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1. Introduction

Extending the results of Boas and Buck [14] the present authors [14]

considered two-variable analogues of certain theorems given by Boas and

Buck. Let Pn(x, y) be a polynomial in two variables defined by means

of the generating functions of the form

A(t)ϕ(xH(t))ψ(yH(t)) =
∞∑

n=0

Pn(x, y)t
n (1.1)

and

ϕ(t) =
∞∑

n=0

γn tn, γ0 ̸= 0 (1.2)

ψ(t) =
∞∑

n=0

δn tn, δ0 ̸= 0 (1.3)

A(t) =

∞∑
n=0

an tn, a0 ̸= 0 (1.4)

H(t) =

∞∑
n=0

hn tn+
1
2 , h0 ̸= 0 (1.5)

Then the following theorems analogous to those obtained by Boas and

Buck [14] hold for two variable polynomials:

Theorem A. If Pn(x, y) is defined by (1.1) with (1.2), (1.3), (1.4) and

(1.5) holding, Pn(x, y) is a polynomial in x and y and Pn(x, y) is of

degree precisely n if and only if γn ̸= 0 and δn ̸= 0.
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Theorem B. For the polynomials Pn(x, y) defined by (1.1) with (1.2),

(1.3), (1.4) and (1.5) holding, and γn ̸= 0, δn ̸= 0, there exist sequences

of numbers αk and βk such that, for n ≥ 1,

(
x
∂

∂x
+ y

∂

∂y

)
Pn(x, y)−n Pn(x, y)

= −
n−1∑
k=0

αk Pn−1−k(x, y)−
n−1∑
k=0

βk

(
x
∂

∂x
+ y

∂

∂y

)
Pn−1−k(x, y)

(1.6)

Indeed,

tA′(t)

A(t)
=

∞∑
n=0

αnt
n+1 (1.7)

tH ′(t)

H(t)
= 1 +

∞∑
n=0

βnt
n+1 (1.8)

In our earlier paper [14], a function extension was given by considering

the generating relation

A(t)ϕ(xH(t) + g(t))ϕ(yH(t) + r(t)) =
∞∑

n=0

fn(x, y)t
n (1.9)

In which

ϕ(t) =

∞∑
n=0

γn tn, γ0 ̸= 0 (1.10)

Pro Mathematica, 26, 51-52 (2012), 11-33 ISSN 1012-3938 13



Mumtaz Ahmad Khan and Bahman Alidad

ψ(t) =
∞∑

n=0

δn tn, δ0 ̸= 0 (1.11)

A(t) =

∞∑
n=0

an tn, a0 ̸= 0 (1.12)

H(t) =

∞∑
n=0

hn tn+
1
2 , h0 ̸= 0 (1.13)

g(t) =
∞∑

n=0

gn tn+2 (1.14)

and

r(t) =
∞∑

n=0

rn tn+2 (1.15)

The following theorems were proved to hold:

Theorem C. If Pn(x, y) is defined by (1.9) with (1.10), (1.11), (1.12),

(1.13), (1.14) and (1.15) holding, fn(x, y) is a polynomial in x and y and

fn(x, y) is of degree precisely n if and only if γn ̸= 0 and δn ̸= 0.

Theorem D. For the polynomials fn(x, y) defined by (1.9) with (1.10),

(1.11), (1.12), (1.13), (1.14) and (1.15) holding, and γn ̸= 0, δn ̸= 0,

there exist sequences of numbers αk, βk, λk and µk such that, for n ≥ 1
(
x
∂

∂x
+ y

∂

∂y

)
fn(x, y)− n fn(x, y)

= −
n−1∑
k=0

αk fn−1−k(x, y)−
n−1∑
k=0

βk

(
x
∂

∂x
+ y

∂

∂y

)
fn−1−k(x, y)

= −
n−1∑
k=0

(
λk

∂

∂x
+ µk

∂

∂y

)
fn−1−k(x, y) (1.16)
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Indeed,

tA′(t)

A(t)
=

∞∑
n=0

αnt
n+1 (1.17)

tH ′(t)

H(t)
= 1 +

∞∑
n=0

βnt
n+1 (1.18)

tg′(t)

H(t)
=

∞∑
n=0

λnt
n+1 (1.19)

tr′(t)

H(t)
=

∞∑
n=0

µnt
n+1 (1.20)

2. Main Results

Here we obtain three variable analogues of theorems A, B, C and D

mentioned above. Let Pn(x1, x2, x3) be a polynomial in three variables

defined by means of the generating functions of the form

A(t) ϕ1(x1H(t)) ϕ2(x2H(t)) ϕ3(x3H(t)) =
∞∑

n=0

Pn(x1, x2, x3)t
n (2.1)

and

ϕ1(t) =
∞∑

n=0

γn tn, γ0 ̸= 0 (2.2)

ϕ2(t) =
∞∑

n=0

δn tn, δ0 ̸= 0 (2.3)

ϕ3(t) =
∞∑

n=0

λn tn, λ0 ̸= 0 (2.4)
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A(t) =
∞∑

n=0

an tn, a0 ̸= 0 (2.5)

H(t) =

∞∑
n=0

hnt
n+ 1

2 , h0 ̸= 0 (2.6)

Then the following theorem holds:

Theorem 1. If Pn(x1, x2, x3) in defined by (2.1), with (2.2), (2.3), (2.4),

(2.5) and (2.6) holding, Pn(x1, x2, x3) is a polynomial in x1, x2 and x3

and Pn(x1, x2, x3) is of degree precisely n if and only if γn ̸= 0, δn ̸= 0

and λn ̸= 0.

Proof: Let

Pn(x1, x2, x3) =
∞∑
k=0

∞∑
r=0

∞∑
s=0

S(k, r, s, n) xk
1 xr

2 xs
3

(2.7)

Then

A(t) ϕ1(x1H(t)) ϕ2(x2H(t)) ϕ3(x3H(t))

=

∞∑
n=0

∞∑
k=0

∞∑
r=0

∞∑
s=0

S(k, r, s, n) xk
1 xr

2 xs
3 tn

so that m partial differentiations with respect to x1, followed by putting

x1 = 0, yields

A(t) [H(t)]m ϕ
(m)
1 (0) ϕ2(x2H(t)) ϕ3(x3H(t))

=
∞∑

n=0

∞∑
r=0

∞∑
s=0

(m!) S(m, r, s, n) xr
2 xs

3 tn (2.8)
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Similarly, m partial differentiation of (2.8) with respect to x2, followed

by putting x2 = 0, gives

A(t) [H(t)]2m ϕ
(m)
1 (0) ϕ

(m)
2 (0) ϕ3(x3H(t))

=

∞∑
n=0

∞∑
s=0

(m!)2 S(m,m, s, n) xs
3 tn (2.9)

Again, m partial differentiation of (2.9) with respect to x3, followed by

putting x3 = 0, gives

A(t) [H(t)]3m ϕ
(m)
1 (0) ϕ

(m)
2 (0) ϕ

(m)
3 (0) =

∞∑
n=0

(m!)3 S(m,m,m, n) tn

(2.10)

Because of (2.2)-(2.6), one can write (2.10) as

A(t) [H(t)]3m ϕ
(m)
1 (0) ϕ

(m)
2 (0) ϕ

(m)
3 (0)

= a0 h3m
0 tm γm δm λm (m!)3 +

∞∑
n=m+1

C(m,m,m, n) tn, (2.11)

In which the precise nature of C(m,m,m, n) is not important to us.

Comparison of (2.10) and (2.11) leads to

s(m,m,m, n) = 0 for n < m (2.12)

s(m,m,m, n) = a0 h3m
0 γm δmλm (2.13)

The condition (2.12) shows that Pn(x1, x2, x3) is a polynomial of de-

gree ≤ n. The condition (2.13) with 3m replace by n, shows that

Pn(x1, x2, x3) is of degree precisely n if and only if γn ̸= 0, δn ̸= 0,

λn ̸= 0, since a0h0 ̸= 0 by (2.5) and (2.6).
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Theorem 2. For polynomials Pn(x1, x2, x3) defined by (2.1), with (2.2),

(2.3), (2.4), (2.5) and (2.6) holding, and γn ̸= 0, δn ̸= 0, λn ̸= 0, there

exist sequences of numbers αk and βk such that, for n ≥ 1

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn(x1, x2, x3)−nPn(x1, x2, x3)

= −
n−1∑
k=0

αkPn−1−k(x1, x2, x3)

−
n−1∑
k=0

βk

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn−1−k(x1, x2, x3) (2.14)

Indeed,

tA′(t)

A(t)
=

∞∑
n=0

αnt
n+1 (2.15)

tH ′(t)

H(t)
= 1 +

∞∑
n=0

βnt
n+1 (2.16)

Proof: Let

F = A(t) ϕ1(x1H(t)) ϕ2(x2H(t)) ϕ3(x3H(t)) (2.17)

Then
∂F

∂x1
= H(t)A(t) ϕ′

1 ϕ2 ϕ3 (2.18)

∂F

∂x2
= H(t)A(t) ϕ1 ϕ′

2 ϕ3 (2.19)

∂F

∂x3
= H(t)A(t) ϕ1 ϕ2 ϕ′

3 (2.20)
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∂F

∂t
= A′(t) ϕ1 ϕ2 ϕ3

+x1H
′(t)A(t) ϕ′

1 ϕ2 ϕ3 + x2H
′(t)A(t) ϕ1 ϕ′

2 ϕ3 + x3H
′(t)A(t) ϕ1 ϕ2 ϕ′

3

(2.21)

Eliminating ϕ1, ϕ′
1, ϕ2, ϕ′

2, ϕ3 and ϕ′
3 with the aid of (2.17), (2.18),

(2.19), (2.20) and (2.21), the result may be written in the form

tH ′(t)

H(t)

[
x1

∂F

∂x1
+ x2

∂F

∂x2
+ x3

∂F

∂x3

]
− t

∂F

∂t
= − tA′(t)

A(t)
F (2.22)

If we define αn and βn by (2.15) and (2.16) and recall that

F =
∞∑

n=0

Pn(x1, x2, x3)t
n

equation (2.22) leads us to

[
1 +

∞∑
n=0

βnt
n+1

][ ∞∑
n=0

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn(x1, x2, x3)t

n

]

−
∞∑

n=0

nPn(x1, x2, x3)t
n = −

[ ∞∑
n=0

αnt
n+1

][ ∞∑
n=0

Pn(x1, x2, x3)t
n

]

or

∞∑
n=0

[(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn(x1, x2, x3)− nPn(x1, x2, x3)

]
tn
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= −
∞∑

n=0

n∑
k=0

αkPn−k(x1, x2, x3)t
n+1

−
∞∑

n=0

n∑
k=0

βk

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn−k(x1, x2, x3)t

n+1

= −
∞∑

n=1

n−1∑
k=0

αkPn−1−k(x1, x2, x3)t
n

−
∞∑

n=1

n−1∑
k=0

βk

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn−1−k(x1, x2, x3)t

n (2.23)

from which the result given below follows at once:
(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn(x1, x2, x3)−nPn(x1, x2, x3)

= −
n−1∑
k=0

αkPn−1−k(x1, x2, x3)

−
n−1∑
k=0

βk

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn−1−k(x1, x2, x3) (2.24)

It is important that the αk and βk in (2.24) are independent of n.

Example: Consider the polynomials fn(x1, x2, x3) of [13] in which

(1−t)−c ϕ1

[
−4x1t

(1− t)2

]
ϕ2

[
−4x2t

(1− t)2

]
ϕ3

[
−4x3t

(1− t)2

]
=

∞∑
n=0

fn(x1, x2, x3)t
n

(2.25)

The fn(x1, x2, x3) fit into the Boas & Buck theory with

A(t) = (1− t)−c, H(t) =
−4t

(1− t)2
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tA′(t)

A(t)
=

∞∑
n=0

ctn+1,
tH ′(t)

H(t)
= 1 +

∞∑
n=0

2tn+1

Hence αn = c, βn = 2 and the relation (2.24) becomes
(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
Pn(x1, x2, x3)−nPn(x1, x2, x3)

= −c

n−1∑
k=0

fn−1−k(x1, x2, x3)

− 2
n−1∑
k=0

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
fn−1−k(x1, x2, x3) (2.26)

which is equation (3.6) of theorem of [13] with the right member written

in reverse order.

The Boas and Buck type work obtained in the present paper for

three variable polynomials applies to polynomials considered in [11] and

[13] but not to those of [9].

3. An Extension

Consider the generating relation

A(t)ϕ1[x1H(t) + g(t)] ϕ2[x2H(t) + q(t)]ϕ3[x3H(t) + r(t)]

=
∞∑

n=0

fn(x1, x2, x3)t
n (3.1)

In which

ϕ1(t) =
∞∑

n=0

γn tn, γ0 ̸= 0 (3.2)
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ϕ2(t) =
∞∑

n=0

δn tn, δ0 ̸= 0 (3.3)

ϕ3(t) =

∞∑
n=0

λn tn, λ0 ̸= 0 (3.4)

A(t) =
∞∑

n=0

an tn, a0 ̸= 0 (3.5)

H(t) =

∞∑
n=0

hn tn+
1
3 , h0 ̸= 0 (3.6)

g(t) =
∞∑

n=0

gn tn+2 (3.7)

q(t) =
∞∑

n=0

qn tn+2 (3.8)

and

r(t) =
∞∑

n=0

rn tn+2 (3.9)

Note that g(t), q(t) and r(t) are permitted to be identically zero.

It is not necessary to require that g′(0) = 0, q′(0) = 0 and r′(0) = 0, but

these involve no loss of generality.

Theorem 3. If fn(x1, x2, x3) is defined by (3.1) with (3.2)-(3.9) holding,

fn(x1, x2, x3) is a polynomial in x1, x2 and x3, and fn(x1, x2, x3) is of

degree precisely n if and only if γn ̸= 0, δn ̸= 0 and λn ̸= 0.
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Proof: The Proof is similar to that of theorem 1. Put

fn(x1, x2, x3) =
∞∑
k=0

∞∑
r=0

∞∑
j=0

s(k, r, j, n)xk
1 xr

2 xj
3 (3.10)

Then

A(t)ϕ1[x1H(t)+g(t)] ϕ2[x2H(t)+q(t)]ϕ3[x3H(t)+r(t)]

=
∞∑

n=0

∞∑
k=0

∞∑
r=0

∞∑
j=0

s(k, r, j, n)xk
1 xr

2 xj
3t

n,

from which m times partial differentiation with respect to x1 followed by

putting x1 = 0 and then m times partial differentiation with respect to

x2 followed by putting x2 = 0 and finally m times partial differentiation

with respect to x3 followed by putting x3 = 0, yields

A(t)[H(t)]3m ϕ
(m)
1 [g(t)] ϕ

(m)
2 [q(t)] ϕ

(m)
3 [r(t)] =

∞∑
n=0

(m!)3s(m,m,m, n)tn

(3.11)

Because of (3.2)-(3.9), we obtain

A(t)[H(t)]3m ϕ
(m)
1 [g(t)] ϕ

(m)
2 [q(t)] ϕ

(m)
3 [r(t)]

= a0h
3m
0 (m!)3γmδmλmtm =

∞∑
n=m+1

c(m,m,m, n)tn (3.12)

In which the nature of c(m,m,m, n) is not important to us.

Comparison of (3.11) and (3.12) leads to

s(m,m,m, n) = 0, for n < m (3.13)

s(m,m,m,m) = a0h
3m
0 γmδmλm (3.14)
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from which the conclusions in theorem 3 follow.

Theorem 4. For polynomial fn(x1, x2, x3) defined by (3.1), with (3.2)-

(3.9) holding and γn ̸= 0, δn ̸= 0, λn ̸= 0, there exist sequences of

numbers αk, βk, νk, θk and µk such that, for n ≥ 1

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
fn(x1, x2, x3)−nfn(x1, x2, x3)

= −
n−1∑
k=0

αkfn−1−k(x1, x2, x3)

−
n−1∑
k=0

βk

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
fn−1−k(x1, x2, x3)

−
n−1∑
k=0

(
νk

∂

∂x1
+ θk

∂

∂x2
+ µk

∂

∂x3

)
fn−1−k(x1, x2, x3) (3.15)

Indeed,

tA′(t)

A(t)
=

∞∑
n=0

αnt
n+1 (3.16)

tH ′(t)

H(t)
= 1 +

∞∑
n=0

βnt
n+1 (2.17)

tg′(t)

H(t)
=

∞∑
n=0

νnt
n+1 (3.18)

tq′(t)

H(t)
=

∞∑
n=0

θnt
n+1 (3.19)

tr′(t)

H(t)
=

∞∑
n=0

µnt
n+1 (3.20)
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Proof: Let

F = A(t)ϕ1[x1H(t) + g(t)] ϕ2[x2H(t) + q(t)]ϕ3[x3H(t) + r(t)] (3.21)

Then
∂F

∂x1
= H(t)A(t) ϕ′

1 ϕ2 ϕ3 (3.22)

∂F

∂x2
= H(t)A(t) ϕ1 ϕ′

2 ϕ3 (3.23)

∂F

∂x3
= H(t)A(t) ϕ1 ϕ2 ϕ′

3 (3.24)

∂F

∂t
= A′(t) ϕ1 ϕ2 ϕ3

+A(t)[x1H
′(t) + g′(t)] ϕ′

1 ϕ2 ϕ3 +A(t)[x2H
′(t) + q′(t)] ϕ1 ϕ′

2 ϕ3

+A(t)[x3H
′(t)+r′(t)] ϕ1 ϕ2 ϕ

′
3

(3.25)

Eliminating ϕ1, ϕ
′
1, ϕ2, ϕ

′
2, ϕ3 and ϕ′

3 from (3.21)-(3.25), we obtain

[
x1tH

′(t)

H(t)
+

tg′(t)

H(t)

]
∂F

∂x1
+

[
x2tH

′(t)

H(t)
+

tq′(t)

H(t)

]
∂F

∂x2

+

[
x3tH

′(t)

H(t)
+

tr′(t)

H(t)

]
∂F

∂x3
− t

∂F

∂t
= − tA′(t)

A(t)
F (3.26)

Since

F =
∞∑

n=0

fn(x1, x2, x3)t
n

It follows from (3.26) with the aid of (3.16)-(3.20) that

(
1 +

∞∑
n=0

βnt
n+1

)[ ∞∑
n=0

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
fn(x1, x2, x3)t

n

]
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+

( ∞∑
n=0

νnt
n+1

)( ∞∑
n=0

∂

∂x1
fn(x1, x2, x3)t

n

)

+

( ∞∑
n=0

θnt
n+1

)( ∞∑
n=0

∂

∂x2
fn(x1, x2, x3)t

n

)

+

( ∞∑
n=0

µnt
n+1

)( ∞∑
n=0

∂

∂x3
fn(x1, x2, x3)t

n

)
−

∞∑
n=0

nfn(x1, x2, x3)t
n

= −

( ∞∑
n=0

αnt
n+1

)( ∞∑
n=0

fn(x1, x2, x3)t
n

)

Therefore

∞∑
n=0

[(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
fn(x1, x2, x3)− nfn(x1, x2, x3)

]
tn

= −
∞∑

n=0

n∑
k=0

[{
(x1βk + νk)

∂

∂x1
+ (x2βk + θk)

∂

∂x2
+ (x3βk + µk)

∂

∂x3

}

fn−k(x1, x2, x3) +αkfn−k(x1, x2, x3)] t
n+1

from which (3.15) follows after a shift from n to n-1 on the right.

The polynomials gn(x1, x2, x3) of [9] fit into the above scheme with

αn=0, βn=0, ν0=-1, νn=0, θ0=-1, θn=0, µ0=-1, µn=0 for n ≥ 1.

4. Generalization to m-Variable

Here we obtain m-variable analogues of theorems 1, 2, 3 and 4 men-

tioned above. Let Pn(x1, x2, · · · , xm) be a polynomial in m-variables

defined by means of the generating functions of the form
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A(t)
m∏
j=1

ϕj(xjH(t)) =
∞∑

n=0

Pn(x1, x2, · · · , xm)tn (4.1)

and

ϕj(t) =
∞∑

n=0

γj,n tn, γj,0 ̸= 0 ; j = 1, 2, · · · ,m (4.2)

A(t) =
∞∑

n=0

an tn, a0 ̸= 0 (4.3)

H(t) =
∞∑

n=0

hn tn+
1
m , h0 ̸= 0 (4.4)

Then the following theorem holds:

Theorem 5. If Pn(x1, x2, · · · , xm) in defined by (4.1), with (4.2),

(4.3) and (4.4) holding, Pn(x1, x2, · · · , xm) is a polynomial in x1, x2,

· · · , xm and Pn(x1, x2, · · · , xm) is of degree precisely n if and only if

γj,n ̸= 0 ; j = 1, 2, · · · ,m.

Theorem 6. For polynomials Pn(x1, x2, · · · , xm) defined by (4.1), with

(4.2), (4.3) and (4.4) holding, and γj,n ̸= 0 ; j = 1, 2, · · · ,m, there exist

sequences of numbers αk and βk such that, for n ≥ 1.




m∑
j=1

xj
∂

∂xj


Pn(x1, x2, · · · , xm)−nPn(x1, x2, · · · , xm)

= −
n−1∑
k=0

αkPn−1−k(x1, x2, · · · , xm)−
n−1∑
k=0

βk




m∑
j=1

xj
∂

∂xj




Pn−1−k(x1, x2, · · · , xm) (4.5)
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Indeed,

tA′(t)

A(t)
=

∞∑
n=0

αnt
n+1 (4.6)

tH ′(t)

H(t)
= 1 +

∞∑
n=0

βnt
n+1 (4.7)

Example: Consider the polynomials fn(x1, x2, · · · , xm) of [13] in which

(1− t)−c
m∏
j=1

ϕj

[
−4xjt

(1− t)2

]
=

∞∑
n=0

fn(x1, x2, · · · , xm)tn (4.8)

The fn(x1, x2, · · · , xm) fit into the Boas & Buck theory with

A(t) = (1− t)−c, H(t) =
−4t

(1− t)2

tA′(t)

A(t)
=

∞∑
n=0

ctn+1,
tH ′(t)

H(t)
= 1 +

∞∑
n=0

2tn+1

Hence αn = c, βn = 2 and the relation (4.5) becomes


xj

m∑
j=1

∂

∂xj


Pn(x1, x2, · · · , xm)−nPn(x1, x2, · · · , xm)

= −c

n−1∑
k=0

fn−1−k(x1, x2, · · · , xm)− 2

n−1∑
k=0




m∑
j=1

xj
∂

∂xj




fn−1−k(x1, x2, · · · , xm) (4.9)
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which is equation (3.6) of theorem of [13] with the right member written

in reverse order.

The Boas and Buck type work obtained in the present paper for m-

variable polynomials applies to polynomials considered in [11] and [13]

but not to those of [9].

5. An Extension

Consider the generating relation

A(t)
m∏
j=1

ϕj [xjH(t) + gj(t)] =
∞∑

n=0

fn(x1, x2, · · · , xm)tn (5.1)

In which

ϕj(t) =

∞∑
n=0

γj,n tn, γj,0 ̸= 0 ; j = 1, 2, · · · ,m (5.2)

A(t) =

∞∑
n=0

an tn, a0 ̸= 0 (5.3)

H(t) =

∞∑
n=0

hn tn+
1
m , h0 ̸= 0 (5.4)

gj(t) =

∞∑
n=0

gj,n tn+2 ; j = 1, 2, · · · ,m (5.5)

Note that gj(t) ; j = 1, 2, · · · ,m are permitted to be identically zero.

It is not necessary to require that g′j(0) = 0 ; j = 1, 2, · · · ,m but these

involve no loss of generality.
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Theorem 7. If fn(x1, x2, · · · , xm) is defined by (5.1) with (5.2), (5.3),

(5.4) and (5.5) holding, fn(x1, x2, · · · , xm) is a polynomial in x1, x2, · · · ,
xm, and fn(x1, x2, · · · , xm) is of degree precisely n if and only if γj,n ̸=
0 ; j = 1, 2, · · · ,m.

Theorem 8. For polynomial fn(x1, x2, · · · , xm) defined by (5.1) with

(5.2), (5.3), (5.4) and (5.5) holding and γj,n ̸= 0 ; j = 1, 2, · · · ,m, there

exist sequences of numbers αk, βk and µk such that, for n ≥ 1




m∑
j=1

xj
∂

∂xj


 fn(x1, x2, · · · , xm)−nfn(x1, x2, · · · , xm)

= −
n−1∑
k=0

αkfn−1−k(x1, x2, · · · , xm)

−
n−1∑
k=0

βk




m∑
j=1

xj
∂

∂xj


 fn−1−k(x1, x2, · · · , xm)

−
n−1∑
k=0




m∑
j=1

µj
∂

∂xj


 fn−1−k(x1, x2, · · · , xm) (5.6)

Indeed,

tA′(t)

A(t)
=

∞∑
n=0

αnt
n (5.7)

tH ′(t)

H(t)
= 1 +

∞∑
n=0

βnt
n+1 (5.8)
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tg′j(t)

H(t)
=

∞∑
n=0

µj,nt
n+1 ; j = 1, 2, · · · ,m (5.9)

The polynomials gn(x1, x2, · · · , xm) of [9] fit into the above scheme

with αn=0, βn=0, µj,0 = −1 ; and µj,n = 0 ; j = 1, 2, · · · ,m for n ≥ 1.
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Resumen

El presente art́ıculo trata el análogo de tres variables de la función gene-

ratriz de Boas and Buck [14] para polinomios de dos variables y lo

mismo se puede extender para el análogo de m variables. Los resultados

obtenidos son extensiones de un art́ıculo previo [14].

Palabras Clave: Funciones Generatrices del tipo Boas y Buck, conjuntos de

polinomios de tres variables, conjuntos de polinomios de m variables.

Mumtaz Ahmad Khan

Department of Applied Mathematics,

Faculty of Engineering and Technology,

Aligarh Muslim University.

Aligarh - 202002, U.P., India.

mumtaz_ahmad_khan_2008@yahoo.com

Bahman Alidad

Department of Mathematics,

Faculty of Science,

Golestan University, Gorgan, Iran.

bahman_alidad@yahoo.com

Pro Mathematica, 26, 51-52 (2012), 11-33 ISSN 1012-3938 33


