (1.6) or (1.7) holds, the common operator D, is used
where

D D D .. (1.8)

q pox 4.y
Definition 10. The operator R, s defined as

RI”/ FOI={U0=-px—i (1 =gy} flx )= =pfx g

+ (1 = @)y f(px. y) (1.9)

where [ :K = C, the field of complex numbers.

R,,,(, f(z) is called (p, g)-residue of the function at z.



From (1.7) it is casily scen that fis (p, ¢)-analytic in a discrete
domain D T

R,  If ()] =0. (1.10)

Definition 11. Since a discrete domain B is the union of basic sets S so if
the discrete domain B is given by

N
B = |Jsip,
i=l

then the ‘subdomain’ By is defined by

By={z; i

I.2.....NJ}. (1.11)

In the present paper the discrete plane Q° is extended to include points
on the positive half-axes. If a (p, ¢)-analytic function is defined on a subset of
()’ then 1t has a unique cxtension as a (p, ¢)-analytic function to certain other
points of the discrete plane. An outline of results of this type is given and a
method is devised for the continuation into Q' of functions defined on the
axes.

2.  Boundary Conditions

Q) The (p, g)-difference operator K defined in (1.9), involves a

Py’
basic triad of points,
T(z) = {z. (px. »), (x, gy }.

From (1.10) it follows that given the value of a (p, g)-analytic function
f atany two points of T(z), then it is uniquely determined at the third
point. In fact

(I=p)x fx.g) = i(l=g)y f(px,y)

Fo = (1= p)x — i(I=q)y

Flpry) = (1=p)x f(x,qv) _.{(1—/))"’_’-(1*(/)ML1), 2.0
i(l=q)y

Flray) = (=p)e = id-g)y} () + il-g)y f(pr.y)
(I-p)x
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b) From the above it is easily verified that if a (p, g)-analytic function f
is defined at the horizontal set of points {(p™.x, y); m € Z then it can

be uniquely continued as a (p, ¢)- analytic function to all points of Q"
below this set, (i.e. all points of the form

{(p"x, q" ¥, me Z; n=0,1,2....}).

¢) Similarly if the function £ is defined on the vertical set {(x, ¢" y);ne Z },

then f has a unique continuation as a (p, g)-analytic function to
all points of @’ to the left of this set, (i.c. all points of the form

{(p"x, g"yne Z; m=0,1,2,...}).

d) If f is defined on the sets [(p™x, ¥); meZ and

{(x,4" y);n=0,-1,-2,...} (fig. 2) then it has a uniquc continuation
as a (p, ¢)-analytic function to all points of Q’. The result for the region
to the left and below these sets follows from boundary conditions (b) and
(c). The value of f at the point C (fig. 2) is given by the values of f
at A, B by boundary condition (a). Similarly the function f is
determined uniquely at all other lattice points in the region R, (points

of the form { (p™ xq"y); m=0,-1,=2, ... n=0,-1,-2, ...}).

e) If f is defined on the sets, { (p™ x, y); m =0, 1, 2,...} and
{(x.g" ¥); n=0,1,2,...} (fig. 3) then by repeated application of boundary
condition (a) the function has unique continuation into the rectangular
region {(p""'x,¢" ¥); m=0,1,2,...; n=0,1,2, ... } denoted by
R, in fig. 3.

The above boundary conditions are the (p. ¢)-analogues of results in
monoditiric theory outlined by Isaacs [5] and Berzsenyi [ 1].

The following theorem is similar to a result of Berzsenyi and the
proof, being equivalent, is omitted.
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Theorem 1. Let B be a finite discrete domain and f be a (p. ¢)-analytic
function defined on the boundary points d (B). Then there exists a unigue
(p, g)-analytic function g, defined on DD such thar f=g on d(B).

In tact more than this is true. A function defined on the boundary J(B)
can also be continued to certain points outside B as follows:

The discrete domain B consists of a union of basic sets, t.¢. a union of
lattice points of the form

B={(p'x.q/v)iiel, jeJ
where /. J are sets of integers determined by B. Let

min
iel

IIIB

np = min j
s jed
Mp = max i+j
iel
ied

ﬁl :{(p/"/; .\‘,(/'/.")§ j=nB, iy +I,...,(MB vmb,)}

(j’2 ={(/,;i,\~,qll’* V) i=ng, mp+l....(Mp—ng)}

Vi={(p'x.q?y)y; i+ j=Mpy where @ =my, mp+1,... Mp—uy and

j np g+ 1,0 Mp—my }.

Figure 4 illustrates the above notation. The boundary Jd(B) is indicated
by the solid line. ¢, is given by the horizontal set of points between A and
B. (, by the vertical points between B and C and £ is given by the
diagonal-like sct of points between A and C.

I G represents the subset of Q" bounded by and including (’.'].

(5. € then the following holds:
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Theorem 2. If a (p. g)-analytic function f is defined on the boundary d(B)
of some finite discrete domain B, then there exists « unique (p, g)-analytic
function g defined on G such that f = g on J(B).

The result follows for points of B by thcorem [. By repcated
application of boundary condition (a) the theorem can casily be shown to be
true for all other points of G.

3. Continuation from the Axes

The discrete plane @’ consists of horizontal and vertical scts of  points
tending towards the axes (fig. 1). It proves useful to consider discrete
functions also defined on the axes. Consequently the discrete plane is
cxtended as follows:

Let
X

{(p"x".0)y.me Z)

Y = {(0.¢" y)ne Z)

where (x', y') is the fixed point from which the lattice Q" is defined.
The “cxtended discrete plane’ Q is then defined as
0=QUXUY. 3.1)
The ‘discrete rectangular domain® R’ is delined by
R = {(p"x'\¢" y); m=0,1.2....; n=0,1,2, ... ) (3.2)
If X*,Y* are defined by

Xt o= {(p"x,0% m=0.1,2, ...}

(3.3)
Y* o= {(0.9" y'); n=0,1,2, ...}
then the “cxtended rectangular domain’ R is defined as
R = R UX" UY". (3.4)
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Discrete function can now be defined on X, Y. The values on the
axes, ol a discrete function f defined on R’, are delined to be

S0 = dim f(x,g" v

1n—>00

70, v) lim  f(p"x,y)(x,y)eR" .

H—>c0

1

Alternatively this can be expressed as

f(x.0) = lim f(xy); (x,y)e R 3.5
y—=0

FO, )y = lim f(x,y)(x,y)eR (3.0)
-0

where fim has the same meaning as /im ¢" y' and similarly for lim .
y—0 11— 00 r—=0

The definition of (p, g)-analyticity is now cxtended to functions
defined on the axes.

A function f is said to be (p, ¢)-analytic on X* if the limit in (3.5)
exists for cach v such that (v.0) € X* and il

lim D, flx.y) = D, f(x0) (x,))e R (3.7)

y—0

Similarly f is (p, g)-analytic on Y7 if the limit in (3.6) exists and

im D f(x,yy=D_ f0.y) (x.y)e R". (3.8)
x—=0 -
I £ is (p. ¢)-analytic in R” and if (3.7), (3.8) hold, then f is said to be
(p, g)-analytic in R. (3.9)

This definition can of course be extended to all of @' and Q but for
present purposes the above suffices.

The p-difterence or g-difference operator of order j are defined by

DI =D, DT FOR DY 1= £ =002

p.ox
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and

DI f(Dl=D

q.y

o IDIS FQL D) IFG = f(2) =012

Analytic functions of a continuous complex variable have derivatives
of all orders. A corresponding result is truc for (p, g)-analytic functions
defined on R, and is now considered.

Lemma 1. If f is (p. g)-analytic in R then for cach ze R, [)/;__V [f (D]

and DY | f(2)] existand

g.v

DI Q) = D) f) =012 ..

Proof. If ze R, then ze R, X* or Y*.

(i) Let z € R, and f be a (p, ¢)- analytic function in R’. From the
definition of the subdomain By it follows that if B =R’ then By =R’
also.

Hence by theorem | of [7] I)/)‘_\, [f(z)] and an‘, [f(2)] are (p, ¢)-

analytic in R’. From which it follows then that.

D, l‘l)l,“\_ f(1 = D [ Dp‘.r F()]

q.y
and

D, D, f) =D, (D, fI

g, v q.y

It is readily shown that the operation of the p-difference operator DI)“\.

on the ¢g-difference operator Dq‘ , s commutative and so,
2 ST B 20 fn
D) If) = D) [f()] DS

By theorem | of [7} again, sz(z) is (p, ¢)-analytic in R" and so by
induction it follows that

q. v
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are (p, g)-analytic in R’ and satisfy

DI LFGN = DI L Lf] DILf@L

q. v

(i) If ze X* and f is(p, g)-analytic in X *, then by (3.7) f(x, 0) exists
for (v, 0) X* and,
(I, .‘

Dp S 0) = lim D, f(xy), (x,y) € R.
v y—0

It can be shown (see for examplie Hahn [2]) that

=D (1= pyd 5/ p/ID DI (f (0

J ; )
= 2 J (—l)k pl"(k””/zf(p*"k x,0).
k=o\k

J

(3.10)

The points (p? ¥ x,0); k=0, 1, ..., j: belong to X* and hence by
(3.7) it follows that f (pj_kx, 0) exists for k =0, 1, ... , j. The above
formula verifies the existence of le;_ v f(x0).

Now,

: U N T -
lim Dq_ v f(2) = l””() Dq‘ v [DL/‘_‘, f(2)]

y—0 : y—

and since D f(2) is (p, g)-analytic for z e R’ by (i) above

g ¥

. 2 = i .
fim D} S = im D, (D, [

lim Dq' b fla) - Dd’ ¥ fipx,y)
y—=0 (l-p) x

lim Dq’ y f(z) - \!i_n)zo Dq. v flpx, y)

v—0

(I=-p)x

Hence, since f is (p, ¢)-analyticon X, by (3.7) it follows that,
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DIW___)_;_DL”M‘ J(px.0)
(I-p)x

lim Dy f(2)

yv—=0

D/L X [ D/;, X f(-\'s O]

D,,“\. S 0)
Similarly, by induction it can be shown that

y—=0 p-x

lim Dl{_ AF@1 = DY f(n0) 5 j=0,1,2, ...,

and hence that D/;‘_x fis (p. ¢)-analyticon X7 .

Similarly D/

gy f s (p, g)-analytic on Y. This completes the proof

of the lemma.

A method is now derived by which functions defined on the axes can
be continued into the discrete planc as (p, ¢)-analytic functions.

If £ is (p, g)-analytic in R , then
D, [fl=D,  [f@)ze R 3.1

)= flx, qy)
(I=q)iy

Hence,

flogy) = fley) - U-q)iy D,  [fx ]

The operator D o is now treated as a constant k4, and a formal

symbolic method is used.

From the abovc,
fl,gy) = 0= =g)iy k) flx ».

It follows that
fng@n === iy b (l—qg-qriyv k) flxy)



and in general,

fleg"y) = 0=-0-qiy k), flxy)

Taking the limit as n — oo, it follows that since f is (p. ¢)-analytic
in R, then

lim f(x,q"y) = f(x,0) exists, and so,

o0
f&0) = (A =(1=-q)iy e fx y).
Hence (formally),

|
Te0 = iy o, T

and by the definition of g-analogue e, (x) of exponential function, we get

= 3 020 i
fy EO U D (iy) f(x,0).

Replacing &/ by DJ

nox’
fley Z ——mJ DI . [f(x, 0], (3.12)

where D/jr.x {f(x, 0)] exists by lemma 1.

The method used in attempting to solve equation (3.11) have to course
been formal symbolic ones, similar to the procedures used by Boole [ Treatise
on the calculus of finite differences, Macmilian (1880)]. It remains to be
verified that f(x, y), as given by (3.12), in fact represents a solution of
(3.11) when the series converges.

Theorem 3. If

Fixw = 2 (l_"; (i) DI [fx. 0)]
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is convergent in some rectangular, discrete domain R
analytic in R’. and hence satisfies equation (3.11),

Proof. It z € R’ then with f(x, y) given as above,

'\ then f is (p. g)-

D, lfanl =D, Z (I_ ) " W7 DI C1f(x00]

j=0

By Corollary 2 of [7], Ip,.\' z = Z DP-'\" and so
0

0
>
D, [ flxy] = ZO E]_Z; (iy )'D]’,*{ [f(x,0)] . (3.13)
J

Now,

- (- r/)
Dy L[l =D, g, (i)' D

j=0

& (-¢)f
=y D, ()]
=gy, 0

From the definition of Iq . it follows that

) L0

D) Lf(x0].

0 ;0 j=0
[l = 30=-47) . i .
q ¥ Y e
) M s J=1L2,...
and so
¢!
JLfeo =

j=t

T U= Vi i
) § (I-g); P

— ]
D El_q) @) DI (£ 0]

[f(x,0)]

D, [ £yl (from(4.2.13).



This proves the theorem and justifics the formal symbolic methods.

In fact more than the above is true. The series representation of f is
also (p, g)-analytic on X which can be verified as follows,

Corollary 1. If the series in (3.12) is convergent in R, then

im f(x,y) = f(x,0), and
y—0

i, D 160 = D, 11501

y

Proof. From (3.12),

= (I-q)! S
foen = 3 U0 Gnini ifeo)

<o (-9,

and hence
lim fxy) = f(x0).

y—=0
Similarly,

oo Y o
{im (_l__ql (iv)’ I)/f{ [f(x.0))

vo0 i=0 (I-¢g j

lim I)‘/_", flx

y—0

= D/).,\‘ f (x 0).

This completes the proof.

From the above it is clear that functions defined on the X-axis can be
continued by means of (3.12) (under certain convergence conditions) into
(p, ¢)-analytic functions defined in the discrete planc Q.

If the operator C, is denoted by

o (=) i
C_\- = 2 zl—:ﬁ)— (l)‘)‘/ [)]j,”\. 3.14)
i=0 j

then the function
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2 = _N =0l i) :
fly = Cy Iftx, 0)] = ,20 (—q), @ P U 01 G19)

is called the ‘(p, g)-analytic continuvation’ of f(x, 0), into a (p, g)-analytic
function f defined at the point (v, y) € Q'. Similarly, it can be shown that

. b R
C. 10, )] = 2 (=9)" DI [f0, )] (3.16)
B = (l_q)j q. .

represents the (p, ¢)-analytic continuation from the y-axis.

4.  Properties of the Continuation Operator C

The continuation operator C,. is said (o exist if the series
representation (3.14) converges.

(a) It £ 1s a scalar constant, then

| S = i

C (k) = ~——L (i) DI k],

.‘ .Z‘() (]—(I)I ])..\

) k ; j=0
But D/ [k] =

P 0 j=12,..,
and so

C,(k) = k

(b) Since D is a linear operator,

pox

o -/ o
otk fir 0 = Y STPT I pI 1k 00

X 2 ——— (iy)! DY [f(x.0)],
j=o (79); "

and so
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C“.[kf(.\’. 0] = & C‘\, Lf(x, O)].
() I CIf(x. O], C [glx, 0)] exist then,
C lf (v, 01 + C, lg(x. 0)]

= (i-
=S =97 G0ipi o 2 "3» @07 DI, [0
' (1_")/ ! j=0 I

and since the two series converge,

C,lf(x, 0] + C, lgx, 0)]

2 (-
S El (’; @) ID)  fx,0) + DI g(x,0)).
j=0

But Dp,x 1s a linear operator and hence,
C.lf (x. O)]+ Cy lg(x, O)] = C.‘,[f(.\', M+ g(x, M.
But (b) and (c¢) it is clear that € is a linear operator.

(d) It f, (x,0) = f(x,0) pointwisc and the scrics representation of

C.‘, LS, (x,0}] is uniformly convergentin n then

{im C [f” (x,0)]

H-—yoe

o (- q) j
T YDy

= lim
=300

[/, (x.0
j=0

and so by uniform convergence

lim C\. [f, (x,0)} = Z U (/)_- (l\)’ lim Dl,’ v lf,,(.\‘,O)].

H—o0 * (- ) "> e

It is readily shown that theorem 3 of [7] extends to all orders of p-
difference and g-difference operators so that

118



()

lim D [f, (x,0)]

H—>o0

DIf(x,00 .

Hence

lim C, Lf, (x.0)]

H—>00

C, [ftx, O

It is interesting to note that since

(-q)

lim —* = =
=) (l—f/)j J

and assuming f to be analytic in the classical sense, it follows that,

lim D/ fx,00 = £ (x,0)
!

4> pox

Hence

© (i) .
tim €, (e on= Y, B 0 o),
q—1 . i=0 ]

which is the Maclaurin series representation of an analytic function
about a point the X-axis.

The continuation operator C may be regarded therefore as the (p, g)-

analogue of a Maclaurin series.

S.
(1

(3]

(4]
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