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Abstract

We consider the Navier Stokes
equation in noncylindrical
domain and prove
the existence of weak and
periodical solutions.
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1 Introduction

Let T > 0 be a real number and {Q;}o<t<7 a family of bounded
open sets of R™ with boundary T';. Let us consider the noncylindrical

domain of R™*!, given by Q = U 2y x {t}, with lateral boundary
o<t<T

i = U T; x {t} regular.

o<t<T

We have the Navier-Stokes problem:

N Ou o=

UI_AU+;ui6_:z:i=f_Vp in Q@

)| divu=0 in@
u=0 on Y
u(z,0) = uo(z) z €y

~

where u(z,t) = (u1(z,t),...,us(z, b)), (z,t) € Q,

Au= (Duy,..., Au,),V = (5% 9_).

8z, " °? Ozn

In the last thirty years a lot of papers concerning the existence of
solutions to the Navier-Stokes equation in noncylindrical domain have
been written. Among these papers, it is worth mentioning the articles
of J. L. Lions (17], H. Fujita and N. Sauer (7], {8], H. Morimoto [23], in
which the penality method is used, the results of R. Salvi [25], [26], [27],
L.A. Medeiros and J. Limaco Ferrel [15] based on elliptic regularization,
the paper of O.A. Ladyzhenskaya [13], M. Otani and Y. Yamada [24]
obtained with the Rothe’s method and with the subdifferential operator
theory respectively, and the works of J.O. Sather [28], D.N. Bock {2], A.
Inoue and M. Wakimoto {11], T. Miyakawa and Y. Teramoto'[22] derived
with tools of Differential Geometry and the paper of M. Milla Miranda
and J. Limaco Ferrel [16] used change of variable for a cilyndrical domain
and Galerkin’s method.

Let K : [0,T] » R™, afunction, where K(t) is a n xn matrix. Let
1 be an open bounded set of R™, which, without loss of generality, can
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be consider containing the origin of R". We assume that the boundary
I of Q is smooth, and consider the sets

YW ={z=K®t)y; ye} (1)

In this work we study the existence of weak solutions to Problem

(I), and also study the existence of periodical solution to (I). For that,
by a suitable change of variable which is more general than that one used

in [16], we transform the non cylindrical problem (I) in another problem
defined in the cylinder @ = x]0,T].

2 Notation and Hypotheses

We make following hypothesis on K (t).
(H1) K € C?, where K(t) is an invertible matrix.
(H2) K~! € C!, where K~1(t) is an invertible matrix of K (¢).

Consider the notation

K@) = (es5(t), and K7'(t) = (Bi;(1)) (2)

as well as the convention of summation of repeated indices; that is

n
aifi =Y aBi
i=1

By < .,. > we will represent the duality pairing between X "and X ,
X being the dual of the space X.

In order to state the main results we introduce some spaces. Let Vs
be the space

v, = {e € (D(Q))"; divp =0}
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and V;(£2;) be the closure of V/, in the space (H*(%))™, where s is a non
negative real number.

We use the particular notation
Vi(f) = V() and Vy(Qf) = H(Qy).
The inner product of these spaces is denoted, respectively by

(u, 2)g(o,) and ((4, 2))v,)- Then for u = (uj,...u,) and
z=(z1,...2,), we have

Oui(z) Ozi(z)

6xj ij de.

() pr () = /Q wi(2)z(@)de, (. 2))v gy =

Note that V() is continuously embedded in (H}(€2))™ for s > 2
and V() = {u € (H§ (W)™, divu = 0}.

In a similar way we introduce the spaces V,(Q?), where 4/ has a form

v ={¢ € (DQ)"; divy =0}.

We consider, the particular notations
@)=V, Vw=H and (@uwg=(@,w), ((vw)y = (v,w)),
g =v], [lvllv =lv].

In order to state the variational formulation of Problem (I) we in-
troduce the following bilinear and trilinear forms respectively:

. _ Bui(z) 0zi(z)
a(t,u,z) = o 8_;1,‘] _6$J dl’, (3)

itu,29) = [ uw D ¢ @ (@)
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We define the weak solution for the problem (I) in the following form

u € L*(0,T; V(%) N L*(0,T; H(Q))
— S (u,ey) Qt)dt+f0 a(t;u,e)dt+

+f0 b(t;u,u,e)dt = fo (f,e)

u(0) = up

(1)

V. € L*0,T;V(Q) N (L)), € € L2(0,T; H()),

e0) =e(T) =0

In order to transform the noncylindrical problem (I7T) in a problem
defined in the cylinder @, we introduce the functions:

’U,(Z,t) = K(t)U(Kﬂl(t)xrt) ) f(:l:,t) = K(t)g(K—l(t).’E,t) (5)
p(z,t) = K()g(K ™' (®)xz,8) , uo(z) = K(O)uo(K~'(0)z).  (6)

i) = [ a0 T gy, ©
[ st 25 _’My)dy, ®

ctvw) = [ 508 Oarn oL wldy, O

b(t; v, w, )

d(t;v,w) = /Q 5(2) [auna(8) By (£) v () wi (3)

— @ir(t) B (1) vr (y) wi ()] dy, (10)

with a;jx(t) = B;i(t)Bki(t) and 6(t) = | det K(t)|, where det M means the
determinant of a n x n matrix M.

25



Then from (5) to (9) and the problem (IT) we obtain the definition
of weak solution for the cylinder problem:

v € L2(0,T; V) N L0, T; H)
-—fo v1[;)dt+f0 tvz,/zdtfo (t;v,v,9)dt

D) | + [T e(t;v,9)dt + [ d(t;v,9)dt = [ (6(t)g,%)dt

v(0) = vg

Vg € L2(0,T;V N (L™ (W)™),¥ € L*(0,T; H),¥(0) = ¢(T) = 0.

3 Main Results

Theorem 3.1. Assume that the hypothesis (H1) and (H2) are satisfied.
If feL%0,T; H()) and ug € H(Q), then there existsu : Q — R,
solution of Problem (II).

Theorem 3.2. If g € L?(0,T;H) and vo € H, then there exists
v: Q — R, solution of Problem (II1I).

The following lemmas will be utilized to prove the theorems given.

Lemma 3.3. Consider the bilinear form a(t;v w) deﬁned by (7) and
the operator A(t) defined by A(t)v = a‘z (al,(t) Bor) V€ (HE ().
Then there exist positive constants ag, a1, a2, such that

(i) < A(t)v,w > = a(t;v,v)Vo,w €V
(ii) a(t;v,v) > aod(t)||v]|?, a(t;v,v) > ad(®)v|?, veEV
(iii) la(t;v,w)| < axé@)fl]| lwll, Yv,w € V.
The proof is given in {16].

Lemma 3.4. Let b(t;v,w, ), be the trilinear form, c(t,v,w),d(t,v, w)
the bilinear forms defined, respectively by (8),(9),)(10). Then there exist
positive constants b;,c;,d;, 1 =1, 2, such that

26



(i) b(t,v,v,w) = =b(t;v,w,v)Vv € V,w € V,(Q),s =2

(ii) 1b(t; v, w,¥)| < bo S|l [lw| ¥ llLn (@) Vv, w €V,
Y eV (L))"

(1i1) For each v € V, the linear form w — b(t;v,v,w) is continuous

in Vy(Q), s =3 and b(tv,v,w) =< B(t)v,w >y , where

B(t)v € V,(Q) and IB()vlly: < billvllizeayn with,

1

1

v<e c=3-7) (11)

1
P 2n

(SR

(iv) |c(t;v,w)| < co 8(t)||v|| |w|, Vv € V,w e H

(v) For each v € V, the linear form w — c(t;v,w) is continuous in H
and c(t;v,w) = (C(t)v,w), where C(t)v € H and |C(t)v| < c1]lvl]

(vi) |d(t;v,w)| < do8(2) ol |w], Vo, we H

(vii) For each v € V, the linear form w — d(t;v,w) is continuous
in H and d(t;v,w) = (D(t)v,w), where D(#)v € H and
[D(t)v] < dulv]l.

The proof with some modifications is analogues to the proof given
in [16].

Lemma 3.5. Letv € L*(0,T;V)N L*>(0,T; H). Then
v € L*0,T; (LP())"), where p is given by (11) and

1 1
lvi®)llze() < vl g Wil L2 i)y v = (V1,--,vn)
for some positive constant c.

The proof of Lemma 3.5 appear in [17].

Now, we consider another hypotheses over K (t), in order to state
results about the existence of periodical solutions

(H3) K()=K()
(H4) Assume that there exists a positive constant «, such that
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3'(¢ d
a1 — - —Co —do > «a,

where 6(t) = |det K(t)| and a1, c¢g,do are constants given in the Lemma
3.4.

Theorem 3.6. Assume that hypothesis (H1) — (H4) are satisfied. If

f € L*(0,T; H()) then there exists u : Q — R™ solution of Problem
(IT) such that u(0) = u(T).

Theorem 3.7. If g € L?(0,T;H), then there exists v : Q — R",
solution of Problem (III) such that v(0) = v(T).

4 Proofs

Proof of Theorem 2. Let (w;) be a special basis of V,(f2), with
s = %. We consider the approximated problem :

((6()vm)' s wj) + a(t; vm, wi) + b(t; Vm, Um, wj) + ¢(t; Vm, w;)
(AP) ¢ +d(t;um,w;) = (6(t)g,w;), 7 = 1,...m,vm(t) € v/, = [w1,... wm].

Um (0) = Vom, Vom — vo in H.

First Estimate. Considering w; = v (t) in (AP), and Lemma 3.4
(i) we obtain

%%(5(t)|vm|2) = 10" ()|om|® + a(t; vm, vm) + c(t;vm,Um) + d(t; Vm, Um)
= (6(t)g, vm).

Applying Lemmas 3.3 and 3.4, we have

%%(6(t)|vm|2) + aod(t) loml? < (316" ()| + co+do + ) 8@) lom [?

+ L6(t)gl?



Hence there exists a positive constant ¢, such that

d
ZOOml) + l[vnll* < ¢ 5t)[vm[* + clgl*.
Integrating in [0, ¢[, we obtain
5(t) [oml® + fi lomlIPds < c f3 &(s)umlPds +c fy lo(s)Pds + 6(0) om

Then Gronwall’s inequality implies that,

(Vév,,) isbounded in  L%(0,T; H) and
v, is bounded in  L2(0,T;V) (12)

Second Estimate. Let P, the ortogonal projection P, : H = /,,

m

given by P = Z(cp,wj)wj. By the special choice of (w,), we have
i=1

|Pmll(v,,v.y < 1 and, by transposition, ||Ppll v vy < 1. We note

that Pnv,,

<
Vm
Multiplying the approximate equation (AP) by wj, adding from

j =1 to j = m, and using the notation from Lemmas 3.3 and 3.4, we
obtain

(6(t), vm)' = —P% A(t)vm — P2 B(t)vm — PLC(E)um + PLD(t)vm. (13)

Using again Lemmas 3.4 and 3.5, we havel that each term of the
second member of (13) is bounded in L2(0,T;V, (Q)). This implies that

(6vm) is boundary in  L2(0,T;V, (). (14)

From (12) and (14) there exists a subsequence of (vy,) still denoted
by (vm) and a function v, such that,

vm —v in L%0,T;V) (15)
dvm = 6v in L%(0,T;H) (16)
(bvm)' = (dv)' in L*(0,T;V,) (17)
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0vm — 0v in L%0,T;H) strong and (a.e) in Q. (18)
From Lemma 3.6 and (12), we get that
(6Umi Vm;) is bounded in L2(0,T; L% () (19)
From (18) and (19), we obtain
OV Umj— dviv; in  L2(0,T; L% () (20)
By (20) and Lemma 3.4 (i), we have

b(t; Vm,y Um, wj) = b(t;v,v,w;) in L*(0,7) (21)

Using (15) - (21), we can pass to the limit in the approximate equation
(AP), obtaining then a solution v of the problem (III).

Proof of Theorem 1. Let u(z,t) = K(t) v(K~1(t)z,t), where v is a
weak solution of Problem (II).

Let €(z,t) = ¥ (K~ (t)z, t), where ¥ € L2(0, T; (L™ ()"),
¥ € L¥0,T; H), ¥(0) = %(T) = 0. Then

(]
e € L2(0,T; V() N (L" (W)™, ¢ € L2(0, T; H (),
e(0) = &(T) = 0.

Since, r = K(t)y, y = K_l(t)x) Iy = ar]( )yJa y = Bir(t)z,, then,

2ot = B, (O00e(y:1) + Bus() 2L + B, (Ders 1)y, 2502,

Sy

Therefore,
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_/ ui(a:,t)asz /5 y,t ’(y’ )dy+
a,

- /Q 6(t>air(t>ﬂki<t)vr<y,tm(y,wdy
+ / 8(t) st () By, (£ (3, £) Ui (v, t)dy
Q

Ou;(z,t) Oei(x, t)

a(t;u,&-) - Q, 81133 6z]
avl(yi ) o (y) t)
= d(t)aj(t d
| #ase =520 T B,

where a;x(t) = Bi(t)Bri(t).

E(t;u,u,e) = /Ui(I,t)Mﬁj(x,t)dl'
Q i

/ 17 (@, ez, t)dz = / 5(8)9(y, &) (y, )dy
Q Q

where g(y,t) = k71 (t) f(K (t),¢t).

Integrating (22) - (25) in [0, T] and using the definitions (7) -

we conclude that u is a weak solution of the problem (). O

(22)

(23)

(24)

(10),

Proof of Theorem 3. Let (w;) be a special basis of V(f2), where

we fix s = §. We consider the approximate problem:

31



((0(t)vm) s w;) + a(t; vm,w;) + b(t;Um, Um, wj) + (b Vim, w;)
(IV) | +d(t; wm, w;) = (6(t)g,w;), 5 =1, ..m,vm(t) € V/,, = [wi,..wn].
U (0) = vy, vg arbitrary
We prove that there exists R > 0, independent of m, such that
vl <R = [om(T)| < R.
In fact, if we consider w; = vy, in (IV), we have

%‘K”%lvmlz + a(t;vm,Um) + (t; Vm, Um) + d(t; Vm, Um)

= 8'®)lom|* + (8(t)g,vm). (26)
From (26) and Lemmas 3.3 and 3.4, we have

|6"(2)|
4(t)

1 d
390 Floml + 0ol < (K0 +.c0+ o) 80 ml? + (519,00

From (H3) and the Schwartz inequality, we have

d 1
a-z|vm|2 + ajvn|? < §|g|2 then

d 1
= loml?) < Zelgl’,  or

1 (7T
e o (T)|? < |vo|® + E/ e*t|g’dt < |vo|? + c < R* +c.
0

Hence,

c
eeT — 1

R2
2 +c

S < R?. Therefore R?>

[um (T)]
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Then, the maping vo — v (T) apply Br in Bgr, where By is the disc of
radius R, centered in the origin contained in the V;,, space with the topol-
ogy | - |r(a)- Therefore, there exists uom € Br, such that vy, (t) = vom.

Let v, be the solution of approximate problem (IV) such that
v (0) = Vom. Since vom is bounded in H, then we have:

v is bounded in L?(0,T;V)
v,  is bounded in  L*(0,T; H)
(6v,)" is bounded in  L2(0,T;V, ().

Therefore, we can extract a subsequence (v, ), such that

VU — U weak in L%(0,T;V)

dum = v weak star in L?(0,T;H)

(6up) — (6v)!  weakin L2(0,T;V,)
v, — v in L?(0,T; H) and (a.e) inQ

Then v, (0) = v(0), vm(T) = v(T) in V, . Since v, (0) = v, (T),
then v(0) = v(T). O

Proof of Theorem 4. Let u(z,t) = k(t)v(K~1(t)z,t), where v is a
solution of Problem (II), such that

v(0) = u(T). (27)

We know that u is solution of (I). Then from (Hs) and (27), we have
u(0) =u(T). O
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