WEAK AND PERIODICAL SOLUTIONS OF THE NAVIER-STOKES EQUATION IN NONCYLINDRICAL DOMAINS

Cruz S. Q. de Caldas, Juan Limaco, Pedro Gamboa* and Rioco K. Barreto

Abstract

We consider the Navier Stokes
equation in noncylindrical
domain and prove
the existence of weak and
periodical solutions.

Key Words and Phrases: Navier-Stokes, Noncylindrical domains, Weak and periodical solutions.

1 Introduction

Let T > 0 be a real number and $\{\Omega_t\}_{0 \le t \le T}$ a family of bounded open sets of \mathbb{R}^n with boundary Γ_t . Let us consider the noncylindrical domain of \mathbb{R}^{n+1} , given by $\widehat{Q} = \bigcup_{0 < t < T} \Omega_t \times \{t\}$, with lateral boundary

$$\widehat{\sum} = \bigcup_{0 < t < T} \Gamma_t \times \{t\} \text{ regular.}$$

We have the Navier-Stokes problem:

$$(I) \begin{vmatrix} u' - \Delta u + \sum_{i=1}^{n} u_i \frac{\partial u}{\partial x_i} = f - \nabla p & \text{in } \widehat{Q} \\ \text{div } u = 0 & \text{in } \widehat{Q} \\ u = 0 & \text{on } \widehat{\sum} \\ u(x,0) = u_0(x) & x \in \Omega_0 \end{vmatrix}$$

where $u(x,t) = (u_1(x,t), ..., u_n(x,t)), (x,t) \in \widehat{Q}$,

$$\Delta u = (\Delta u_1, \ldots, \Delta u_n), \nabla = (\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}).$$

In the last thirty years a lot of papers concerning the existence of solutions to the Navier-Stokes equation in noncylindrical domain have been written. Among these papers, it is worth mentioning the articles of J. L. Lions [17], H. Fujita and N. Sauer [7], [8], H. Morimoto [23], in which the penality method is used, the results of R. Salvi [25], [26], [27], L.A. Medeiros and J. Limaco Ferrel [15] based on elliptic regularization, the paper of O.A. Ladyzhenskaya [13], M. Otani and Y. Yamada [24] obtained with the Rothe's method and with the subdifferential operator theory respectively, and the works of J.O. Sather [28], D.N. Bock [2], A. Inoue and M. Wakimoto [11], T. Miyakawa and Y. Teramoto [22] derived with tools of Differential Geometry and the paper of M. Milla Miranda and J. Limaco Ferrel [16] used change of variable for a cilyndrical domain and Galerkin's method.

Let $K:[0,T]\to \mathbf{R}^{n^2}$, a function, where K(t) is a $n\times n$ matrix. Let Ω be an open bounded set of \mathbf{R}^n , which, without loss of generality, can

be consider containing the origin of \mathbb{R}^n . We assume that the boundary Γ of Ω is smooth, and consider the sets

$$\Omega_t = \{ x = K(t)y; \quad y \in \Omega \} \tag{1}$$

In this work we study the existence of weak solutions to Problem (I), and also study the existence of periodical solution to (I). For that, by a suitable change of variable which is more general than that one used in [16], we transform the non cylindrical problem (I) in another problem defined in the cylinder $Q = \Omega \times]0, T[$.

2 Notation and Hypotheses

We make following hypothesis on K(t).

- (H1) $K \in C^1$, where K(t) is an invertible matrix.
- (H2) $K^{-1} \in C^1$, where $K^{-1}(t)$ is an invertible matrix of K(t).

Consider the notation

$$K(t) = (\alpha_{ij}(t)), \text{ and } K^{-1}(t) = (\beta_{ij}(t))$$
 (2)

as well as the convention of summation of repeated indices; that is $\alpha_i \beta_i = \sum_{i=1}^n \alpha_i \beta_i$.

By <.,.> we will represent the duality pairing between $X^{'}$ and X, $X^{'}$ being the dual of the space X.

In order to state the main results we introduce some spaces. Let \surd_t be the space

$$\sqrt{}_{t} = \{ \varphi \in (D(\Omega_{t}))^{n}; \ div \varphi = 0 \}$$

and $V_s(\Omega_t)$ be the closure of V_t in the space $(H^s(\Omega_t))^n$, where s is a non negative real number.

We use the particular notation

$$V_1(\Omega_t) = V(\Omega_t)$$
 and $V_0(\Omega_t) = H(\Omega_t)$.

The inner product of these spaces is denoted, respectively by $(u, z)_{H(\Omega_t)}$ and $((u, z))_{V(\Omega_t)}$. Then for $u = (u_1, \dots u_n)$ and $z = (z_1, \dots z_n)$, we have

$$(u,z)_{H(\Omega_t)} = \int_{\Omega_t} u_i(x) z_i(x) dx, ((u,z))_{V(\Omega_t)} = \int_{\Omega_t} \frac{\partial u_i(x)}{\partial x_j} \ \frac{\partial z_i(x)}{\partial x_j} dx.$$

Note that $V_s(\Omega_t)$ is continuously embedded in $(H_0^1(\Omega))^n$ for $s \geq \frac{n}{2}$ and $V(\Omega_t) = \{u \in (H_0^1(\Omega_t))^n, div u = 0\}.$

In a similar way we introduce the spaces $V_s(\Omega)$, where $\sqrt{\ }$ has a form

$$\sqrt{=\{\psi\in(D(\Omega))^n;\ div\,\psi=0\}}.$$

We consider, the particular notations $V_1(\Omega) = V$, $V_0 = H$ and $(v, w)_H = (v, w)$, $((v, w))_V = ((v, w))$, $|v|_H = |v|$, $||v||_V = ||v||$.

In order to state the variational formulation of Problem (I) we introduce the following bilinear and trilinear forms respectively:

$$\hat{a}(t;u,z) = \int_{\Omega_t} \frac{\partial u_i(x)}{\partial x_j} \frac{\partial z_i(x)}{\partial x_j} dx, \qquad (3)$$

$$\hat{b}(t; u, z, \xi) = \int_{\Omega_t} u_i(x) \frac{\partial z_j(x)}{\partial x_i} \xi_j(x) dx, \tag{4}$$

We define the weak solution for the problem (I) in the following form

$$(II) \begin{vmatrix} u \in L^{2}(0,T;V(\Omega_{t})) \cap L^{\infty}(0,T;H(\Omega_{t})) \\ -\int_{0}^{T}(u,\varepsilon_{H}^{'})_{(\Omega_{t})}dt + \int_{0}^{T}\hat{a}(t;u,\varepsilon)dt + \\ +\int_{0}^{T}\hat{b}(t;u,u,\varepsilon)dt = \int_{0}^{T}(f,\varepsilon)_{H(\Omega_{t})}dt \\ u(0) = u_{0} \\ \forall_{\varepsilon} \in L^{2}(0,T;V(\Omega_{t}) \cap (L^{n}(\Omega_{t}))^{n}), \ \varepsilon^{'} \in L^{2}(0,T;H(\Omega_{t})), \\ \varepsilon(0) = \varepsilon(T) = 0 \end{vmatrix}$$

In order to transform the noncylindrical problem (II) in a problem defined in the cylinder Q, we introduce the functions:

$$u(x,t) = K(t)v(K^{-1}(t)x,t) \quad , \quad f(x,t) = K(t)g(K^{-1}(t)x,t)$$
 (5)

$$u(x,t) = K(t)v(K^{-1}(t)x,t) , \quad f(x,t) = K(t)g(K^{-1}(t)x,t)$$
 (5)
$$p(x,t) = K(t)q(K^{-1}(t)x,t) , \quad u_0(x) = K(0)v_0(K^{-1}(0)x).$$
 (6)

$$a(t;v,w) = \int_{\Omega} \delta(t) a_{jk}(t) \frac{\partial v_i(y)}{\partial y_j} \frac{\partial w_i(y)}{\partial y_k} dy, \qquad (7)$$

$$b(t; v, w, \psi) = \int_{\Omega} \delta(t) v_i(y) \frac{\partial w_j(y)}{\partial y_i} \psi_j(y) dy, \qquad (8)$$

$$c(t; v, w) = \int_{\Omega} \delta(t) \beta'_{lr}(t) \alpha_{rj}(t) y_{j} \frac{\partial v_{i}(y)}{\partial y_{l}} w_{i}(y) dy, \qquad (9)$$

$$d(t; v, w) = \int_{\Omega} \delta(t) \left[\alpha_{rl}(t) \beta'_{lr}(t) v_{k}(y) w_{k}(y) - \alpha_{ir}(t) \beta'_{ki}(t) v_{r}(y) w_{k}(y) \right] dy,$$
(10)

with $a_{ik}(t) = \beta_{ii}(t)\beta_{ki}(t)$ and $\delta(t) = |\det K(t)|$, where det M means the determinant of a $n \times n$ matrix M.

Then from (5) to (9) and the problem (II) we obtain the definition of weak solution for the cylinder problem:

$$(III) \begin{vmatrix} v \in L^{2}(0,T;V) \cap L^{\infty}(0,T;H) \\ -\int_{0}^{T} (\delta(t)v,\psi')dt + \int_{0}^{T} a(t;v,\psi)dt \int_{0}^{T} b(t;v,v,\psi)dt \\ +\int_{0}^{T} c(t;v,\psi)dt + \int_{0}^{T} d(t;v,\psi)dt = \int_{0}^{T} (\delta(t)g,\psi)dt \\ v(0) = v_{0} \\ \forall_{\psi} \in L^{2}(0,T;V \cap (L^{n}(\Omega_{t}))^{n}), \psi' \in L^{2}(0,T;H), \psi(0) = \psi(T) = 0.$$

3 Main Results

Theorem 3.1. Assume that the hypothesis (H1) and (H2) are satisfied. If $f \in L^2(0,T;H(\Omega_t))$ and $u_0 \in H(\Omega_0)$, then there exists $u: \hat{Q} \to \mathbf{R}^n$, solution of Problem (II).

Theorem 3.2. If $g \in L^2(0,T;H)$ and $v_0 \in H$, then there exists $v: Q \to \mathbf{R}$, solution of Problem (III).

The following lemmas will be utilized to prove the theorems given.

Lemma 3.3. Consider the bilinear form a(t; v, w) defined by (7) and the operator A(t) defined by $A(t)v = -\frac{\partial}{\partial y_l}(a_{lr}(t)\frac{\partial v}{\partial y_r}), v \in (H_0^1(\Omega))^n$. Then there exist positive constants a_0, a_1, a_2 , such that

$$(i) < A(t)v, w > = a(t; v, v) \forall v, w \in V$$

(ii)
$$a(t; v, v) \ge a_0 \delta(t) ||v||^2$$
, $a(t; v, v) \ge a_1 \delta(t) |v|^2$, $v \in V$

(iii)
$$|a(t; v, w)| \le a_2 \delta(t) ||v|| ||w||, \ \forall v, w \in V.$$

The proof is given in [16].

Lemma 3.4. Let $b(t; v, w, \psi)$, be the trilinear form, c(t, v, w), d(t, v, w) the bilinear forms defined, respectively by (8), (9), (10). Then there exist positive constants $b_i, c_i, d_i, i = 1, 2$, such that

- (i) $b(t, v, v, w) = -b(t; v, w, v) \forall v \in V, w \in V_s(\Omega), s = \frac{n}{2}$
- (ii) $|b(t; v, w, \psi)| \le b_0 \, \delta(t) ||v|| \, ||w|| \, ||\psi||_{(L^n(\Omega))^n} \, \forall v, w \in V, \\ \psi \in V \cap (L^n(\Omega))^n$
- (iii) For each $v \in V$, the linear form $w \to b(t; v, v, w)$ is continuous in $V_s(\Omega)$, $s = \frac{n}{2}$ and $b(t; v, v, w) = \langle B(t)v, w \rangle_{V'_s, V_s}$ where $B(t)v \in V'_s(\Omega)$ and $\|B(t)v\|_{V'_s} \leq b_1\|v\|_{[L^p(\Omega)]^n}$ with,

$$\frac{1}{p} = \frac{1}{2} - \frac{1}{2n} \qquad (p < q, \quad \frac{1}{q} = \frac{1}{2} - \frac{1}{n}) \tag{11}$$

- $(iv) |c(t; v, w)| \le c_0 |\delta(t)||v|| |w|, \forall v \in V, w \in H$
- (v) For each $v \in V$, the linear form $w \to c(t; v, w)$ is continuous in H and c(t; v, w) = (C(t)v, w), where $C(t)v \in H$ and $|C(t)v| \le c_1||v||$
- $|d(t; v, w)| \leq d_0 \, \delta(t) \, ||v|| \, |w|, \, \forall v, w \in H$
- (vii) For each $v \in V$, the linear form $w \to d(t; v, w)$ is continuous in H and d(t; v, w) = (D(t)v, w), where $D(t)v \in H$ and $|D(t)v| \le d_1 ||v||$.

The proof with some modifications is analogues to the proof given in [16].

Lemma 3.5. Let $v \in L^2(0,T;V) \cap L^{\infty}(0,T;H)$. Then $v \in L^4(0,T;(L^p(\Omega))^n)$, where p is given by (11) and

$$||v_i(t)||_{L^p(\Omega)} \le c||v_i(t)||_{H'(\Omega)}^{\frac{1}{2}} ||v_i(t)||_{L^2(\Omega)}^{\frac{1}{2}}, \ v = (v_1, \dots, v_n)$$

for some positive constant c.

The proof of Lemma 3.5 appear in [17].

Now, we consider another hypotheses over K(t), in order to state results about the existence of periodical solutions

- (H3) K(0) = K(T)
- (H4) Assume that there exists a positive constant α , such that

$$a_1 - \frac{|\delta'(t)|}{\delta(t)} - c_0 - d_0 > \alpha,$$

where $\delta(t) = |\det K(t)|$ and a_1, c_0, d_0 are constants given in the Lemma 3.4.

Theorem 3.6. Assume that hypothesis (H1) - (H4) are satisfied. If $f \in L^2(0,T;H(\Omega_t))$ then there exists $u:\widehat{Q} \to \mathbf{R}^n$ solution of Problem (II) such that u(0) = u(T).

Theorem 3.7. If $g \in L^2(0,T;H)$, then there exists $v: Q \to \mathbb{R}^n$, solution of Problem (III) such that v(0) = v(T).

4 Proofs

Proof of Theorem 2. Let (w_j) be a special basis of $V_s(\Omega)$, with $s = \frac{n}{2}$. We consider the approximated problem:

$$(AP) \left\{ \begin{array}{l} ((\delta(t)v_m)',w_j) + a(t;v_m,w_j) + b(t;v_m,v_m,w_j) + c(t;v_m,w_j) \\ \\ + d(t;v_m,w_j) = (\delta(t)g,w_j), \ j = 1,\ldots m, v_m(t) \in \sqrt{_m} = [w_1,\ldots w_m]. \\ \\ v_m(0) = v_{0m},v_{0m} \rightarrow v_0 \ in \ H. \end{array} \right.$$

First Estimate. Considering $w_j = v_m(t)$ in (AP), and Lemma 3.4 (i) we obtain

$$\begin{split} &\frac{1}{2}\frac{d}{dt}(\delta(t)|v_m|^2) - \frac{1}{2}\delta'(t)|v_m|^2 + a(t;v_m,v_m) + c(t;v_m,v_m) + d(t;v_m,v_m) \\ &= (\delta(t)g,v_m). \end{split}$$

Applying Lemmas 3.3 and 3.4, we have

$$\begin{split} & \frac{1}{2} \frac{d}{dt} (\delta(t) |v_m|^2) + a_0 \delta(t) \, ||v_m||^2 \leq \left(\frac{1}{2} |\delta'(t)| + |c_0 + d_0 + \frac{1}{2} \right) \delta(t) |v_m|^2 \\ & + \frac{1}{2} |\delta(t)g|^2. \end{split}$$

Hence there exists a positive constant c, such that

$$\frac{d}{dt}(\delta(t)|v_m|^2) + ||v_m||^2 \le c |\delta(t)|v_m|^2 + c|g|^2.$$

Integrating in [0, t], we obtain

$$\delta(t) |v_m|^2 + \int_0^t ||v_m||^2 ds \le c \int_0^t |\delta(s)|v_m|^2 ds + c \int_0^t |g(s)|^2 ds + \delta(0) |v_{0m}|^2.$$

Then Gronwall's inequality implies that,

$$(\sqrt{\delta}v_m)$$
 is bounded in $L^{\infty}(0,T;H)$ and v_m is bounded in $L^2(0,T;V)$ (12)

Second Estimate. Let P_m the ortogonal projection $P_m: H \to \sqrt{m}$ given by $P_m \varphi = \sum_{j=1}^m (\varphi, w_j) w_j$. By the special choice of (w_μ) , we have $\|P_m\|_{L(V_s,V_s)} \le 1$ and, by transposition, $\|P_m^*\|_{L(V_s',V_s')} \le 1$. We note that $P_m v_m' = v_m'$.

Multiplying the approximate equation (AP) by w_j , adding from j = 1 to j = m, and using the notation from Lemmas 3.3 and 3.4, we obtain

$$(\delta(t), v_m)' = -P_m^* A(t) v_m - P_m^* B(t) v_m - P_m^* C(t) v_m + P_m^* D(t) v_m.$$
 (13)

Using again Lemmas 3.4 and 3.5, we have that each term of the second member of (13) is bounded in $L^2(0,T;V_s'(\Omega))$. This implies that

$$(\delta v_m)'$$
 is boundary in $L^2(0,T;V_s'(\Omega))$. (14)

From (12) and (14) there exists a subsequence of (v_m) still denoted by (v_m) and a function v, such that,

$$v_m \rightharpoonup v \quad \text{in} \quad L^2(0, T; V)$$
 (15)

$$\delta v_m \stackrel{*}{\rightharpoonup} \delta v \quad \text{in} \quad L^2(0, T; H)$$
 (16)

$$(\delta v_m)' \rightharpoonup (\delta v)'$$
 in $L^2(0, T; V_s')$ (17)

$$\delta v_m \to \delta v$$
 in $L^2(0,T;H)$ strong and (a.e) in Q . (18)

From Lemma 3.6 and (12), we get that

$$(\delta v_{mi} v_{mj})$$
 is bounded in $L^2(0,T; L^{\frac{p}{2}}(\Omega))$ (19)

From (18) and (19), we obtain

$$\delta v_{mi} v_{mj} \perp \delta v_i v_j \quad \text{in} \quad L^2(0, T; L^{\frac{p}{2}}(\Omega))$$
 (20)

By (20) and Lemma 3.4(i), we have

$$b(t; v_m, v_m, w_j) \to b(t; v, v, w_j)$$
 in $L^2(0, T)$ (21)

Using (15) - (21), we can pass to the limit in the approximate equation (AP), obtaining then a solution v of the problem (III).

Proof of Theorem 1. Let $u(x,t) = K(t) v(K^{-1}(t)x,t)$, where v is a weak solution of Problem (II).

Let
$$\varepsilon(x,t) = \psi(K^{-1}(t)x,t)$$
, where $\psi \in L^2(0,T;(L^n(\Omega))^n)$, $\psi' \in L^2(0,T;H)$, $\psi(0) = \psi(T) = 0$. Then

$$\varepsilon \in L^2(0, T; V(\Omega_t)) \cap (L^n(\Omega_t))^n), \ \varepsilon' \in L^2(0, T; H(\Omega_t)), \ \varepsilon(0) = \varepsilon(T) = 0.$$

Since,
$$x = K(t)y$$
, $y = K^{-1}(t)x$, $x_r = \alpha_{rj}(t)y_j$, $y_l = \beta_{lr}(t)x_r$, then,

$$\frac{\partial \varepsilon_i(x,t)}{\partial t} = \beta'_{ki}(t)\psi_k(y,t) + \beta_{ki}(t)\frac{\partial \psi_k(y,t)}{\partial t} + \beta_{ki}(t)\beta'_{ls}(t)\alpha_{sj}(t)y_j\frac{\partial \psi_k(y,t)}{\partial y_l}.$$

Therefore,

$$-\int_{\Omega_{t}} u_{i}(x,t) \frac{\partial \varepsilon_{i}(x,t)}{\partial t} dx = -\int_{\Omega} \delta(t) v_{i}(y,t) \frac{\partial \Psi_{i}(y,t)}{\partial t} dy +$$

$$+ \int_{\Omega} \delta(t) \alpha_{sj}(t) \beta'_{ls}(t) y_{j} \frac{\partial v_{i}(y,t)}{\partial y_{l}} \Psi_{i}(y,t) dy$$

$$- \int_{\Omega} \delta(t) \alpha_{ir}(t) \beta'_{ki}(t) v_{r}(y,t) \Psi_{k}(y,t) dy$$

$$+ \int_{\Omega} \delta(t) \alpha_{sl}(t) \beta'_{ls}(t) v_{k}(y,t) \Psi_{k}(y,t) dy$$

$$(22)$$

$$\hat{a}(t; u, \varepsilon) = \int_{\Omega_t} \frac{\partial u_i(x, t)}{\partial x_j} \frac{\partial \varepsilon_i(x, t)}{\partial x_j} dx$$

$$= \int_{\Omega} \delta(t) a_{jk}(t) \frac{\partial v_i(y, t)}{\partial y_j} \frac{\partial \psi_l(y, t)}{\partial y_k} dy \qquad (23)$$

where $a_{jk}(t) = \beta_{ji}(t)\beta_{ki}(t)$.

$$\hat{b}(t; u, u, \varepsilon) = \int_{\Omega_t} u_i(x, t) \frac{\partial u_j(x, t)}{\partial x_i} \varepsilon_j(x, t) dx
= \int_{\Omega} \delta(t) v_i(y, t) \frac{\partial v_j(y, t)}{\partial y_i} \psi_j(y, t) dy$$
(24)

$$\int_{\Omega} f^{T}(x,t)\varepsilon(x,t)dx = \int_{\Omega} \delta(t)g(y,t)^{T}\psi(y,t)dy$$
 (25)

where $g(y,t) = k^{-1}(t)f(K(t),t)$.

Integrating (22) - (25) in [0,T] and using the definitions (7) - (10), we conclude that u is a weak solution of the problem (I). \square

Proof of Theorem 3. Let (w_j) be a special basis of $V_s(\Omega)$, where we fix $s = \frac{n}{2}$. We consider the approximate problem:

$$(IV) \begin{vmatrix} ((\delta(t)v_m)', w_j) + a(t; v_m, w_j) + b(t; v_m, v_m, w_j) + c(t; v_m, w_j) \\ + d(t; w_m, w_j) = (\delta(t)g, w_j), j = 1, ...m, v_m(t) \in \sqrt{m} = [w_1, ...w_m]. \\ v_m(0) = v_0, \qquad v_0 \text{ arbitrary} \end{vmatrix}$$

We prove that there exists R > 0, independent of m, such that

$$|v_0| \le R \Rightarrow |v_m(T)| \le R.$$

In fact, if we consider $w_j = v_m$ in (IV), we have

$$\frac{1}{2}\delta(t)\frac{d}{dt}|v_m|^2 + a(t;v_m,v_m) + c(t;v_m,v_m) + d(t;v_m,v_m)
= \delta'(t)|v_m|^2 + (\delta(t)q,v_m).$$
(26)

From (26) and Lemmas 3.3 and 3.4, we have

$$\frac{1}{2}\delta(t)\frac{d}{dt}|v_m|^2 + a_1\delta(t)|v_m|^2 \le \left(\frac{|\delta'(t)|}{\delta(t)} + c_0 + d_0\right)\delta(t)|v_m|^2 + (\delta(t)g, v_m).$$

From (H3) and the Schwartz inequality, we have

$$\begin{split} \frac{d}{dt}|v_m|^2 + \alpha |v_m|^2 &\leq \frac{1}{2}|g|^2 &\quad \text{then} \\ \frac{d}{dt}(e^{\alpha\,t}|v_m|^2) &\leq \frac{1}{\alpha}e^{\alpha t}|g|^2, &\quad \text{or} \end{split}$$

$$|e^{\alpha t}|v_m(T)|^2 \le |v_0|^2 + \frac{1}{\alpha} \int_0^T e^{\alpha t}|g|^2 dt \le |v_0|^2 + c \le \mathbb{R}^2 + c.$$

Hence,

$$|v_m(T)|^2 \le \frac{\mathrm{R}^2 + c}{e^{\alpha T}} \le \mathrm{R}^2$$
. Therefore $\mathrm{R}^2 \ge \frac{c}{e^{\alpha T} - 1}$.

Then, the maping $v_0 \to v_m(T)$ apply B_R in B_R , where B_R is the disc of radius R, centered in the origin contained in the V_m space with the topology $|\cdot|_{H(\Omega)}$. Therefore, there exists $u_{0m} \in B_R$, such that $v_m(t) = v_{0m}$.

Let v_m be the solution of approximate problem (IV) such that $v_m(0) = v_{0m}$. Since v_{om} is bounded in H, then we have:

$$v_m$$
 is bounded in $L^2(0,T;V)$ δv_m is bounded in $L^\infty(0,T;H)$ $(\delta v_m)'$ is bounded in $L^2(0,T;V_*(\Omega))$.

Therefore, we can extract a subsequence (v_m) , such that

$$v_m
ightharpoonup v$$
 weak in $L^2(0,T;V)$
 $\delta v_m \stackrel{*}{
ightharpoonup} \delta v$ weak star in $L^2(0,T;H)$
 $(\delta v_m)'
ightharpoonup (\delta v)'$ weak in $L^2(0,T;V_s')$
 $\delta v_m
ightharpoonup \delta v$ in $L^2(0,T;H)$ and (a.e) in Q

Then $v_m(0) \to v(0), \quad v_m(T) \to v(T)$ in V_s' . Since $v_m(0) = v_m(T),$ then v(0) = v(T). \square

Proof of Theorem 4. Let $u(x,t) = k(t)v(K^{-1}(t)x,t)$, where v is a solution of Problem (II), such that

$$v(0) = v(T). (27)$$

We know that u is solution of (I). Then from (H_3) and (27), we have u(0) = u(T). \square

200 Math. Subject Classification - 35Q30, 76D05

References

[1] Bardos, C., Cooper, J. (1973). A nonlinear wave equation in a time dependent domain". J. Math. Anal. Appl. 42, pp. 29-60.

- [2] Bock, D.N. (1977). On the Navier-Stokes equations in noncylindrical domains". J. Differential Equations 25, pp. 151-162.
- [3] Brezis, H. (1972). Inéquations variationnelles relatives à l'opérateur de Navier-Stokes". J. Math. Anal. Appl. 19, pp. 159-165.
- [4] Cattabriga, L. (1961). Su un problema al contorno relativo al sistema di equazioni di Stokes". Rend. Sem. Mat. Padova, pp. 1-33.
- [5] Dal Passo, R., Ughi, M. (1989). Problème de Dirichlet pour une classe d'équations paraboliques non linéaires degenérées dans des ouverts non cylindriques". C. R. Acad. Sci. Paris 308, pp. 555-558.
- [6] Ebihara, Y., Medeiros, L.A. (1988). On the regular solutions for some classes of Navier-Stokes equation". Annales Fac. Sci. Toulouse 9.
- [7] Fujita, H., Sauer, N. (1969). Construction of weak solutions of the Navier-Stokes equation in a noncylindrical domain". Bull. Amer. Math. Soc. 75, pp. 465-468.
- [8] Fujita, H., Sauer, N. (1970). On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries". J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, pp. 403-420.
- [9] Hopf, E. (1957). On nonlinear partial differential equations". Lecture Series of the Symposium on Partial Differential Equations, Berkeley 1955, Ed. The Union of Kansas, pp. 1-29.
- [10] Inoue, A. (1974). Sur $\Box u + u^3 = f$ dans un ouvert non cylindrique". J. Math. Anal. Appl. 46, pp. 777-819.
- [11] Inoue, A., Wakimoto, M. (1977). On existence of solutions of the Navier-Stokes equation in a time dependent domain". J. Fac. Sci. Univ. Tokyo, Sec. IA, 24, pp. 303-319.
- [12] Ladyzhenskaya, O. A. (1969). The mathematical theory of viscous incomprenssible flow". Gordon and Breach, New York.
- [13] Ladyzhenskaya, O. A. Initial-boundary value problem for Navier-Stokes equations in domains with time-varying boundaries". Sem. Math. V. A. Steklov Math. Inst. Leningrad, 11, pp. 35-46.

- [14] Limaco Ferrel, J. (1993). Existência de Soluções fracas para a equação de fluídos viscosos incompressíveis não homogêneos em domínios não cilíndricos". Thesis, Instituto de Matemática, UFRJ, Rio.
- [15] Limaco, Ferrel J., Medeiros, L. A. (1997). Elliptic regularization on the Navier-Stokes system". Memoirs on Differential Equations and Mathematical Physics, 12, pp. 165-177.
- [16] Limaco Ferrel, J., Milla Miranda, M. (1997). The Navier-Stokes equation in non cylindrical domain". Comput. Appl. Math. V. 16, N°3, pp. 247-265.
- [17] Lions, J. L. (1969). Quelques méthodes de résolution des problèmes aux limites non linéaires". Dunod, Paris.
- [18] Lions, J. L. (1978). On some question in boundary value problems of mathematical physics, contemporary developments in continuum mechanics and partial differential equations". Ed. G. M. de la Penha and L.A. Medeiros, North Holland.
- [19] Medeiros, L. A.(1972). Non linear wave equations in domains with variable boundary". Arch. Rat. Mech. Anal. 49, pp. 47-58.
- [20] Milla Miranda, M. (1993). Contrôlabilité exacte de l'equation des ondes dans des domaines non cylindriques". C.R. Acad. Sci. Paris, 317, pp. 495-499.
- [21] Milla Miranda, M., Medeiros, L. A. (1994). Contrôlabilité exacte de l'équation de Schrödinger dans des domaines non cylindriques". C. R. Acad. Sci. Paris, 319, pp. 685-689.
- [22] Miyakawa, T., Teramoto, Y. (1982). Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain". Hiroshima Math. J. 12, pp. 513-528.
- [23] Morimoto, H. (1971). On existence of periodic weak solutions of the Navier-Stokes equation in regions with periodically moving boundaries". J. Fac. Sci. Univ. Tokyo, Sec. IA, 18, pp. 499-524.
- [24] Otani, M., Yamada, Y. (1978). On the Navier-Stokes equations in non-cylindrical domains: An approach by the subdifferential operator theory". J. Fac. Sci. Univ. Tokyo, Sec. IA, 25, pp. 185-204.

- [25] Salvi, R. (1985). On the existence of weak solutions of a nonlinear mixed problem for the Navier-Stokes equations in a time dependent domain". J. Fac. Sci. Univ. Tokyo, Sec. IA, 32, pp. 213-221.
- [26] Salvi, R. (1988). On Navier-Stokes equations in non-cylindrical domains: On the existence and regularity". Math. Z. 199, pp. 153-170.
- [27] Salvi, R. (1995). On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries, Navier-Stokes Equations and related nonlinear problem". Edited by A. Sequeira, Plenum Press, New York, pp. 63-73.
- [28] Sather, J. O. (1963). The Initial-Boundary value problem for the Navier-Stokes equations in regions with moving boundaries". Ph. D. Thesis, University of Minnesota.
- [29] Temam, R. (1979). Navier-Stokes equations, theory and numerical analysis". North Holland.
- [30] Temam, R. (1983). Navier-Stokes equations and nonlinear functional analysis". CBMS-NSF, Regional Conference Series in Applied Mathematics, 41, SIAM.

Cruz S. Q. de Caldas, Juan Limaco e Rioco K. Barreto Departamento de Matemática Aplicada Universidade Federal Fluminense IMUFF RJ, Brasil. gmacruz@vm.uff.br; rikaba@vm.uff.br

Pedro Gamboa
Instituto de Matemática
Universidade Federal do Rio de Janeiro, UFRJ, Brasil
pgamboa@dmm.im.ufrj.br