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Abstract

The Paper deals with a two variable analogues of certain
fractional integral operators introduced by M. Saigo. Besides
giving two variable analogues of earlier known fractional
integral operators of one variable as special cases of newly
defined operators, the paper establishes certain results in the
form of theorems including integration by parts.
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1 Introduction

The fractional calculus has been investigated by many mathemati-
cians {14]. In their works the Reimann - Liouville operator (R-L) defined
by

RS, f= -1:(135 /0 “(x - )1 £(1) dt (L1)

was the most central, while Erdélyi and Kober defined their operator
(E — K) in connection with the Hankel transform [9] as

Jtaiat] T

Ig‘: f= Ta) A (1; - t)a—l t" f(t) dt. . (12)

Weyl and another Erdélyi-Kober fractional operators are defined as
follows:

W f =5 | Tt -2 5) de (13)

and

Ko = %) / (e = m)e e (1) de (1.4)

respectively.

In 1978, M. Saigo [15] defined a certain integral operator involving
the Gauss hypergeometric function as follows:

Let a > B and 5 be real numbers. The fractional integral operator
IZAm which acts on certain functions f(z) on the interval (0,00) is
defined by

=P

R (-0 Fla+ B, -m a1 0) S0, (19)
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where T" is the gamma function, F' denotes the Gauss hypergeometric
series

2Fi(a,bic;2) = Z ((l" nz",lz]<| (1.6)

and its analytic continuation into |arg(l — z)| < 7, and (@), = E(FL(Z';Z

Such an integral was first treated by Love [10] as an integral equa-
tion. However, if one regards the integral as an operator with a slight
change, it will contain as special cases both R — L and F — K owing to
reduction formulas for the Gauss function by restricting the parameters.
The more interesting fact is that for this operator two kinds of product
rules may be made up by virtue of Erdélyi’s formulas [3], which were
first proved by using the method of fractional integration by parts in the
R — L sense. From the rules, of course, the ones for R~ L and E —~ K are
deduced. Moreover, this operator is representable by products of R—L's
from which it is possible to obtain the integrability and estimations of
Hardy-Littlewood type [4]. Saigo [15] also defined an integral operator
on the interval (z, 00) as an extension of operators of Weyl and another
Erdélyi - Kober operators as follows:

Under the same assumptions in defining (1.5), the integral operator
J&Pm is defined by

a’ b — 1 ‘ - a— —a— —— N . p— E
JeBnf = @ /w (t — z)*" 12 PF (a + 8,051 t) f(H)dt
(1.7)

Later on in 1988, Saigo and Riana [17] obtained the generalized
fractional integrals and derivatives introduced by Saigo [15], [16] of the
system S} (z) where the general system of polynomials

n ey (*n)qr r
i@ =3 CWr 4 .

r!
=0

were defined by Srivastava [18], where ¢ > 0 and n > 0 are integers, and
A, r are arbitrary sequence of real or complex numbers.
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2 Two Variable Analogues of Operators (1.5)
and (1.7)

We define the two variable analogues of Saigo’s operators (1.5) and
(1.7} as follows:

I. Let ¢ > 0, a, b, b’ be real numbers. A two variable analogue of
fractional integral operator Ig‘,’f ' due to M. Saigo is defined as

lIg,’ﬁ;,g,;; f(x;y)
, (2.1)
-a,—a f1—x1-2
=2y I [ e—w T g0 T R [ a’b’c. = ]f(u,v)dvdu-
SPECIAL CASES:
(i) Fora=b=1¥ =0,c = a, (2.1) reduces to
1038,5 f(xa y) =1 Rg,m;o,y f($>y)
(2.2)

_ﬁ_)}'f//z_u)al v)*7 ! f(u,v) dvdu.

Here (2.2) may be considered as a two variable analogue of
Riemann - Liouville fractional integral operator R§ ,.

(ii) Fora=c=a, b=—n, b’ =0, (2.1) becomes

-n,0; ,
1[&71;%,?}& f(z)y) = mE&x”’,O’y f(z7 y)

_ (2.3)
;"ero il (x - ,u)a l(y - U)a_lunf(u)v)dvdu-
(iii) Fora=c=a, b=0, b = —n, (2.1) gives
520 @) =1 B3, f(zy)
(2.4)

{r(c.)}2 C (e — w) "y — 0)* 7 f(u, v)dudu.

Here (2.3) and (2.4) may be considered as two-variable
analogues of Erdélyi-Kober fractional integral operator Eg’7.
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Under the same conditions of (2.1), a two variable analogue
of another fractional integral operator J3:2" due to M. Saigo
is defined as follows:

1B F(2,9) = Gy S e wm ) o)
(2.5)
Fl[ “’b’::"l_%’l‘% :lu_“v_"f(u,v)dvdu‘
SpECIAL CASES:
(i) Fora=b=b =0, ¢c= a, (2.5) reduces to
10500000 F(2,9) =1 LS 0,00 F(2,Y)
(2.6)

= T@P / ) / m(“ - 2)* v~ y)*7! f(u, v)dvdu.
z Jy

It can be considered as a two variable analogue of Weyl
fractional integral operator Lg ..

(ii) Fora=c=a, b= —-n, b/ =0, (2.5) becomes

WERRNS (2 y) = TKSL oo f(29)

; (2.7)
= 1I‘(Ia T2 fawffo(“_z)a—l(’U—ll)a“l“-n-"v"“f(u,v)dvdu‘
(iit) Fora=c=a, b=0, ¥ = —n (2.5) gives
1Ie s flz,y) = K30, o F(z,y)
(2.8)

= -{W—\ an ffff(u-z)“‘l(v—y)“_lu_c'v_“_"f(u,v)dvdu.

Here (2.7) and (2.8) may be considered as two variable analogues
of Erdélyi-Kober fractional integral operator K.

II. Let ¢ > 0, ¢ > 0, a, b, b be real numbers. Then a second two
variable analogue of Igf B is as given below:

205t F(2,) = Frathmy s 2 e =) !
(2.9)

35



36

SPECIAL CASES:
(i) Fora=b=b =0, c=a, ¢ =d, (2.9) reduces to
Ay S TCRNIEPY I JC R
sy (2.10)
= F(E)‘lrm / /0 (z — u)* My —v)* 7 f(u,v)dvdu.
0

Here (2.10) may be taken as second two variable analogues
of Riemann-Liouville fractional integral operator R§,. For
a' = a, (2.10) reduces to (2.2).

(il Fora=c=a, b=—-n, V' =0, ¢ =, (2.9) becomes

21005 f(ey) = 3ESES fla,y)
(2.11)
= El‘iajl'y‘lia'j f:fo”(z_“)a_l(y—v)a’—lu"f(u,v) dvdu.
For o' = a, (2.11) reduces to (2.3).
(iii) Fora=c=a, b=0, b' = —-n, ' = a, (2.9) gives
2o o f(z,y) = YEGST flx,y)
(2.12)

= :El"_(jx;;(c;_’)', fo:fov(z'“)u—l(y"v)al_lv" fu,v) dvdu.
For o' = a, (2.12) reduces to (2.4).

Here (2.11) and (2.12) may be taken as second two variable
analogues of Erdélyi-Kober fractional integral operator Eg;’.

Under the same conditions of (2.9), a second two variable analogue
of J&£:" is as defined below:

o0 oo
IR S =k [ [ w- 9 - ne
z Jy
(2.13)

’
€5

bb1-21-2 e —
Fy { ¢ R }u 29~% f(u,v) dvdu.



SPECIAL CASES:

(i) Fora=b=4 =0, c=«q, ¢ =a, (2.13) reduces to

2 JO%0nS f(z,y) = 2L3E., 00 F(T,¥)
(2.14)

= &) } v f?f,,”(u—z)““(v-y)“"‘ f(u,v) dvdu.

We may consider (2.14) as second two variable analogues of
Weyl fractional integral operator Lg .. For o' = a, (2.14)
reduces to (2.6). '

(ii) Fora=c=a, b=—n, ¥ =0, =/, (2.13) becomes

. ! ’
22 fmy) = §KS o flx,y)

(2.15)
i i
= WE%-TE,—)f;’"fu""(u--a:)"_l(v—y)cl “lyTeT Ty T fu,w) dv du.
For o' = a, (2.15) reduces to (2.7).
(i) Fora=c=a, b=0, ¥/ = -5, ¢ = a, (2.13) gives
2I2 % f@,y) = SKER o f(20)
(2.16)

= T )r:(a")f:"ff("—ﬂ“"(v-y)“"‘u“‘v‘“"’ f(u) dvdu.

For o' = a, (2.16) reduces to {2.8).

We may consider (2.15) and (2.16) as second two variable analogues
of Erdélyi-Kober fractional integral operator K7'%,.

IIl. Let ¢ > 0,a, a’, b, b’ be real numbers. Then a third two variable
analogue of I&’f"’ is as follows:

oy F(@y) = iy I 3 o0 w—u)e !
(2.17)

a,a',b,b';1—&,1—

F v Fu,v) dvdu.

3
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SpPECIAL CASES:
(i) Fora=d =0, ¢ = a, (2.17) reduces to

0,0,b;b',
3IO,z;O,y “ f(xay) = 1Rg,z;0,y f(za y)

- {F((l)z)}2 /0 /Oy(‘” —u)* Ny = v)*"" f(u,v) dvdu.

which is (2.2).
(ii) Fora=c=a, a’ =0, b= —n, (2.17) becomes

,0,— »b’? ¥
31(;’,3;;0,; af(-r,y) = IE&.'Z’;O,yf(za y)

(2.18)
= z_ﬁfzr(l o f3 [ (a—w) = (y—v)® " a7 f(u,) dvdu.
(i) Fora =0, a' =c=a, ¥ = —7, (2.17) gives
319y, ™ f(@,y) = YESD,, F@y)
(2.19)

= TyI%')_}YTfoI JE(z—u)*"Hy—v)*" o7 f(u,v) dvdu.

Here (2.18) and (2.19) may be thought of as the third two variable
analogues of Erdélyi-Kober fractional integral operator Eg;.

Under the same conditions of (2.17), a third two variable analogue
of J:‘)ﬁ;" is as defined below:

a,a’,b,b';c — 1 Y _oaye=lg,  ohe—1
3J2,oo;y,oo f(z',y) {F(C)}Z/z /3; (u Il?) (’U y)
(2.20)
v } w0~ f(u,v) dvdu.

SPECIAL CASES:
(i) Fora=a'=0,and c= a,‘ (2.20) reduces to

',
3JOOBY f(z,y) = 1LS ooy 00 £ (2, Y)

= {—T}_”((ll S IR u—a) o—y)* " f(uw) dvdu
which is (2.6).



(ii) Fora' =0, a =c = a, b= —n, (2.20) becomes

3I2%TT f2,y) = §KEL 00 f(2,9)

(2.21)
= I—Wr(z; I I (u=2)* N o=g) " 1uT277 f(u,w) dvdu.
(iii) Fora=0, o' =c=a, b = —7, (2.20) gives
22 F@y) = KDy f(@0)
(2.22)

"
= {‘F(LW J& I8 (u=2)* " Hu—y)* " 1w~ =77 f(u,0) dv du.

Here (2.21) and (2.22) may be taken as the third two variable
analogues of Erdélyi-Kober fractional integral operator KJ'g.

IVLete>0,c > O a, b be real numbers. Then a fourth two variable
analogue of I a’ " is as defined below:

-0 "'a
ab o -
Jebes f(z,y) C)F // z—u) Ny —v) !

Fy [ abil=lmy } flu,v) dvdu.

c,c's.

(2.23)

Under the same conditions of (2.23), a fourth two variable analogue
of J2£: is as given below:

i @) = iy [ [ @m0 -
(2.24)

¢, c’;

F, [ abil—%,1--2 } u” %% f(u,v) dvdu.
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3 In this Section Certain Theorems Involving
the above Operators will be given

Theorem 3.1. For functions f(z,y), g(z,y), f(l l) and g (%,%)

T’y
defined for 0 £ z < o0, 0 < y < oo and ¢ > 0, we have

" 00(17 a—c—1 l l a,b,b’ic

/o /o y) f (x’y) o0y 9(z,y)dydz

= [T [T (505) 2 o) dyds
0 0 Ty ;

provided that each double integral exists.

Proof of Theorem 3.1 We have

/ / G 1f<l %) G g(2,y) dyda
[ 1 (55) o

/:m /:y(x —wT TR [ ayb,i:l_%‘l—ﬁ ]g(u,v) dvdu dydz
/1;_0 /_0/; U/—v {T(c) (% ;) (z —u) Yy —v)°}

A [ ] 9(u,v) dyds dvdu

<s

- /p:oo /q:) /t—:; /woo (iw)_)}z (1 1) (t—p)Hw —q)°t

F [ abbi1-2,1-2% }g(p,q) dwdt dqdp

i
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We now make the substitution p =

the above becomes

=L (5) T

/ B / (x—w) Ny -v) 1R [ abi Aoy ]f(u v) dvdu dydz

- |
/ / (zy)*~¢ 1f(— 5) g8 fz,y) dyde
=0

This completes the proof of Theorem 3.1. Similarly, we can prove
the theorems 3.2 to 3.8.

Theorem 3.2. Under the conditions stated in theorem 3.1, we have

11
/ / (zy)2=°~ 1f( ~) abbie . 9(x,y) dydz
Il e a—c—1 11 a,b,b’ ;e
=/ / (zy) I\ 1o f(2,y) dyde
0 0

provided that each double integral exists.

(3.2)

1 11
Theorem 3.3. For functions f(x,y),9(z,y), f (— 5) and g( )

z'y
defined for 0 <z < 00,0<y< o0 andc >0, ¢’ >0, we have

/ / go—c1 a c—lf (_ _) ) g):gyccg(x’y) dydz
R a—c—1,a—c' —1 11 a,b,b;c,c’

= z Yy gl = 21(),‘;1;;0,;/y f(may) dy dz
0o Jo Ty

(3.3)
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provided that each double integral exists.

Theorem 3.4. Under the conditions stated in theorem 3.3, we have

/ / aclac-—lf< ) :gobycogg(my)dydm
e a ¢~ 11 a,b,b e,
/ / ' 'g (x y) 2 JEN S f(=,y) dy dx

provided that each double integral exists.

(3.4)

Theorem 3.5. For functions f(z,y), g9(z,y), f (l, 1) and g (l, l)
'y .
defined for 0 <z < 00,0 <y < 00 and ¢ > 0, we have

/ / 0™ 1 a —c— 1f (_ _) 3 S;O?yb cg(z’y) dy dz

_ ® > a—c—1,a —c-1 11 a,a’,bb’;c

- z ) g\ - = 3‘[0,:0;0,;/ f(zi y) dy dz
o Jo Ty

provided that each double integral exists.

(3.5)

Theorem 3.6. Under the conditions stated in theorem 3.5, we have

L[ ame ey (1) atttiooten) dyds
® [ a—c—1, a —c—1 11 a,a’ )bb' ;c

= T y g —y 3Jzooyoo f(x’y) dydz
o Jo Ty

provided that each double integral exists.

(3.6)

11 11
Theorem 3.7. For functions f(z,y), 9(z,v), (;,5) andg( y)
defined for 0 <z < o0, 0<y< oo andec >0, ¢ >0, we have
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[eo] o) ’ 1 1 !
0 0 Ty

R a—c—1, a—~c -1 11 a,bic;c
= T Yy 9\ = =) ooy flz,y) dyds
0 0 ry

provided that each double integral exists.

(3.7)

Theorem 3.8. Under the conditions stated in theorem 3.7, we have

® [ a—c—1,a—c' ~1 11 a,bye,c
/0 /0 R T f<;,§> 1y oo 9(7,y) dydx
* [ a—c—1, a—c'—1 11 a,bic,c’
=) L F y At 1m0 f(2,y) dydz

provided that each double integral exists.

(3.8)

From these theorems certain interesting corollaries follow reedily for
the operators (2.2), (2.3), (2.4), (2.6), (2.7), (2.8), (2.10), (2,11), (2,14),
(2.15), (2.16), (2.18), (2.19), (2.21) and (2.22). Further, we can prove
the following theorems:

Theorem 3.9. If

o poo [ t@isaiten;
f(z,y) = / / (s2)*~ (ty)# 1 FES iy | 9s,t)dtds
0 0

(@):(Bm)i(1n);

and ¥(z,y) = 113:8’; f(z,y) for c > 0, then we have

[o/e] lo o]
U(z,y) = / / Pl g(s, 1)
0 0

(3.9)

, N (ap):(bg)i(cr);
11&‘;;’8’;03’}'\_11;”_1Fg#b’;l sz ty | dtds
(ae):(Bm)i(vn);

provided that the double integrals involved exist.
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Proof of Theorem 3.9 We have

U(z,y) = | IGENC f(z,y)

= %/: /oy(x —u) Ny —v) R [ a’b’j:lw%’l—% } flu,v)dvdu
e e

(ap):(bq)i(er);
/ / su) ()T ERET su,tv | g(s,t)dtdsdvdu
(01)5(ﬁm);(7n)§

“{P<c}2/ / ST gls)
/OI /Oy WP 1% (g — u) 1y — v)e !

abbl—% 1_2 (ap):(ba)i(er)

Fl{ D=2 l—y }F;’:fn su,tv | dvdudtds
e

(@e):(BmYi(¥n);

oo poo
— / / s)\-—l tu_lg(s,t)
0 0

abble a-1 yH-LFPOT
lIO,z;O,y F min

(ap):(bq)?(cr);
sz, ty dt ds.
(ae):(Bm)i(n);i

This completes the proof Theorem 3.9. Similarly, we can prove theorem
3.10.

Theorem 3.10. If
oo s} (ep):(bg)i(er);

f(z,y) =/ / (sz)*(ty)H~ IF”T‘,’LZ sz,ty | g(s,t)dtds
o 7o (@6):(Bm)i(¥n)

and U(z,y) = (Jo0Yie f(z y) for ¢ > 0, then

z,00;Y,00
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¥(z,y) = / / A1 (s, 1)
1] 0

3.10

(ap):(bq)§(cr)i ( )

Jabbie gA-lys1FEaT soyty | dtds
(ae):(Bm)i{7n);

provided that the double integrals involved exist.

Results similar to (3.9) and (3.10) hold for other operators (2.9),
(2.13), (2.17), (2.20), (2.23) and (2.24) also from which similar results
for other operators can easily be deduced as particular cases.

4 Results Analogues to Integration by Parts

Certain results analogues to integration by parts for the operators
(2.1), (2.5), (2.9), (2.13), (2.17), (2.20), (2.23) and (2.24) are given in
this section in the form of the following theorems;

Theorem 4.1. For functions of two variables f(z,y) and g(z,y) defined
in the positive quadrant of the xy-plane and ¢ > 0, we have

0o oo b
/ / f(xy ISIch.(z’y)dydx
0 0

. 0 o0 I
:/0 /0 g(my)l-];,’:é;!;,’; (z,y)dy dz

provided that each double integral exists.

(4.1)

Proof of Theorem 4.1 We have
[ ren ety seiyds
o Jo

- / I y{(f“yc)}az

U=T =y Py uoq_ v
/ / (z—u) Yy —v) 1R [ by ] g(u,v) dvdu dydx
u= =0

[
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/u o/ /_u/y ) {1« }2 f(m Yz — )y - v)e?

Fl [ a,b,bl}l_':_'l_f ]g(u,u) dyd.’L' dvdu

[

u, 'l)
2
~/u 0/_0 )}
* * bb';1—%,1-%
/ / (z—u)“‘(y—v)“‘m[ BT ]z'“y‘“f(x,y)dydzdvdu
r=u JYy=v ¢

0o poo
:/ / 9(u,v) 1Jggobvcoo (u,v)dvdu
u=0 Jv=0

o0 lo o]
=/ / g(z, )1 JEbi, f(z,y)dy dz.
0 0

This completes the proof of Theorem 4.1. Similarly, we can prove theo-
rems 4.2, 4.3 and 4.4.

Theorem 4.2. For functions of two variables f(z,y) and g(z,y) defined
in the positive quadrant of the ry-plane and ¢ > 0, ¢ > 0, we have

/ / Flz,y) 21500 o gz, y)dy dx
0 1]

- / / 0, ) 2J85YEE f(z,y)dy de
0 0

provided that each double integral exists.

Theorem 4.3. Under the conditions stated in theorem 4.1, we have

/ / F(20) sIEEEY g(z,y)dy do
0 0
(4.3)

x0 o0
- / /0 0, 9) T80 f(z,y)dyda

provided that each double integral exists.
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Theorem 4.4. Under the condiltions stated in theorem 4.2, we have

o0 o0 b ;
/ / F(2w) dIEESE gz, y)dy da
0 0
(4.4)
o o0 ,
= / / 0, 9) 1 JEEE . f(z,y)dy do
4] 0

provided that each double integral exists.

From the theorems of this section certain interesting corollaries read-
ily follow for the operators (2.2}, (2.3), (2.4), (2.6), (2.7), (2.8), (2.10),
(2.11), (2.14), (2.15), (2.16), (2.18), (2.19), (2.21) and (2.22).
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