THREE VARIABLE ANALOGUE OF BOAS AND BUCK TYPE GENERATING FUNCTIONS AND ITS GENERALIZATIONS TO m-VARIABLES

Mumtaz Ahmad Khan ${ }^{1}$ and Bahman Alidad ${ }^{2}$

September, 2009

Abstract

The present papers deals with three variable analogue of Boas and Buck [14] type generating functions for polynomials of two variables and then the same has been extended for m-variable analogue. The results obtained are extensions of those obtained by us in our earlier paper [14]. MSC(2000): 47F05, 33 C 45.

Keywords: Boas and Buck type Generating functions, three variable polynomial sets, m-variable polynomial sets.

[^0]
1. Introduction

Extending the results of Boas and Buck [14] the present authors [14] considered two-variable analogues of certain theorems given by Boas and Buck. Let $P_{n}(x, y)$ be a polynomial in two variables defined by means of the generating functions of the form

$$
\begin{equation*}
A(t) \phi(x H(t)) \psi(y H(t))=\sum_{n=0}^{\infty} P_{n}(x, y) t^{n} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \phi(t)=\sum_{n=0}^{\infty} \gamma_{n} t^{n}, \quad \gamma_{0} \neq 0 \tag{1.2}\\
& \psi(t)=\sum_{n=0}^{\infty} \delta_{n} t^{n}, \quad \delta_{0} \neq 0 \tag{1.3}\\
& A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 \tag{1.4}\\
& H(t)=\sum_{n=0}^{\infty} h_{n} t^{n+\frac{1}{2}}, h_{0} \neq 0 \tag{1.5}
\end{align*}
$$

Then the following theorems analogous to those obtained by Boas and Buck [14] hold for two variable polynomials:

Theorem A. If $P_{n}(x, y)$ is defined by (1.1) with (1.2), (1.3), (1.4) and (1.5) holding, $P_{n}(x, y)$ is a polynomial in x and y and $P_{n}(x, y)$ is of degree precisely n if and only if $\gamma_{n} \neq 0$ and $\delta_{n} \neq 0$.

Three variable analogue of Boas and Buck type generating functions

Theorem B. For the polynomials $P_{n}(x, y)$ defined by (1.1) with (1.2), (1.3), (1.4) and (1.5) holding, and $\gamma_{n} \neq 0, \delta_{n} \neq 0$, there exist sequences of numbers α_{k} and β_{k} such that, for $n \geq 1$,

$$
\begin{align*}
& \left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) P_{n}(x, y)-n P_{n}(x, y) \\
& =-\sum_{k=0}^{n-1} \alpha_{k} P_{n-1-k}(x, y)-\sum_{k=0}^{n-1} \beta_{k}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) P_{n-1-k}(x, y) \tag{1.6}
\end{align*}
$$

Indeed,

$$
\begin{align*}
\frac{t A^{\prime}(t)}{A(t)} & =\sum_{n=0}^{\infty} \alpha_{n} t^{n+1} \tag{1.7}\\
\frac{t H^{\prime}(t)}{H(t)} & =1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1} \tag{1.8}
\end{align*}
$$

In our earlier paper [14], a function extension was given by considering the generating relation

$$
\begin{equation*}
A(t) \phi(x H(t)+g(t)) \phi(y H(t)+r(t))=\sum_{n=0}^{\infty} f_{n}(x, y) t^{n} \tag{1.9}
\end{equation*}
$$

In which

$$
\begin{equation*}
\phi(t)=\sum_{n=0}^{\infty} \gamma_{n} t^{n}, \quad \gamma_{0} \neq 0 \tag{1.10}
\end{equation*}
$$

$$
\begin{align*}
& \psi(t)=\sum_{n=0}^{\infty} \delta_{n} t^{n}, \quad \delta_{0} \neq 0 \tag{1.11}\\
& A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 \tag{1.12}\\
& H(t)=\sum_{n=0}^{\infty} h_{n} t^{n+\frac{1}{2}}, h_{0} \neq 0 \tag{1.13}\\
& g(t)=\sum_{n=0}^{\infty} g_{n} t^{n+2} \tag{1.14}
\end{align*}
$$

and

$$
\begin{equation*}
r(t)=\sum_{n=0}^{\infty} r_{n} t^{n+2} \tag{1.15}
\end{equation*}
$$

The following theorems were proved to hold:
Theorem C. If $P_{n}(x, y)$ is defined by (1.9) with (1.10), (1.11), (1.12), (1.13), (1.14) and (1.15) holding, $f_{n}(x, y)$ is a polynomial in x and y and $f_{n}(x, y)$ is of degree precisely n if and only if $\gamma_{n} \neq 0$ and $\delta_{n} \neq 0$.

Theorem D. For the polynomials $f_{n}(x, y)$ defined by (1.9) with (1.10), (1.11), (1.12), (1.13), (1.14) and (1.15) holding, and $\gamma_{n} \neq 0, \delta_{n} \neq 0$, there exist sequences of numbers $\alpha_{k}, \beta_{k}, \lambda_{k}$ and μ_{k} such that, for $n \geq 1$

$$
\begin{align*}
& \left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) f_{n}(x, y)-n f_{n}(x, y) \\
& =-\sum_{k=0}^{n-1} \alpha_{k} f_{n-1-k}(x, y)-\sum_{k=0}^{n-1} \beta_{k}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) f_{n-1-k}(x, y) \\
& =-\sum_{k=0}^{n-1}\left(\lambda_{k} \frac{\partial}{\partial x}+\mu_{k} \frac{\partial}{\partial y}\right) f_{n-1-k}(x, y) \tag{1.16}
\end{align*}
$$

Three variable analogue of Boas and Buck type generating functions

Indeed,

$$
\begin{align*}
\frac{t A^{\prime}(t)}{A(t)} & =\sum_{n=0}^{\infty} \alpha_{n} t^{n+1} \tag{1.17}\\
\frac{t H^{\prime}(t)}{H(t)} & =1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1} \tag{1.18}\\
\frac{t g^{\prime}(t)}{H(t)} & =\sum_{n=0}^{\infty} \lambda_{n} t^{n+1} \tag{1.19}\\
\frac{t r^{\prime}(t)}{H(t)} & =\sum_{n=0}^{\infty} \mu_{n} t^{n+1} \tag{1.20}
\end{align*}
$$

2. Main Results

Here we obtain three variable analogues of theorems A, B, C and D mentioned above. Let $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ be a polynomial in three variables defined by means of the generating functions of the form

$$
\begin{equation*}
A(t) \phi_{1}\left(x_{1} H(t)\right) \phi_{2}\left(x_{2} H(t)\right) \phi_{3}\left(x_{3} H(t)\right)=\sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\phi_{1}(t)=\sum_{n=0}^{\infty} \gamma_{n} t^{n}, & \gamma_{0} \neq 0 \\
\phi_{2}(t)=\sum_{n=0}^{\infty} \delta_{n} t^{n}, & \delta_{0} \neq 0 \\
\phi_{3}(t)=\sum_{n=0}^{\infty} \lambda_{n} t^{n}, & \lambda_{0} \neq 0 \tag{2.4}
\end{array}
$$

$$
\begin{align*}
& A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 \tag{2.5}\\
& H(t)=\sum_{n=0}^{\infty} h_{n} t^{n+\frac{1}{2}}, h_{0} \neq 0 \tag{2.6}
\end{align*}
$$

Then the following theorem holds:

Theorem 1. If $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ in defined by (2.1), with $(2.2),(2.3),(2.4)$, (2.5) and (2.6) holding, $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is a polynomial in x_{1}, x_{2} and x_{3} and $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is of degree precisely n if and only if $\gamma_{n} \neq 0, \delta_{n} \neq 0$ and $\lambda_{n} \neq 0$.

Proof: Let

$$
\begin{equation*}
P_{n}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} S(k, r, s, n) x_{1}^{k} x_{2}^{r} x_{3}^{s} \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{aligned}
& A(t) \phi_{1}\left(x_{1} H(t)\right) \phi_{2}\left(x_{2} H(t)\right) \phi_{3}\left(x_{3} H(t)\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} S(k, r, s, n) x_{1}^{k} x_{2}^{r} x_{3}^{s} t^{n}
\end{aligned}
$$

so that m partial differentiations with respect to x_{1}, followed by putting $x_{1}=0$, yields

$$
\begin{align*}
& A(t)[H(t)]^{m} \phi_{1}^{(m)}(0) \phi_{2}\left(x_{2} H(t)\right) \phi_{3}\left(x_{3} H(t)\right) \\
& =\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty}(m!) S(m, r, s, n) x_{2}^{r} x_{3}^{s} t^{n} \tag{2.8}
\end{align*}
$$

Similarly, m partial differentiation of (2.8) with respect to x_{2}, followed by putting $x_{2}=0$, gives

$$
\begin{align*}
& A(t)[H(t)]^{2 m} \phi_{1}^{(m)}(0) \phi_{2}^{(m)}(0) \phi_{3}\left(x_{3} H(t)\right) \\
& =\sum_{n=0}^{\infty} \sum_{s=0}^{\infty}(m!)^{2} S(m, m, s, n) x_{3}^{s} t^{n} \tag{2.9}
\end{align*}
$$

Again, m partial differentiation of (2.9) with respect to x_{3}, followed by putting $x_{3}=0$, gives

$$
\begin{equation*}
A(t)[H(t)]^{3 m} \phi_{1}^{(m)}(0) \phi_{2}^{(m)}(0) \phi_{3}^{(m)}(0)=\sum_{n=0}^{\infty}(m!)^{3} S(m, m, m, n) t^{n} \tag{2.10}
\end{equation*}
$$

Because of (2.2)-(2.6), one can write (2.10) as

$$
\begin{align*}
& A(t)[H(t)]^{3 m} \phi_{1}^{(m)}(0) \phi_{2}^{(m)}(0) \phi_{3}^{(m)}(0) \\
& =a_{0} h_{0}^{3 m} t^{m} \gamma_{m} \delta_{m} \lambda_{m}(m!)^{3}+\sum_{n=m+1}^{\infty} C(m, m, m, n) t^{n} \tag{2.11}
\end{align*}
$$

In which the precise nature of $C(m, m, m, n)$ is not important to us.
Comparison of (2.10) and (2.11) leads to

$$
\begin{align*}
& s(m, m, m, n)=0 \quad \text { for } n<m \tag{2.12}\\
& s(m, m, m, n)=a_{0} h_{0}^{3 m} \gamma_{m} \delta_{m} \lambda_{m} \tag{2.13}
\end{align*}
$$

The condition (2.12) shows that $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is a polynomial of degree $\leq n$. The condition (2.13) with $3 m$ replace by n, shows that $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is of degree precisely n if and only if $\gamma_{n} \neq 0, \delta_{n} \neq 0$, $\lambda_{n} \neq 0$, since $a_{0} h_{0} \neq 0$ by (2.5) and (2.6).

Theorem 2. For polynomials $P_{n}\left(x_{1}, x_{2}, x_{3}\right)$ defined by (2.1), with (2.2), (2.3), (2.4), (2.5) and (2.6) holding, and $\gamma_{n} \neq 0, \delta_{n} \neq 0, \lambda_{n} \neq 0$, there exist sequences of numbers α_{k} and β_{k} such that, for $n \geq 1$

$$
\begin{align*}
& \left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n}\left(x_{1}, x_{2}, x_{3}\right)-n P_{n}\left(x_{1}, x_{2}, x_{3}\right) \\
& =-\sum_{k=0}^{n-1} \alpha_{k} P_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad-\sum_{k=0}^{n-1} \beta_{k}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \tag{2.14}
\end{align*}
$$

Indeed,

$$
\begin{align*}
& \frac{t A^{\prime}(t)}{A(t)}=\sum_{n=0}^{\infty} \alpha_{n} t^{n+1} \tag{2.15}\\
& \frac{t H^{\prime}(t)}{H(t)}=1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1} \tag{2.16}
\end{align*}
$$

Proof: Let

$$
\begin{equation*}
F=A(t) \phi_{1}\left(x_{1} H(t)\right) \phi_{2}\left(x_{2} H(t)\right) \phi_{3}\left(x_{3} H(t)\right) \tag{2.17}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{\partial F}{\partial x_{1}} & =H(t) A(t) \phi_{1}^{\prime} \phi_{2} \phi_{3} \tag{2.18}\\
\frac{\partial F}{\partial x_{2}} & =H(t) A(t) \phi_{1} \phi_{2}^{\prime} \phi_{3} \tag{2.19}\\
\frac{\partial F}{\partial x_{3}} & =H(t) A(t) \phi_{1} \phi_{2} \phi_{3}^{\prime} \tag{2.20}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial F}{\partial t}=A^{\prime}(t) \phi_{1} \phi_{2} \phi_{3} \\
& +x_{1} H^{\prime}(t) A(t) \phi_{1}^{\prime} \phi_{2} \phi_{3}+x_{2} H^{\prime}(t) A(t) \phi_{1} \phi_{2}^{\prime} \phi_{3}+x_{3} H^{\prime}(t) A(t) \phi_{1} \phi_{2} \phi_{3}^{\prime} \tag{2.21}
\end{align*}
$$

Eliminating $\phi_{1}, \phi_{1}^{\prime}, \phi_{2}, \phi_{2}^{\prime}, \phi_{3}$ and ϕ_{3}^{\prime} with the aid of (2.17), (2.18), $(2.19),(2.20)$ and (2.21), the result may be written in the form

$$
\begin{equation*}
\frac{t H^{\prime}(t)}{H(t)}\left[x_{1} \frac{\partial F}{\partial x_{1}}+x_{2} \frac{\partial F}{\partial x_{2}}+x_{3} \frac{\partial F}{\partial x_{3}}\right]-t \frac{\partial F}{\partial t}=-\frac{t A^{\prime}(t)}{A(t)} F \tag{2.22}
\end{equation*}
$$

If we define α_{n} and β_{n} by (2.15) and (2.16) and recall that

$$
F=\sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}
$$

equation (2.22) leads us to

$$
\begin{aligned}
& {\left[1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1}\right]\left[\sum_{n=0}^{\infty}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right]} \\
& \quad-\sum_{n=0}^{\infty} n P_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}=-\left[\sum_{n=0}^{\infty} \alpha_{n} t^{n+1}\right]\left[\sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right]
\end{aligned}
$$

or
$\sum_{n=0}^{\infty}\left[\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n}\left(x_{1}, x_{2}, x_{3}\right)-n P_{n}\left(x_{1}, x_{2}, x_{3}\right)\right] t^{n}$

$$
\begin{align*}
= & -\sum_{n=0}^{\infty} \sum_{k=0}^{n} \alpha_{k} P_{n-k}\left(x_{1}, x_{2}, x_{3}\right) t^{n+1} \\
& -\sum_{n=0}^{\infty} \sum_{k=0}^{n} \beta_{k}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n-k}\left(x_{1}, x_{2}, x_{3}\right) t^{n+1} \\
= & -\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \alpha_{k} P_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) t^{n} \\
& -\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \beta_{k}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) t^{n} \tag{2.23}
\end{align*}
$$

from which the result given below follows at once:

$$
\begin{align*}
& \left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n}\left(x_{1}, x_{2}, x_{3}\right)-n P_{n}\left(x_{1}, x_{2}, x_{3}\right) \\
& =-\sum_{k=0}^{n-1} \alpha_{k} P_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad-\sum_{k=0}^{n-1} \beta_{k}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \tag{2.24}
\end{align*}
$$

It is important that the α_{k} and β_{k} in (2.24) are independent of n.

Example: Consider the polynomials $f_{n}\left(x_{1}, x_{2}, x_{3}\right)$ of [13] in which

$$
\begin{equation*}
(1-t)^{-c} \phi_{1}\left[\frac{-4 x_{1} t}{(1-t)^{2}}\right] \phi_{2}\left[\frac{-4 x_{2} t}{(1-t)^{2}}\right] \phi_{3}\left[\frac{-4 x_{3} t}{(1-t)^{2}}\right]=\sum_{n=0}^{\infty} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n} \tag{2.25}
\end{equation*}
$$

The $f_{n}\left(x_{1}, x_{2}, x_{3}\right)$ fit into the Boas \& Buck theory with

$$
A(t)=(1-t)^{-c}, \quad H(t)=\frac{-4 t}{(1-t)^{2}}
$$

Three variable analogue of Boas and Buck type generating functions

$$
\frac{t A^{\prime}(t)}{A(t)}=\sum_{n=0}^{\infty} c t^{n+1}, \quad \frac{t H^{\prime}(t)}{H(t)}=1+\sum_{n=0}^{\infty} 2 t^{n+1}
$$

Hence $\alpha_{n}=c, \beta_{n}=2$ and the relation (2.24) becomes

$$
\begin{align*}
& \left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) P_{n}\left(x_{1}, x_{2}, x_{3}\right)-n P_{n}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=-c \sum_{k=0}^{n-1} f_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad-2 \sum_{k=0}^{n-1}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) f_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \tag{2.26}
\end{align*}
$$

which is equation (3.6) of theorem of [13] with the right member written in reverse order.

The Boas and Buck type work obtained in the present paper for three variable polynomials applies to polynomials considered in [11] and [13] but not to those of [9].

3. An Extension

Consider the generating relation

$$
\begin{align*}
& A(t) \phi_{1}\left[x_{1} H(t)+g(t)\right] \phi_{2}\left[x_{2} H(t)+q(t)\right] \phi_{3}\left[x_{3} H(t)+r(t)\right] \\
& =\sum_{n=0}^{\infty} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n} \tag{3.1}
\end{align*}
$$

In which

$$
\begin{equation*}
\phi_{1}(t)=\sum_{n=0}^{\infty} \gamma_{n} t^{n}, \quad \gamma_{0} \neq 0 \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
\phi_{2}(t) & =\sum_{n=0}^{\infty} \delta_{n} t^{n}, \quad \delta_{0} \neq 0 \tag{3.3}\\
\phi_{3}(t) & =\sum_{n=0}^{\infty} \lambda_{n} t^{n}, \quad \lambda_{0} \neq 0 \tag{3.4}\\
A(t) & =\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 \tag{3.5}\\
H(t) & =\sum_{n=0}^{\infty} h_{n} t^{n+\frac{1}{3}}, h_{0} \neq 0 \tag{3.6}\\
g(t) & =\sum_{n=0}^{\infty} g_{n} t^{n+2} \tag{3.7}\\
q(t) & =\sum_{n=0}^{\infty} q_{n} t^{n+2} \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
r(t)=\sum_{n=0}^{\infty} r_{n} t^{n+2} \tag{3.9}
\end{equation*}
$$

Note that $g(t), q(t)$ and $r(t)$ are permitted to be identically zero. It is not necessary to require that $g^{\prime}(0)=0, q^{\prime}(0)=0$ and $r^{\prime}(0)=0$, but these involve no loss of generality.

Theorem 3. If $f_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is defined by (3.1) with (3.2)-(3.9) holding, $f_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is a polynomial in x_{1}, x_{2} and x_{3}, and $f_{n}\left(x_{1}, x_{2}, x_{3}\right)$ is of degree precisely n if and only if $\gamma_{n} \neq 0, \delta_{n} \neq 0$ and $\lambda_{n} \neq 0$.

Three variable analogue of Boas and Buck type generating functions

Proof: The Proof is similar to that of theorem 1. Put

$$
\begin{equation*}
f_{n}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \sum_{j=0}^{\infty} s(k, r, j, n) x_{1}^{k} x_{2}^{r} x_{3}^{j} \tag{3.10}
\end{equation*}
$$

Then
$A(t) \phi_{1}\left[x_{1} H(t)+g(t)\right] \phi_{2}\left[x_{2} H(t)+q(t)\right] \phi_{3}\left[x_{3} H(t)+r(t)\right]$
$=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \sum_{j=0}^{\infty} s(k, r, j, n) x_{1}^{k} x_{2}^{r} x_{3}^{j} t^{n}$,
from which m times partial differentiation with respect to x_{1} followed by putting $x_{1}=0$ and then m times partial differentiation with respect to x_{2} followed by putting $x_{2}=0$ and finally m times partial differentiation with respect to x_{3} followed by putting $x_{3}=0$, yields

$$
\begin{equation*}
A(t)[H(t)]^{3 m} \phi_{1}^{(m)}[g(t)] \phi_{2}^{(m)}[q(t)] \phi_{3}^{(m)}[r(t)]=\sum_{n=0}^{\infty}(m!)^{3} s(m, m, m, n) t^{n} \tag{3.11}
\end{equation*}
$$

Because of (3.2)-(3.9), we obtain

$$
\begin{align*}
& A(t)[H(t)]^{3 m} \phi_{1}^{(m)}[g(t)] \phi_{2}^{(m)}[q(t)] \phi_{3}^{(m)}[r(t)] \\
& =a_{0} h_{0}^{3 m}(m!)^{3} \gamma_{m} \delta_{m} \lambda_{m} t^{m}=\sum_{n=m+1}^{\infty} c(m, m, m, n) t^{n} \tag{3.12}
\end{align*}
$$

In which the nature of $c(m, m, m, n)$ is not important to us.
Comparison of (3.11) and (3.12) leads to

$$
\begin{align*}
& s(m, m, m, n)=0, \quad \text { for } n<m \tag{3.13}\\
& s(m, m, m, m)=a_{0} h_{0}^{3 m} \gamma_{m} \delta_{m} \lambda_{m} \tag{3.14}
\end{align*}
$$

from which the conclusions in theorem 3 follow.

Theorem 4. For polynomial $f_{n}\left(x_{1}, x_{2}, x_{3}\right)$ defined by (3.1), with (3.2)(3.9) holding and $\gamma_{n} \neq 0, \delta_{n} \neq 0, \lambda_{n} \neq 0$, there exist sequences of numbers $\alpha_{k}, \beta_{k}, \nu_{k}, \theta_{k}$ and μ_{k} such that, for $n \geq 1$

$$
\begin{align*}
& \left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) f_{n}\left(x_{1}, x_{2}, x_{3}\right)-n f_{n}\left(x_{1}, x_{2}, x_{3}\right) \\
& = \\
& \quad-\sum_{k=0}^{n-1} \alpha_{k} f_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad-\sum_{k=0}^{n-1} \beta_{k}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) f_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right) \tag{3.15}\\
& \quad-\sum_{k=0}^{n-1}\left(\nu_{k} \frac{\partial}{\partial x_{1}}+\theta_{k} \frac{\partial}{\partial x_{2}}+\mu_{k} \frac{\partial}{\partial x_{3}}\right) f_{n-1-k}\left(x_{1}, x_{2}, x_{3}\right)
\end{align*}
$$

Indeed,

$$
\begin{align*}
\frac{t A^{\prime}(t)}{A(t)} & =\sum_{n=0}^{\infty} \alpha_{n} t^{n+1} \tag{3.16}\\
\frac{t H^{\prime}(t)}{H(t)} & =1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1} \tag{2.17}\\
\frac{t g^{\prime}(t)}{H(t)} & =\sum_{n=0}^{\infty} \nu_{n} t^{n+1} \tag{3.18}\\
\frac{t q^{\prime}(t)}{H(t)} & =\sum_{n=0}^{\infty} \theta_{n} t^{n+1} \tag{3.19}\\
\frac{t r^{\prime}(t)}{H(t)} & =\sum_{n=0}^{\infty} \mu_{n} t^{n+1} \tag{3.20}
\end{align*}
$$

Three variable analogue of Boas and Buck type generating functions

Proof: Let

$$
\begin{equation*}
F=A(t) \phi_{1}\left[x_{1} H(t)+g(t)\right] \phi_{2}\left[x_{2} H(t)+q(t)\right] \phi_{3}\left[x_{3} H(t)+r(t)\right] \tag{3.21}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{\partial F}{\partial x_{1}} & =H(t) A(t) \phi_{1}^{\prime} \phi_{2} \phi_{3} \tag{3.22}\\
\frac{\partial F}{\partial x_{2}} & =H(t) A(t) \phi_{1} \phi_{2}^{\prime} \phi_{3} \tag{3.23}\\
\frac{\partial F}{\partial x_{3}} & =H(t) A(t) \phi_{1} \phi_{2} \phi_{3}^{\prime} \tag{3.24}
\end{align*}
$$

$\frac{\partial F}{\partial t}=A^{\prime}(t) \phi_{1} \phi_{2} \phi_{3}$

$$
\begin{align*}
+A(t)\left[x_{1} H^{\prime}(t)+g^{\prime}(t)\right] \phi_{1}^{\prime} \phi_{2} \phi_{3}+ & A(t)\left[x_{2} H^{\prime}(t)+q^{\prime}(t)\right] \phi_{1} \phi_{2}^{\prime} \phi_{3} \\
& +A(t)\left[x_{3} H^{\prime}(t)+r^{\prime}(t)\right] \phi_{1} \phi_{2} \phi_{3}^{\prime} \tag{3.25}
\end{align*}
$$

Eliminating $\phi_{1}, \phi_{1}^{\prime}, \phi_{2}, \phi_{2}^{\prime}, \phi_{3}$ and ϕ_{3}^{\prime} from (3.21)-(3.25), we obtain

$$
\begin{align*}
{\left[\frac{x_{1} t H^{\prime}(t)}{H(t)}\right.} & \left.+\frac{t g^{\prime}(t)}{H(t)}\right] \frac{\partial F}{\partial x_{1}}+\left[\frac{x_{2} t H^{\prime}(t)}{H(t)}+\frac{t q^{\prime}(t)}{H(t)}\right] \frac{\partial F}{\partial x_{2}} \\
& +\left[\frac{x_{3} t H^{\prime}(t)}{H(t)}+\frac{t r^{\prime}(t)}{H(t)}\right] \frac{\partial F}{\partial x_{3}}-t \frac{\partial F}{\partial t}=-\frac{t A^{\prime}(t)}{A(t)} F \tag{3.26}
\end{align*}
$$

Since

$$
F=\sum_{n=0}^{\infty} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}
$$

It follows from (3.26) with the aid of (3.16)-(3.20) that

$$
\left(1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1}\right)\left[\sum_{n=0}^{\infty}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right]
$$

$$
\begin{aligned}
& +\left(\sum_{n=0}^{\infty} \nu_{n} t^{n+1}\right)\left(\sum_{n=0}^{\infty} \frac{\partial}{\partial x_{1}} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right) \\
& +\left(\sum_{n=0}^{\infty} \theta_{n} t^{n+1}\right)\left(\sum_{n=0}^{\infty} \frac{\partial}{\partial x_{2}} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right) \\
& +\left(\sum_{n=0}^{\infty} \mu_{n} t^{n+1}\right)\left(\sum_{n=0}^{\infty} \frac{\partial}{\partial x_{3}} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right)-\sum_{n=0}^{\infty} n f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n} \\
& =-\left(\sum_{n=0}^{\infty} \alpha_{n} t^{n+1}\right)\left(\sum_{n=0}^{\infty} f_{n}\left(x_{1}, x_{2}, x_{3}\right) t^{n}\right)
\end{aligned}
$$

Therefore

$$
\begin{array}{r}
\sum_{n=0}^{\infty}\left[\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}\right) f_{n}\left(x_{1}, x_{2}, x_{3}\right)-n f_{n}\left(x_{1}, x_{2}, x_{3}\right)\right] t^{n} \\
=-\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left[\left\{\left(x_{1} \beta_{k}+\nu_{k}\right) \frac{\partial}{\partial x_{1}}+\left(x_{2} \beta_{k}+\theta_{k}\right) \frac{\partial}{\partial x_{2}}+\left(x_{3} \beta_{k}+\mu_{k}\right) \frac{\partial}{\partial x_{3}}\right\}\right. \\
\left.f_{n-k}\left(x_{1}, x_{2}, x_{3}\right)+\alpha_{k} f_{n-k}\left(x_{1}, x_{2}, x_{3}\right)\right] t^{n+1}
\end{array}
$$

from which (3.15) follows after a shift from n to n - 1 on the right.

The polynomials $g_{n}\left(x_{1}, x_{2}, x_{3}\right)$ of [9] fit into the above scheme with $\alpha_{n}=0, \beta_{n}=0, \nu_{0}=-1, \nu_{n}=0, \theta_{0}=-1, \theta_{n}=0, \mu_{0}=-1, \mu_{n}=0$ for $n \geq 1$.

4. Generalization to m-Variable

Here we obtain m-variable analogues of theorems $1,2,3$ and 4 mentioned above. Let $P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ be a polynomial in m-variables defined by means of the generating functions of the form

Three variable analogue of Boas and Buck type generating functions

$$
\begin{equation*}
A(t) \prod_{j=1}^{m} \phi_{j}\left(x_{j} H(t)\right)=\sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right) t^{n} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\phi_{j}(t)=\sum_{n=0}^{\infty} \gamma_{j, n} t^{n}, \quad \gamma_{j, 0} \neq 0 ; j=1,2, \cdots, m \tag{4.2}\\
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 \tag{4.3}\\
H(t)=\sum_{n=0}^{\infty} h_{n} t^{n+\frac{1}{m}}, h_{0} \neq 0 \tag{4.4}
\end{gather*}
$$

Then the following theorem holds:

Theorem 5. If $P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ in defined by (4.1), with (4.2), (4.3) and (4.4) holding, $P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ is a polynomial in x_{1}, x_{2}, \cdots, x_{m} and $P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ is of degree precisely n if and only if $\gamma_{j, n} \neq 0 ; j=1,2, \cdots, m$.

Theorem 6. For polynomials $P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ defined by (4.1), with (4.2), (4.3) and (4.4) holding, and $\gamma_{j, n} \neq 0 ; j=1,2, \cdots, m$, there exist sequences of numbers α_{k} and β_{k} such that, for $n \geq 1$.

$$
\begin{array}{r}
{\left[\sum_{j=1}^{m} x_{j} \frac{\partial}{\partial x_{j}}\right] P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)-n P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)} \\
=-\sum_{k=0}^{n-1} \alpha_{k} P_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right)-\sum_{k=0}^{n-1} \beta_{k}\left[\sum_{j=1}^{m} x_{j} \frac{\partial}{\partial x_{j}}\right] \\
P_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \tag{4.5}
\end{array}
$$

Mumtaz Ahmad Khan and Bahman Alidad

Indeed,

$$
\begin{align*}
& \frac{t A^{\prime}(t)}{A(t)}=\sum_{n=0}^{\infty} \alpha_{n} t^{n+1} \tag{4.6}\\
& \frac{t H^{\prime}(t)}{H(t)}=1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1} \tag{4.7}
\end{align*}
$$

Example: Consider the polynomials $f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ of [13] in which

$$
\begin{equation*}
(1-t)^{-c} \prod_{j=1}^{m} \phi_{j}\left[\frac{-4 x_{j} t}{(1-t)^{2}}\right]=\sum_{n=0}^{\infty} f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right) t^{n} \tag{4.8}
\end{equation*}
$$

The $f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ fit into the Boas \& Buck theory with

$$
\begin{aligned}
& A(t)=(1-t)^{-c}, \quad H(t)=\frac{-4 t}{(1-t)^{2}} \\
& \frac{t A^{\prime}(t)}{A(t)}=\sum_{n=0}^{\infty} c t^{n+1}, \quad \frac{t H^{\prime}(t)}{H(t)}=1+\sum_{n=0}^{\infty} 2 t^{n+1}
\end{aligned}
$$

Hence $\alpha_{n}=c, \beta_{n}=2$ and the relation (4.5) becomes

$$
\begin{array}{r}
{\left[x_{j} \sum_{j=1}^{m} \frac{\partial}{\partial x_{j}}\right]} \\
P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)-n P_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \\
=-c \sum_{k=0}^{n-1} f_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right)-2 \sum_{k=0}^{n-1}\left[\sum_{j=1}^{m} x_{j} \frac{\partial}{\partial x_{j}}\right] \tag{4.9}\\
f_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right)
\end{array}
$$

which is equation (3.6) of theorem of [13] with the right member written in reverse order.

The Boas and Buck type work obtained in the present paper for m variable polynomials applies to polynomials considered in [11] and [13] but not to those of [9].

5. An Extension

Consider the generating relation

$$
\begin{equation*}
A(t) \prod_{j=1}^{m} \phi_{j}\left[x_{j} H(t)+g_{j}(t)\right]=\sum_{n=0}^{\infty} f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right) t^{n} \tag{5.1}
\end{equation*}
$$

In which

$$
\begin{align*}
& \phi_{j}(t)=\sum_{n=0}^{\infty} \gamma_{j, n} t^{n}, \quad \gamma_{j, 0} \neq 0 ; j=1,2, \cdots, m \tag{5.2}\\
& A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0 \tag{5.3}\\
& H(t)=\sum_{n=0}^{\infty} h_{n} t^{n+\frac{1}{m}}, \quad h_{0} \neq 0 \tag{5.4}\\
& g_{j}(t)=\sum_{n=0}^{\infty} g_{j, n} t^{n+2} ; j=1,2, \cdots, m \tag{5.5}
\end{align*}
$$

Note that $g_{j}(t) ; j=1,2, \cdots, m$ are permitted to be identically zero. It is not necessary to require that $g_{j}^{\prime}(0)=0 ; j=1,2, \cdots, m$ but these involve no loss of generality.

Theorem 7. If $f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ is defined by (5.1) with (5.2), (5.3), (5.4) and (5.5) holding, $f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ is a polynomial in x_{1}, x_{2}, \cdots, x_{m}, and $f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ is of degree precisely n if and only if $\gamma_{j, n} \neq$ $0 ; j=1,2, \cdots, m$.

Theorem 8. For polynomial $f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ defined by (5.1) with (5.2), (5.3), (5.4) and (5.5) holding and $\gamma_{j, n} \neq 0 ; j=1,2, \cdots, m$, there exist sequences of numbers α_{k}, β_{k} and μ_{k} such that, for $n \geq 1$

$$
\left[\sum_{j=1}^{m} x_{j} \frac{\partial}{\partial x_{j}}\right] f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)-n f_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)
$$

$$
=-\sum_{k=0}^{n-1} \alpha_{k} f_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right)
$$

$$
-\sum_{k=0}^{n-1} \beta_{k}\left[\sum_{j=1}^{m} x_{j} \frac{\partial}{\partial x_{j}}\right] f_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right)
$$

$$
\begin{equation*}
-\sum_{k=0}^{n-1}\left[\sum_{j=1}^{m} \mu_{j} \frac{\partial}{\partial x_{j}}\right] f_{n-1-k}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \tag{5.6}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\frac{t A^{\prime}(t)}{A(t)} & =\sum_{n=0}^{\infty} \alpha_{n} t^{n} \tag{5.7}\\
\frac{t H^{\prime}(t)}{H(t)} & =1+\sum_{n=0}^{\infty} \beta_{n} t^{n+1} \tag{5.8}
\end{align*}
$$

$$
\begin{equation*}
\frac{t g_{j}^{\prime}(t)}{H(t)}=\sum_{n=0}^{\infty} \mu_{j, n} t^{n+1} ; j=1,2, \cdots, m \tag{5.9}
\end{equation*}
$$

The polynomials $g_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ of [9] fit into the above scheme with $\alpha_{n}=0, \beta_{n}=0, \mu_{j, 0}=-1$; and $\mu_{j, n}=0 ; j=1,2, \cdots, m$ for $n \geq 1$.

References

[1] Boas, R.P. and Buck, R.C.: Polynomials defined by generating functions, Amer. Math. Monthly, Vol. 63 (1956), pp. 626-632.
[2] Chatterjea, S.K.: A note on Laguerre polynomials of two variables, Bull. Cal. Math. Soc., Vol. 83 (1991), pp. 263.
[3] Asenmyer, M.C. (Sister M. Celine): Some generalized hypergeometric polynomials, Bull. Amer. Math. Soc., Vol. 53 (1947), pp. 806-812.
[4] Khan, M.A. and Shukla, A.K.: On Laguerre polynomials of several variables, Bull. Cal. Math. Soc., Vol. 89 (1997), pp. 155-164.
[5] Khan, M.A. and Shukla, A.K.: A note on Laguerre polynomials of m variables, Bulletin of the Greek Mathematical Society., Vol. 40 (1998), pp. 113-117.
[6] Khan, M.A. and Abukhammash, G.S.: On Hermite polynomials of two variables suggested by S.F. Ragab's Laguerre polynomials of two variables, Bull. Cal. Math. Soc., Vol. 90 (1998), pp. 61-76.
[7] Khan, M.A. and Ahmad, K.: On a general class of polynomials $L_{n}^{(\alpha, \beta ; \gamma, \delta)}(x, y)$ of two variables suggested by the polynomials $L_{n}^{(\alpha, \beta)}(x, y)$ of Ragab and $L_{n}^{(\alpha, \beta)}(x)$ of Prabhakar and Rekha, Pro Mathematica, Vol. XIX/Nos., 37-38 (2005), pp. 21-38.
[8] Khan, M.A. and Alidad, B.: Polynomial sets generated by functions of the form $G\left(2 x t-t^{2}\right) K\left(2 y t-t^{2}\right)$, Communicated for publication.
[9] Khan, M.A. and Alidad, B.: Polynomial sets generated by functions of the form $G_{1}\left(2 x_{1} t-t^{2}\right) G_{2}\left(2 x_{2} t-t^{2}\right) G_{3}\left(2 x_{3} t-t^{2}\right)$ and its generalization to m-variables, Communicated for publication.
[10] Khan, M.A. and Alidad, B.: Polynomial sets generated by $e^{t} \phi(x t) \psi(y t)$, Communicated for publication.
[11] Khan, M.A. and Alidad, B.: Polynomial sets generated by $e^{t} \phi_{1}\left(x_{1} t\right) \phi_{2}\left(x_{2} t\right) \phi_{3}\left(x_{3} t\right)$ and its generalization to m-variables, Communicated for publication.
[12] Khan, M.A. and Alidad, B.: Polynomial sets generated by functions of the form $(1-t)^{-c} \phi\left[\frac{-4 x t}{(1-t)^{2}}\right] \psi\left[\frac{-4 y t}{(1-t)^{2}}\right]$, Communicated for publication.
[13] Khan, M.A. and Alidad, B.: Polynomial sets generated by functions of the form $(1-t)^{-c} \phi_{1}\left[\frac{-4 x_{1} t}{(1-t)^{2}}\right] \quad \psi_{2}\left[\frac{-4 x_{2} t}{(1-t)^{2}}\right] \quad \phi_{3}\left[\frac{-4 x_{3} t}{(1-t)^{2}}\right]$ and its generalization to m-variables, Communicated for publication.
[14] Khan, M.A. and Alidad, B.: Two variable analogue of Boas and Buck type Generating functions, Communicated for publication.
[15] Ragab, S.F.: On Laguerre polynomials of two variables $L_{n}^{(\alpha, \beta)}(x, y)$, Bull. Cal. Math. Soc., Vol. 83 (1991), pp. 253.
[16] Rainville, E. D.: Special Functions, Macmillan, New York; Reprinted by Chelsea Publ. Co., Bronx., New York, (1971).
[17] Srivastava, H.M. and Manocha, H.L.: A Treatise on Generating Functions, John Wiley \& Sons (Halsted Press), New York; Ellis Horwood, Chichester, 1984.
[18] Srivastava, H.M. and Karlsson, P.W.: Multiple Gaussian hypergeometric series, John Wiley \& Sons (Halsted Press), New York; Ellis Horwood, Chichester, 1985.

Three variable analogue of Boas and Buck type generating functions

Resumen

El presente artículo trata el análogo de tres variables de la función generatriz de Boas and Buck [14] para polinomios de dos variables y lo mismo se puede extender para el análogo de m variables. Los resultados obtenidos son extensiones de un artículo previo [14].

Palabras Clave: Funciones Generatrices del tipo Boas y Buck, conjuntos de polinomios de tres variables, conjuntos de polinomios de m variables.

Mumtaz Ahmad Khan
Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University.
Aligarh - 202002, U.P., India. mumtaz_ahmad_khan_2008@yahoo.com

Bahman Alidad
Department of Mathematics, Faculty of Science, Golestan University, Gorgan, Iran. bahman_alidad@yahoo.com

[^0]: ${ }^{1}$ Department of Applied Mathematics, Aligarh Muslim Univ. India.
 ${ }^{2}$ Faculty of Science, Golestan University, Gorgan, Iran.

