WEAK AND PERIODICAL SOLUTIONS OF THE NAVIER-STOKES EQUATION IN NONCYLINDRICAL DOMAINS

Cruz S. Q. de Caldas, Juan Limaco, Pedro Gamboa* and Rioco K. Barreto

Abstract
We consider the Navier Stokes equation in noncylindrical domain and prove the existence of weak and periodical solutions.

Key Words and Phrases: Navier-Stokes, Noncylindrical domains, Weak and periodical solutions.

1 Introduction

Let $T>0$ be a real number and $\left\{\Omega_{t}\right\}_{0 \leq t \leq T}$ a family of bounded open sets of \mathbf{R}^{n} with boundary Γ_{t}. Let us consider the noncylindrical domain of \mathbf{R}^{n+1}, given by $\widehat{Q}=\bigcup_{0<t<T} \Omega_{t} \times\{t\}$, with lateral boundary $\widehat{\Sigma}=\bigcup_{0<t<T} \Gamma_{t} \times\{t\}$ regular.

We have the Navier-Stokes problem:

$$
(I) \left\lvert\, \begin{array}{ll}
u^{\prime}-\Delta u+\sum_{i=1}^{n} u_{i} \frac{\partial u}{\partial x_{i}}=f-\nabla p & \text { in } \widehat{Q} \\
\operatorname{div} u=0 & \text { in } \widehat{Q} \\
u=0 & \text { on } \widehat{\sum} \\
u(x, 0)=u_{0}(x) & x \in \Omega_{0}
\end{array}\right.
$$

where $u(x, t)=\left(u_{1}(x, t), \ldots, u_{n}(x, t)\right),(x, t) \in \widehat{Q}$,
$\Delta u=\left(\Delta u_{1}, \ldots, \Delta u_{n}\right), \nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$.

In the last thirty years a lot of papers concerning the existence of solutions to the Navier-Stokes equation in noncylindrical domain have been written. Among these papers, it is worth mentioning the articles of J. L. Lions [17], H. Fujita and N. Sauer [7], [8], H. Morimoto [23], in which the penality method is used, the results of R. Salvi [25], [26], [27], L.A. Medeiros and J. Limaco Ferrel [15] based on elliptic regularization, the paper of O.A. Ladyzhenskaya [13], M. Otani and Y. Yamada [24] obtained with the Rothe's method and with the subdifferential operator theory respectively, and the works of J.O. Sather [28], D.N. Bock [2], A. Inoue and M. Wakimoto [11], T. Miyakawa and Y. Teramoto [22] derived with tools of Differential Geometry and the paper of M. Milla Miranda and J. Limaco Ferrel [16] used change of variable for a cilyndrical domain and Galerkin's method.

Let $K:[0, T] \rightarrow \mathbf{R}^{n^{2}}$, a function, where $K(t)$ is a $n \times n$ matrix. Let Ω be an open bounded set of \mathbf{R}^{n}, which, without loss of generality, can
be consider containing the origin of \mathbf{R}^{n}. We assume that the boundary Γ of Ω is smooth, and consider the sets

$$
\begin{equation*}
\Omega_{t}=\{x=K(t) y ; \quad y \in \Omega\} \tag{1}
\end{equation*}
$$

In this work we study the existence of weak solutions to Problem (I), and also study the existence of periodical solution to (I). For that, by a suitable change of variable which is more general than that one used in [16], we transform the non cylindrical problem (I) in another problem defined in the cylinder $Q=\Omega \times] 0, T[$.

2 Notation and Hypotheses

We make following hypothesis on $K(t)$.
(H1) $K \in C^{1}$, where $K(t)$ is an invertible matrix.
(H2) $\quad K^{-1} \in C^{1}$, where $K^{-1}(t)$ is an invertible matrix of $K(t)$.
Consider the notation

$$
\begin{equation*}
K(t)=\left(\alpha_{i j}(t)\right), \quad \text { and } \quad K^{-1}(t)=\left(\beta_{i j}(t)\right) \tag{2}
\end{equation*}
$$

as well as the convention of summation of repeated indices; that is $\alpha_{i} \beta_{i}=\sum_{i=1}^{n} \alpha_{i} \beta_{i}$.

By $\langle.,$.$\rangle we will represent the duality pairing between X^{\prime}$ and X, X^{\prime} being the dual of the space X.

In order to state the main results we introduce some spaces. Let $\sqrt{ }{ }_{t}$ be the space

$$
\sqrt{t}=\left\{\varphi \in\left(D\left(\Omega_{t}\right)\right)^{n} ; \operatorname{div} \varphi=0\right\}
$$

and $V_{s}\left(\Omega_{t}\right)$ be the closure of \sqrt{t} in the space $\left(H^{s}\left(\Omega_{t}\right)\right)^{n}$, where s is a non negative real number.

We use the particular notation

$$
V_{1}\left(\Omega_{t}\right)=V\left(\Omega_{t}\right) \quad \text { and } \quad V_{0}\left(\Omega_{t}\right)=H\left(\Omega_{t}\right)
$$

The inner product of these spaces is denoted, respectively by $(u, z)_{H\left(\Omega_{t}\right)}$ and $((u, z))_{V\left(\Omega_{t}\right)}$. Then for $u=\left(u_{1}, \ldots u_{n}\right)$ and $z=\left(z_{1}, \ldots z_{n}\right)$, we have

$$
(u, z)_{H\left(\Omega_{t}\right)}=\int_{\Omega_{t}} u_{i}(x) z_{i}(x) d x,((u, z))_{V\left(\Omega_{t}\right)}=\int_{\Omega_{t}} \frac{\partial u_{i}(x)}{\partial x_{j}} \frac{\partial z_{i}(x)}{\partial x_{j}} d x .
$$

Note that $V_{s}\left(\Omega_{t}\right)$ is continuously embedded in $\left(H_{0}^{1}(\Omega)\right)^{n}$ for $s \geq \frac{n}{2}$ and $V\left(\Omega_{t}\right)=\left\{u \in\left(H_{0}^{1}\left(\Omega_{t}\right)\right)^{n}, \operatorname{div} u=0\right\}$.

In a similar way we introduce the spaces $V_{s}(\Omega)$, where $\sqrt{ }$ has a form

$$
\sqrt{ }=\left\{\psi \in(D(\Omega))^{n} ; \operatorname{div} \psi=0\right\} .
$$

We consider, the particular notations
$V_{1}(\Omega)=V, \quad V_{0}=H \quad$ and $\quad(v, w)_{H}=(v, w), \quad((v, w))_{V}=((v, w))$, $|v|_{H}=|v|, \quad\|v\|_{V}=\|v\|$.

In order to state the variational formulation of Problem (I) we introduce the following bilinear and trilinear forms respectively:

$$
\begin{align*}
\hat{a}(t ; u, z) & =\int_{\Omega_{t}} \frac{\partial u_{i}(x)}{\partial x_{j}} \frac{\partial z_{i}(x)}{\partial x_{j}} d x \tag{3}\\
\hat{b}(t ; u, z, \xi) & =\int_{\Omega_{t}} u_{i}(x) \frac{\partial z_{j}(x)}{\partial x_{i}} \xi_{j}(x) d x \tag{4}
\end{align*}
$$

We define the weak solution for the problem (I) in the following form

$$
\begin{aligned}
& u \in L^{2}\left(0, T ; V\left(\Omega_{t}\right)\right) \cap L^{\infty}\left(0, T ; H\left(\Omega_{t}\right)\right) \\
& -\int_{0}^{T}\left(u, \varepsilon_{H}^{\prime}\right)_{\left(\Omega_{t}\right)} d t+\int_{0}^{T} \hat{a}(t ; u, \varepsilon) d t+ \\
& +\int_{0}^{T} \hat{b}(t ; u, u, \varepsilon) d t=\int_{0}^{T}(f, \varepsilon)_{H\left(\Omega_{t}\right)} d t \\
& u(0)=u_{0} \\
& \forall_{\varepsilon} \in L^{2}\left(0, T ; V\left(\Omega_{t}\right) \cap\left(L^{n}\left(\Omega_{t}\right)\right)^{n}\right), \varepsilon^{\prime} \in L^{2}\left(0, T ; H\left(\Omega_{t}\right)\right) \\
& \varepsilon(0)=\varepsilon(T)=0
\end{aligned}
$$

In order to transform the noncylindrical problem (II) in a problem defined in the cylinder Q, we introduce the functions:

$$
\begin{align*}
& u(x, t)=K(t) v\left(K^{-1}(t) x, t\right) \quad, \quad f(x, t)=K(t) g\left(K^{-1}(t) x, t\right) \tag{5}\\
& p(x, t)=K(t) q\left(K^{-1}(t) x, t\right) \quad, \quad u_{0}(x)=K(0) v_{0}\left(K^{-1}(0) x\right) \tag{6}\\
& a(t ; v, w)= \int_{\Omega} \delta(t) a_{j k}(t) \frac{\partial v_{i}(y)}{\partial y_{j}} \frac{\partial w_{i}(y)}{\partial y_{k}} d y \tag{7}\\
& b(t ; v, w, \psi)= \int_{\Omega} \delta(t) v_{i}(y) \frac{\partial w_{j}(y)}{\partial y_{i}} \psi_{j}(y) d y \tag{8}\\
& c(t ; v, w)= \int_{\Omega} \delta(t) \beta_{l r}^{\prime}(t) \alpha_{r j}(t) y_{j} \frac{\partial v_{i}(y)}{\partial y_{l}} w_{i}(y) d y \tag{9}\\
& d(t ; v, w)= \int_{\Omega} \delta(t)\left[\alpha_{r l}(t) \beta_{l r}^{\prime}(t) v_{k}(y) w_{k}(y)\right. \\
&\left.-\alpha_{i r}(t) \beta_{k i}^{\prime}(t) v_{r}(y) w_{k}(y)\right] d y \tag{10}
\end{align*}
$$

with $a_{j k}(t)=\beta_{j i}(t) \beta_{k i}(t)$ and $\delta(t)=|\operatorname{det} K(t)|$, where $\operatorname{det} M$ means the determinant of a $n \times n$ matrix M.

Then from (5) to (9) and the problem (II) we obtain the definition of weak solution for the cylinder problem:
(III)

$$
\begin{aligned}
& v \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H) \\
& -\int_{0}^{T}\left(\delta(t) v, \psi^{\prime}\right) d t+\int_{0}^{T} a(t ; v, \psi) d t \int_{0}^{T} b(t ; v, v, \psi) d t \\
& +\int_{0}^{T} c(t ; v, \psi) d t+\int_{0}^{T} d(t ; v, \psi) d t=\int_{0}^{T}(\delta(t) g, \psi) d t \\
& v(0)=v_{0} \\
& \forall_{\psi} \in L^{2}\left(0, T ; V \cap\left(L^{n}\left(\Omega_{t}\right)\right)^{n}\right), \psi^{\prime} \in L^{2}(0, T ; H), \psi(0)=\psi(T)=0 .
\end{aligned}
$$

3 Main Results

Theorem 3.1. Assume that the hypothesis (H1) and (H2) are satisfied. If $f \in L^{2}\left(0, T ; H\left(\Omega_{t}\right)\right)$ and $u_{0} \in H\left(\Omega_{0}\right)$, then there exists $u: \hat{Q} \rightarrow \mathbf{R}^{n}$, solution of Problem (II).

Theorem 3.2. If $g \in L^{2}(0, T ; H)$ and $v_{0} \in H$, then there exists $v: Q \rightarrow \mathbf{R}$, solution of Problem (III).

The following lemmas will be utilized to prove the theorems given.
Lemma 3.3. Consider the bilinear form $a(t ; v, w)$ defined by (7) and the operator $A(t)$ defined by $A(t) v=-\frac{\partial}{\partial y_{l}}\left(a_{l r}(t) \frac{\partial v}{\partial y_{r}}\right), v \in\left(H_{0}^{1}(\Omega)\right)^{n}$. Then there exist positive constants a_{0}, a_{1}, a_{2}, such that
(i) $\langle A(t) v, w\rangle=a(t ; v, v) \forall v, w \in V$
(ii) $a(t ; v, v) \geq a_{0} \delta(t)\|v\|^{2}, a(t ; v, v) \geq a_{1} \delta(t)|v|^{2}, v \in V$ (iii) $|a(t ; v, w)| \leq a_{2} \delta(t)\|v\|\|w\|, \forall v, w \in V$.

The proof is given in [16].
Lemma 3.4. Let $b(t ; v, w, \psi)$, be the trilinear form, $c(t, v, w), d(t, v, w)$ the bilinear forms defined, respectively by (8), (9), (10). Then there exist positive constants $b_{i}, c_{i}, d_{i}, i=1,2$, such that
(i) $b(t, v, v, w)=-b(t ; v, w, v) \forall v \in V, w \in V_{s}(\Omega), s=\frac{n}{2}$
(ii) $|b(t ; v, w, \psi)| \leq b_{0} \delta(t)\|v\|\|w\|\|\psi\|_{\left(L^{n}(\Omega)\right)^{n}} \forall v, w \in V$, $\psi \in V \cap\left(L^{n}(\Omega)\right)^{n}$
(iii) For each $v \in V$, the linear form $w \rightarrow b(t ; v, v, w)$ is continuous in $V_{s}(\Omega), s=\frac{n}{2}$ and $b(t ; v, v, w)=\langle B(t) v, w\rangle_{V_{s}^{\prime}, V_{s}}$ where $B(t) v \in V_{s}^{\prime}(\Omega)$ and $\|B(t) v\|_{V_{s}^{\prime}} \leq b_{1}\|v\|_{\left[L^{p}(\Omega)\right]^{n}}$ with,

$$
\begin{equation*}
\frac{1}{p}=\frac{1}{2}-\frac{1}{2 n} \quad\left(p<q, \quad \frac{1}{q}=\frac{1}{2}-\frac{1}{n}\right) \tag{11}
\end{equation*}
$$

(iv) $|c(t ; v, w)| \leq c_{0} \delta(t)\|v\||w|, \forall v \in V, w \in H$
(v) For each $v \in V$, the linear form $w \rightarrow c(t ; v, w)$ is continuous in H and $c(t ; v, w)=(C(t) v, w)$, where $C(t) v \in H$ and $|C(t) v| \leq c_{1}\|v\|$
(vi) $|d(t ; v, w)| \leq d_{0} \delta(t)\|v\||w|, \forall v, w \in H$
(vii) For each $v \in V$, the linear form $w \rightarrow d(t ; v, w)$ is continuous in H and $d(t ; v, w)=(D(t) v, w)$, where $D(t) v \in H$ and $|D(t) v| \leq d_{1}\|v\|$.

The proof with some modifications is analogues to the proof given in [16].

Lemma 3.5. Let $v \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H)$. Then $v \in L^{4}\left(0, T ;\left(L^{p}(\Omega)\right)^{n}\right)$, where p is given by (11) and

$$
\left\|v_{i}(t)\right\|_{L^{p}(\Omega)} \leq c\left\|v_{i}(t)\right\|_{H_{0}^{\prime}(\Omega)}^{\frac{1}{2}}\left|v_{i}(t)\right|_{L^{2}(\Omega)}^{\frac{1}{2}}, \quad v=\left(v_{1}, \ldots, v_{n}\right)
$$

for some positive constant c.
The proof of Lemma 3.5 appear in [17].

Now, we consider another hypotheses over $K(t)$, in order to state results about the existence of periodical solutions

$$
\begin{equation*}
K(0)=K(T) \tag{H3}
\end{equation*}
$$

(H4) Assume that there exists a positive constant α, such that

$$
a_{1}-\frac{\mid \delta^{d^{\prime}(t) \mid}}{\delta(t)}-c_{0}-d_{0}>\alpha,
$$

where $\delta(t)=|\operatorname{det} K(t)|$ and a_{1}, c_{0}, d_{0} are constants given in the Lemma 3.4 .

Theorem 3.6. Assume that hypothesis (H1)-(H4) are satisfied. If $f \in L^{2}\left(0, T ; H\left(\Omega_{t}\right)\right)$ then there exists $u: \widehat{Q} \rightarrow \mathbf{R}^{n}$ solution of Problem (II) such that $u(0)=u(T)$.

Theorem 3.7. If $g \in L^{2}(0, T ; H)$, then there exists $v: Q \rightarrow \mathbf{R}^{n}$, solution of Problem (III) such that $v(0)=v(T)$.

4 Proofs

Proof of Theorem 2. Let $\left(w_{j}\right)$ be a special basis of $V_{s}(\Omega)$, with $s=\frac{n}{2}$. We consider the approximated problem :
$(A P)\left\{\begin{array}{l}\left(\left(\delta(t) v_{m}\right)^{\prime}, w_{j}\right)+a\left(t ; v_{m}, w_{j}\right)+b\left(t ; v_{m}, v_{m}, w_{j}\right)+c\left(t ; v_{m}, w_{j}\right) \\ +d\left(t ; v_{m}, w_{j}\right)=\left(\delta(t) g, w_{j}\right), j=1, \ldots m, v_{m}(t) \in \sqrt{ }=\left[w_{1}, \ldots w_{m}\right] . \\ v_{m}(0)=v_{0 m}, v_{0 m} \rightarrow v_{0} \text { in } H .\end{array}\right.$

First Estimate. Considering $w_{j}=v_{m}(t)$ in $(A P)$, and Lemma 3.4 (i) we obtain
$\frac{1}{2} \frac{d}{d t}\left(\delta(t)\left|v_{m}\right|^{2}\right)-\frac{1}{2} \delta^{\prime}(t)\left|v_{m}\right|^{2}+a\left(t ; v_{m}, v_{m}\right)+c\left(t ; v_{m}, v_{m}\right)+d\left(t ; v_{m}, v_{m}\right)$
$=\left(\delta(t) g, v_{m}\right)$.
Applying Lemmas 3.3 and 3.4, we have
$\frac{1}{2} \frac{d}{d t}\left(\delta(t)\left|v_{m}\right|^{2}\right)+a_{0} \delta(t)\left\|v_{m}\right\|^{2} \leq\left(\frac{1}{2}\left|\delta^{\prime}(t)\right|+c_{0}+d_{0}+\frac{1}{2}\right) \delta(t)\left|v_{m}\right|^{2}$
$+\frac{1}{2}|\delta(t) g|^{2}$.

Hence there exists a positive constant c, such that

$$
\frac{d}{d t}\left(\delta(t)\left|v_{m}\right|^{2}\right)+\left\|v_{m}\right\|^{2} \leq c \delta(t)\left|v_{m}\right|^{2}+c|g|^{2} .
$$

Integrating in $[0, t[$, we obtain
$\delta(t)\left|v_{m}\right|^{2}+\int_{0}^{t}\left\|v_{m}\right\|^{2} d s \leq c \int_{0}^{t} \delta(s)\left|v_{m}\right|^{2} d s+c \int_{0}^{t}|g(s)|^{2} d s+\delta(0)\left|v_{0 m}\right|^{2}$.
Then Gronwall's inequality implies that,

$$
\begin{array}{rll}
\left(\sqrt{\delta} v_{m}\right) & \text { is bounded in } & L^{\infty}(0, T ; H) \text { and } \\
v_{m} & \text { is bounded in } & L^{2}(0, T ; V) \tag{12}
\end{array}
$$

Second Estimate. Let P_{m} the ortogonal projection $P_{m}: H \rightarrow \sqrt{ }^{m}$ given by $P_{m} \varphi=\sum_{j=1}^{m}\left(\varphi, w_{j}\right) w_{j}$. By the special choice of $\left(w_{\mu}\right)$, we have $\left\|P_{m}\right\|_{L\left(V_{s}, V_{s}\right)} \leq 1$ and, by transposition, $\left\|P_{m}^{*}\right\|_{L\left(V_{s}^{\prime}, V_{s}^{\prime}\right)} \leq 1$. We note that $P_{m} v_{m}^{\prime}=v_{m}^{\prime}$.

Multiplying the approximate equation $(A P)$ by w_{j}, adding from $j=1$ to $j=m$, and using the notation from Lemmas 3.3 and 3.4 , we obtain

$$
\begin{equation*}
\left(\delta(t), v_{m}\right)^{\prime}=-P_{m}^{*} A(t) v_{m}-P_{m}^{*} B(t) v_{m}-P_{m}^{*} C(t) v_{m}+P_{m}^{*} D(t) v_{m} \tag{13}
\end{equation*}
$$

Using again Lemmas 3.4 and 3.5 , we have that each term of the second member of (13) is bounded in $L^{2}\left(0, T ; V_{s}^{\prime}(\Omega)\right)$. This implies that

$$
\begin{equation*}
\left(\delta v_{m}\right)^{\prime} \text { is boundary in } L^{2}\left(0, T ; V_{s}^{\prime}(\Omega)\right) \tag{14}
\end{equation*}
$$

From (12) and (14) there exists a subsequence of $\left(v_{m}\right)$ still denoted by (v_{m}) and a function v, such that,

$$
\begin{array}{rll}
v_{m} \rightharpoonup v & \text { in } & L^{2}(0, T ; V) \\
\delta v_{m} \stackrel{*}{\rightharpoonup} \delta v & \text { in } & L^{2}(0, T ; H) \\
\left(\delta v_{m}\right)^{\prime} \rightharpoonup(\delta v)^{\prime} & \text { in } & L^{2}\left(0, T ; V_{s}^{\prime}\right) \tag{17}
\end{array}
$$

$$
\begin{equation*}
\delta v_{m} \rightarrow \delta v \quad \text { in } \quad L^{2}(0, T ; H) \quad \text { strong and (a.e) in } Q \tag{18}
\end{equation*}
$$

From Lemma 3.6 and (12), we get that

$$
\begin{equation*}
\left(\delta v_{m i} v_{m j}\right) \text { is bounded in } L^{2}\left(0, T ; L^{\frac{p}{2}}(\Omega)\right) \tag{19}
\end{equation*}
$$

From (18) and (19), we obtain

$$
\begin{equation*}
\delta v_{m i} v_{m j} \rightarrow \delta v_{i} v_{j} \quad \text { in } \quad L^{2}\left(0, T ; L^{\frac{p}{2}}(\Omega)\right) \tag{20}
\end{equation*}
$$

By (20) and Lemma 3.4 (i), we have

$$
\begin{equation*}
b\left(t ; v_{m}, v_{m}, w_{j}\right) \rightarrow b\left(t ; v, v, w_{j}\right) \quad \text { in } \quad L^{2}(0, T) \tag{21}
\end{equation*}
$$

Using (15) - (21), we can pass to the limit in the approximate equation $(A P)$, obtaining then a solution v of the problem (III).

Proof of Theorem 1. Let $u(x, t)=K(t) v\left(K^{-1}(t) x, t\right)$, where v is a weak solution of Problem (II).

Let $\varepsilon(x, t)=\psi\left(K^{-1}(t) x, t\right)$, where $\psi \in L^{2}\left(0, T ;\left(L^{n}(\Omega)\right)^{n}\right)$, $\psi^{\prime} \in L^{2}(0, T ; H), \psi(0)=\psi(T)=0$. Then
$\left.\varepsilon \in L^{2}\left(0, T ; V\left(\Omega_{t}\right)\right) \cap\left(L^{n}\left(\Omega_{t}\right)\right)^{n}\right), \varepsilon^{\prime} \in L^{2}\left(0, T ; H\left(\Omega_{t}\right)\right)$, $\varepsilon(0)=\varepsilon(T)=0$.

Since, $x=K(t) y, y=K^{-1}(t) x, x_{r}=\alpha_{r j}(t) y_{j}, y_{l}=\beta_{l r}(t) x_{r}$, then, $\frac{\partial \varepsilon_{i}(x, t)}{\partial t}=\beta_{k i}^{\prime}(t) \psi_{k}(y, t)+\beta_{k i}(t) \frac{\partial \psi_{k}(y, t)}{\partial t}+\beta_{k i}(t) \beta_{l s}^{\prime}(t) \alpha_{s j}(t) y_{j} \frac{\partial \psi_{k}(y, t)}{\partial y_{i}}$.

Therefore,

$$
\begin{align*}
&-\int_{\Omega_{t}} u_{i}(x, t) \frac{\partial \varepsilon_{i}(x, t)}{\partial t} d x=-\int_{\Omega} \delta(t) v_{i}(y, t) \frac{\partial \Psi_{i}(y, t)}{\partial t} d y+ \\
&+\int_{\Omega} \delta(t) \alpha_{s j}(t) \beta_{l s}^{\prime}(t) y_{j} \frac{\partial v_{i}(y, t)}{\partial y_{l}} \Psi_{i}(y, t) d y \\
&-\int_{\Omega} \delta(t) \alpha_{i r}(t) \beta_{k i}^{\prime}(t) v_{r}(y, t) \Psi_{k}(y, t) d y \\
&+\int_{\Omega} \delta(t) \alpha_{s l}(t) \beta_{l s}^{\prime}(t) v_{k}(y, t) \Psi_{k}(y, t) d y \tag{22}\\
& \hat{a}(t ; u, \varepsilon)= \int_{\Omega_{t}} \frac{\partial u_{i}(x, t)}{\partial x_{j}} \frac{\partial \varepsilon_{i}(x, t)}{\partial x_{j}} d x \\
&= \int_{\Omega} \delta(t) a_{j k}(t) \frac{\partial v_{i}(y, t)}{\partial y_{j}} \frac{\partial \psi_{l}(y, t)}{\partial y_{k}} d y \tag{23}
\end{align*}
$$

where $a_{j k}(t)=\beta_{j i}(t) \beta_{k i}(t)$.

$$
\begin{align*}
& \hat{b}(t ; u, u, \varepsilon)=\int_{\Omega_{t}} u_{i}(x, t) \frac{\partial u_{j}(x, t)}{\partial x_{i}} \varepsilon_{j}(x, t) d x \\
&=\int_{\Omega} \delta(t) v_{i}(y, t) \frac{\partial v_{j}(y, t)}{\partial y_{i}} \psi_{j}(y, t) d y \tag{24}\\
& \int_{\Omega} f^{T}(x, t) \varepsilon(x, t) d x=\int_{\Omega} \delta(t) g(y, t)^{T} \psi(y, t) d y \tag{25}
\end{align*}
$$

where $g(y, t)=k^{-1}(t) f(K(t), t)$.
Integrating (22) - (25) in $[0, T]$ and using the definitions (7) - (10), we conclude that u is a weak solution of the problem (I).

Proof of Theorem 3. Let $\left(w_{j}\right)$ be a special basis of $V_{s}(\Omega)$, where we fix $s=\frac{n}{2}$. We consider the approximate problem:
(IV)

$$
\begin{aligned}
& \left(\left(\delta(t) v_{m}\right)^{\prime}, w_{j}\right)+a\left(t ; v_{m}, w_{j}\right)+b\left(t ; v_{m}, v_{m}, w_{j}\right)+c\left(t ; v_{m}, w_{j}\right) \\
& +d\left(t ; w_{m}, w_{j}\right)=\left(\delta(t) g, w_{j}\right), j=1, \ldots m, v_{m}(t) \in \sqrt{ }^{m}=\left[w_{1}, \ldots w_{m}\right] \\
& v_{m}(0)=v_{0}, \quad v_{0} \text { arbitrary }
\end{aligned}
$$

We prove that there exists $\mathrm{R}>0$, independent of m, such that

$$
\left|v_{0}\right| \leq \mathrm{R} \Rightarrow\left|v_{m}(T)\right| \leq \mathrm{R} .
$$

In fact, if we consider $w_{j}=v_{m}$ in (IV), we have

$$
\begin{align*}
& \frac{1}{2} \delta(t) \frac{d}{d t}\left|v_{m}\right|^{2}+a\left(t ; v_{m}, v_{m}\right)+c\left(t ; v_{m}, v_{m}\right)+d\left(t ; v_{m}, v_{m}\right) \\
& =\delta^{\prime}(t)\left|v_{m}\right|^{2}+\left(\delta(t) g, v_{m}\right) \tag{26}
\end{align*}
$$

From (26) and Lemmas 3.3 and 3.4, we have

$$
\frac{1}{2} \delta(t) \frac{d}{d t}\left|v_{m}\right|^{2}+a_{1} \delta(t)\left|v_{m}\right|^{2} \leq\left(\frac{\left|\delta^{\prime}(t)\right|}{\delta(t)}+c_{0}+d_{0}\right) \delta(t)\left|v_{m}\right|^{2}+\left(\delta(t) g, v_{m}\right) .
$$

From (H3) and the Schwartz inequality, we have

$$
\begin{gathered}
\frac{d}{d t}\left|v_{m}\right|^{2}+\alpha\left|v_{m}\right|^{2} \leq \frac{1}{2}|g|^{2} \quad \text { then } \\
\frac{d}{d t}\left(e^{\alpha t}\left|v_{m}\right|^{2}\right) \leq \frac{1}{\alpha} e^{\alpha t}|g|^{2}, \quad \text { or } \\
e^{\alpha t}\left|v_{m}(T)\right|^{2} \leq\left|v_{0}\right|^{2}+\frac{1}{\alpha} \int_{0}^{T} e^{\alpha t}|g|^{2} d t \leq\left|v_{0}\right|^{2}+c \leq \mathrm{R}^{2}+c .
\end{gathered}
$$

Hence,

$$
\left|v_{m}(T)\right|^{2} \leq \frac{\mathrm{R}^{2}+c}{e^{\alpha T}} \leq \mathrm{R}^{2} . \quad \text { Therefore } \quad \mathrm{R}^{2} \geq \frac{c}{e^{\alpha T}-1}
$$

Then, the maping $v_{0} \rightarrow v_{m}(T)$ apply B_{R} in B_{R}, where B_{R} is the disc of radius R , centered in the origin contained in the V_{m} space with the topology $|\cdot|_{H(\Omega)}$. Therefore, there exists $u_{0 m} \in B_{\mathrm{R}}$, such that $v_{m}(t)=v_{0 m}$.

Let v_{m} be the solution of approximate problem (IV) such that $v_{m}(0)=v_{0 m}$. Since $v_{o m}$ is bounded in H, then we have:

$$
\begin{array}{ccc}
v_{m} & \text { is bounded in } & L^{2}(0, T ; V) \\
\delta v_{m} & \text { is bounded in } & L^{\infty}(0, T ; H) \\
\left(\delta v_{m}\right)^{\prime} & \text { is bounded in } & L^{2}\left(0, T ; V_{s}^{\prime}(\Omega)\right) .
\end{array}
$$

Therefore, we can extract a subsequence $\left(v_{m}\right)$, such that

$$
\begin{aligned}
v_{m} & \rightharpoonup v & \text { weak in } & L^{2}(0, T ; V) \\
\delta v_{m} & \stackrel{*}{-} \delta v & \text { weak star in } & L^{2}(0, T ; H) \\
\left(\delta v_{m}\right)^{\prime} & \rightarrow(\delta v)^{\prime} & \text { weak in } & L^{2}\left(0, T ; V_{s}^{\prime}\right) \\
\delta v_{m} & \rightarrow \delta v & \text { in } & L^{2}(0, T ; H) \text { and (a.e) in } Q
\end{aligned}
$$

Then $v_{m}(0) \rightarrow v(0), \quad v_{m}(T) \rightarrow v(T)$ in V_{s}^{\prime}. Since $v_{m}(0)=v_{m}(T)$, then $v(0)=v(T)$.

Proof of Theorem 4. Let $u(x, t)=k(t) v\left(K^{-1}(t) x, t\right)$, where v is a solution of Problem (II), such that

$$
\begin{equation*}
v(0)=v(T) \tag{27}
\end{equation*}
$$

We know that u is solution of (I). Then from (H_{3}) and (27), we have $u(0)=u(T)$.

200 Math. Subject Classification - 35Q30, 76D05

References

[1] Bardos, C., Cooper, J. (1973). A nonlinear wave equation in a time dependent domain". J. Math. Anal. Appl. 42, pp. 29-60.
[2] Bock, D.N. (1977). On the Navier-Stokes equations in noncylindrical domains". J. Differential Equations 25, pp. 151-162.
[3] Brezis, H. (1972). Inéquations variationnelles relatives à l' opérateur de Navier-Stokes". J. Math. Anal. Appl. 19, pp. 159-165.
[4] Cattabriga, L. (1961). Su un problema al contorno relativo al sistema di equazioni di Stokes". Rend. Sem. Mat. Padova, pp. 1-33.
[5] Dal Passo, R., Ughi, M. (1989). Problème de Dirichlct pour une classe d' équations paraboliques non linéaires deǵenérées dans des ouverts non cylindriques". C. R. Acad. Sci. Paris 308, pp. 555-558.
[6] Ebihara, Y., Medeiros, L.A. (1988). On the regular solutions for some classes of Navier-Stokes equation". Annales Fac. Sci.'Toulouse 9.
[7] Fujita, H., Sauer, N. (1969). Construction of weak solutions of the Navier-Stokes equation in a noncylindrical domain". Bull. Amer. Math. Soc. 75, pp. 465-468.
[8] Fujita, H., Sauer, N. (1970). On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries". J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, pp. 403-420.
[9] Hopf, E. (1957). On nonlinear partial differential equations". Lecture Scries of the Symposium on Partial Differential Equations, Berkeley 1955, Ed. The Union of Kansas, pp. 1-29.
[10] Inoue, A. (1974). Sur $\square u+u^{3}=f$ dans un ouvert non cylindrique". J. Math. Anal. Appl. 46, pp. 777-819.
[11] Inoue, A., Wakimoto, M. (1977). On existence of solutions of the Navier-Stokes equation in a time dependent domain". J. Fac. Sci. Univ. Tokyo, Sec. IA, 24, pp. 303-319.
[12] Ladyzhenskaya, O. A. (1969). The mathematical theory of viscous incomprenssible flow". Gordon and Breach, New York.
[13] Ladyzhenskaya, O. A. Initial-boundary value problem for NavierStokes equations in domains with time-varying boundaries". Sem. Math. V. A. Steklov Math. Inst. Leningrad, 11, pp. 35-46.
[14] Limaco Ferrel, J. (1993). Existência de Soluçôes fracas para a equação de fluidos viscosos incompressiveis não homogêneos em domínios não cilíndricos". Thesis, Instituto de Matemática, UFRJ, Rio.
[15] Limaco, Ferrel J., Medeiros, L. A. (1997). Elliptic regularization on the Navier-Stokes system". Memoirs on Differential Equations and Mathematical Physics, 12, pp. 165-177.
[16] Limaco Ferrel, J., Milla Miranda, M. (1997). The Navier-Stokes equation in non cylindrical domain". Comput. Appl. Math. V. 16, $N^{\circ} 3$, pp. 247-265.
[17] Lions, J. L. (1969). Quelques méthodes de résolution des problèmes aux limites non linéaires". Dunod, Paris.
[18] Lions, J. L. (1978). On some question in boundary value problems of mathematical physics, contemporary developments in continuum mechanics and partial differential equations". Ed. G. M. de la Penha and L.A. Medeiros, North Holland.
[19] Medeiros, L. A.(1972). Non linear wave equations in domains with variable boundary". Arch. Rat. Mech. Anal. 49, pp. 47-58.
[20] Milla Miranda, M. (1993). Contrôlabilité exacte de l' equation des ondes dans des domaines non cylindriques". C.R. Acad. Sci. Paris, 317, pp. 495-499.
[21] Milla Miranda, M., Medeiros, L. A. (1994). Contrôlabilité exacte de l' équation de Schrödinger dans des domaines non cylindriques". C. R. Acad. Sci. Paris, 319, pp. 685-689.
[22] Miyakawa, T., Teramoto, Y. (1982). Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain". Hiroshima Math. J. 12, pp. 513-528.
[23] Morimoto, H. (1971). On existence of periodic weak solutions of the Navier-Stokes equation in regions with periodically moving boundaries". J. Fac. Sci. Univ. Tokyo, Sec. IA, 18, pp. 499-524.
[24] Otani, M., Yamada, Y. (1978). On the Navier-Stokes equations in non-cylindrical domains: An approach by the subdifferential operator theory". J. Fac. Sci. Univ. Tokyo, Sec. IA, 25, pp. 185-204.
[25] Salvi, R. (1985). On the existence of weak solutions of a nonlinear mixed problem for the Navier-Stokes equations in a time dependent domain". J. Fac. Sci. Univ. Tokyo, Sec. IA, 32, pp. 213-221.
[26] Salvi, R. (1988). On Navier-Stokes equations in non-cylindrical domains: On the existence and regularity". Math. Z. 199, pp. 153-170.
[27] Salvi, R. (1995). On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries, Navier-Stokes Equations and related nonlinear problem". Edited by A. Sequeira, Plenum Press, New York, pp. 63-73.
[28] Sather, J. O. (1963). The Initial-Boundary value problem for the Navier-Stokes equations in regions with moving boundaries". Ph. D. Thesis, University of Minnesota.
[29] Temam, R. (1979). Navier-Stokes equations, theory and numerical analysis". North Holland.
[30] Temam, R. (1983). Navier-Stokes equations and nonlinear functional analysis". CBMS-NSF, Regional Conference Series in Applied Mathematics, 41, SIAM.

Cruz S. Q. de Caldas, Juan Limaco e Rioco K. Barreto Departamento de Matemática Aplicada Universidade Federal Fluminense IMUFF RJ, Brasil. gmacruz@vm.uff.br; rikaba@vm.uff.br

Pedro Gamboa Instituto de Matemática
Universidade Federal do Rio de Janeiro, UFRJ, Brasil pgamboa@dmm.im.ufrj.br

