
INVARIANT MEASURES AND A WEAK

SHADOWING CONDITION

Alfredo Poirier 1

May, 2012

Abstract

We review the concept of invariant measure and study

conditions under which linear combinations of averages along

periodic orbits are dense in the space of invariant measures.
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1. Context

Let X be a compact Hausdorff space. Consider a continuous dynam-

ical system T : X → X. Let M(X) be the space of real valued measures,

that is, of space of all continuous linear functionals from C(X) to R, the
dual of C(X).

If ν is a measure, to facilitate manipulation, we write

ν(f) =

∫
f dν =

∫
f(x) dν(x),

where f is continuous (or more generally Borel measurable).

We say that ν is invariant if ν(f) = ν(f ◦ T ), or alternatively if we

have ∫
f(x) dν(x) =

∫
f(T (x)) dν(x),

for all continuous f ∈ C(X).

Clearly, the set of invariant measures MT (X) is a linear subspace

of M(X).

Example 1.1. If x0 is a fix-point of T (i.e, a point that satisfies T (x0) =

x0), then δx0
, the delta mass located at x0, defined by δx0

(f) = f(x0), is

an invariant probability measure.

More generally, given a periodic orbit x0 �→ x1 �→ . . . �→ xn−1 �→
xn = x0, the average along the orbit, given by 1

n {δx0 + · · · + δxn−1}, is
also an invariant probability measure.

Of course, M(X) is by design the dual space of C(X), so it has a

natural metric and, also, a ∗-weak topology.

Proposition 1.2. The space MT (X) of invariant measures under T is

∗-weak closed (and therefore closed).
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Proof. Let νn be a sequence of invariant measures that converge ∗-weakly
to ν. Since νn annihilates all f ◦T − f , with f ∈ C(X), the ∗-weak limit

ν does the same. By definition ν is also invariant.

Averages along successive points in the same orbit are important.

To study them, we introduce some notation. Given f continuous, we set

An(f) =
f + f ◦ T + · · ·+ f ◦ T ◦n−1

n
.

In particular, with this notation we have

An(f)(x0) =
f(x0) + f(x1) + · · ·+ f(xn−1)

n
.

Lemma 1.3. For f ∈ C(X) we have ||An(f)|| ≤ ||f ||.

Proof. In fact, if |f(x)| ≤ M for all x ∈ X, then

|An(f)(x0)| =
|f(x0)|+ |f(x1)|+ · · ·+ |f(xn−1)|

n
≤ M.

The result follows.

For other properties of these Birkhoff averages we refer the reader

to any standard text in ergodic theory like [1], [3], [7].

Excluding trivial cases, the space of invariant measures is big. In

fact, a way to produce a huge family of invariant probability measures

is shown next.

Fix a non-principal ultrafilter U in N (i.e, one not containing finite

elements). Recall that this is simply a scheme to make subsequences

converge in the sense that if αn is a sequence in a separable Hausdorff

compact space, then there is a unique choice of a value limU αn among

the accumulation points of the sequence {αn} (cf. [4, Theorem 4.3.5]).

Recall that by definition limU αn = α holds if and only if for every

neighborhood U of α we have {n : αn ∈ U} ∈ U .
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The above explains why the two reasonable definitions of the average

in the orbit of x0 along an ultrafilter U agree. For f ∈ C(X), let

σf
U ,x0

= lim
U

An(f)(x0) = lim
U

f(x0) + · · ·+ f(xn−1)

n
,

Here x0 → x1 → · · · → xn → . . . denotes the forward orbit of x0

under iteration. Notice that this limit always exists and satisfies σf
U ,x0

=

σf
U ,T (x0)

. Because of this last property, it is not only invariant, but does

not depend in the element chosen along the full orbit of x0.

On the other side, the probability measures Dn(x0) =
1
n {δx0 + · · ·+

δn−1} belong to the unit ball of the separable metric space M(X) and

therefore this sequence converges along the ultrafilter U to a probability

measure σU ,x0 by the Banach Alaoglu theorem.

Lemma 1.4. For any continuous f we have σU ,x0
(f) = σf

U ,x0
.

Proof. Key here is to notice the equality Dn(x0)(f) = An(f)(x0). After

this, the claim follows once we remember that σf
U ,x0

= α is satisfied if and

only if for all ϵ > 0 the set {n : |An(f)(x0)−α| < ϵ} belongs to U , while
limU Dn(x0) = σU ,x0 is equivalent to the fact that {n : |An(f)(x0)−α| <
ϵ} ∈ U holds for all f ∈ C(X) and ϵ > 0.

The measure defined by any of the above quantities is the average

in the orbit of x0 along the ultrafilter U . What is import here is that

we are working in a bounded set of the dual of C(X) with the ∗-weak
topology, which is therefore metrizable (cf. [7, Theorem 6.4]). Since in

compact metric spaces accumulation points are limit points, we have the

following result.

Lemma 1.5. There is a subsequence nk so that σU ,x0
= limk→∞ Dnk

(x0)

(as a ∗-weak limit). In fact, for any such subsequence, given f ∈ C(X)

we have

σU ,x0(f) = lim
k→∞

Ank
(x0)(f).
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Proof. The first property is due to the fact that σU ,x0
is an accumulation

point (and hence a limit point) of Dn(x0). The second is a consequence

of Lemma 1.4 and the equality Dn(x0)(f) = An(f)(x0).

However, there is no reason to expect that the limit of the averages

An(x0) exists. Anyway, it is well known that measures for which such

averages are achieved along typical orbits play a crucial role in the study

of dynamical systems. The functions for which those limits exist and

vanish are easily characterized.

Proposition 1.6. Fix x0 ∈ X. A continuous f ∈ C(X) satisfies

An(f)(x0) → 0 if and only if σU ,x0(f) = 0 for all non-principal ul-

trafilters.

Proof. This is tautological: it is the same as stating that a sequence αn

converges to 0 if and only if it converges to 0 along any non-principal

ultrafilter.

Corollary 1.7. A continuous f ∈ C(X) satisfies An(f)(x0) → 0 for all

x0 ∈ K if and only if σU ,x0(f) = 0 for all non-principal ultrafilters and

x0 ∈ X.

2. Quasicocycles

A cocycle is a continuous function of the form g − g ◦ T . As a mea-

sure that annihilates all cocycles is certainly an invariant measure, we

can take the reverse approach and define a quasicocycle f as continuous

function that obeys ν(f) = 0 for all ν ∈ MT (K). In particular, quasico-

cycles are invariant under iteration in the sense that f is a quasicocycle

if and only f ◦ T is a quasicocycle.

Since an invariant measure is by definition a measure that annihi-

lates all cocycles, as a consequence of the Hahn Banach theorem we know

Pro Mathematica, 26, 51-52 (2012), 35-47, ISSN 1012-3938 39



Alfredo Poirier

that a quasicocycle can be uniformly approximated by cocycles. There

are several other characterizations.

Theorem 2.1. For a continuous function f ∈ C(X) the following are

equivalent:

a) f is a quasicocycle;

b) for all ϵ > 0 there is a continuous g such that ||f − g + g ◦ T || < ϵ;

c) An(f) converges uniformly to 0;

d) for any x0 ∈ K we have An(f)(x0) → 0.

Proof. We go around the circle of claimed properties.

If f is a quasicocycle, then f belongs to the uniform closure of the

linear span of functions of type g − g ◦ T .

Fix ϵ > 0 and a continuous g such that ||f−g+g◦T || < ϵ/2. Notice

the telescopic relation

|An(g − g ◦ T )(x0)| =
����
g(x0)− g(xn)

n

���� ≤
2||g||
n

→ 0.

Therefore, if N is such that 2||g|| ≤ Nϵ/2, then for n ≥ N we get

|An(f)| = |An(f − g + g ◦ T ) +An(g − g ◦ T )| ≤
|An(f − g + g ◦ T )|+ |An(g − g ◦ T )| ≤ ϵ/2 + ϵ/2,

where we have used Lemma 1.3. Uniform convergence follows at once.

Uniform convergence implies pointwise convergence.

Finally, suppose that An(f)(x0) converges to 0 for all x0. Let ν be

an invariant measure. If ϵ > 0, Egoroff’s theorem asserts that there is

a measurable set E with |ν|(E) < ϵ, outside which the convergence is

uniform: there is N so that n ≥ N implies |An(f)(x)| ≤ ϵ for x ̸∈ E.

Also, by invariance we get
∫

f(x) dν(x) =
1

n

∫
f(x)+· · ·+f(T ◦n−1(x)) dν(x) =

∫
An(f)(x) dν(x),
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and splitting the integration domain into X − E and E we arrive to
∫

f(x) dν(x) =

∫

X−E

An(f)(x) dν(x) +

∫

E

An(f)(x) dν(x).

Thus, we get
����
∫

f(x) dν(x)

���� ≤ ||ν||ϵ+ n+ 1

n+ 1
||f || |ν|(E) ≤ ||ν||ϵ+ ||f ||ϵ.

Letting ϵ go to 0 we obtain

∫
f dν = 0, as desired.

Theorem 2.2. Linear combinations of measures of the form σU ,x0 are

∗-weak dense in the space of invariant measures.

Proof. This is a consequence of Corollary 1.7, Theorem 2.1 and the in-

clusions
∩

ν invariant

Ker(ν)⊂
∩

ν linear combination of U−type

Ker(ν)⊂
∩

ν of U−type

Ker(ν).

3. A Shadowing Criterion for Density of

Periodic Averages

Recall that the ambient space X is assumed to be a compact metric

space. The idea now is to approximate a general average by a periodic

one.

For this, fix n < m, two positive integers. In the following estimate

think of x0 as paying the price of xn shadowing y0.

Lemma 3.1. Take x0 and y0 in X. Write M = max0≤i≤m−n−1 |f(xn+i)−
f(yi))|. Then

|Am(x0)(f)−Am−n(y0)(f)| ≤
2n

m
||f ||+M.
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Proof. This is a matter of simple bookkeeping. If we write

Am(x0)(f) =
1

m

n−1∑
i=0

f(xi)−
n

m(m− n)

m−1∑
i=n

f(xi) +
1

m− n

m−1∑
i=n

f(xi),

we immediately obtain

|Am(x0)(f)−Am−n(y0)(f)| ≤

n

m
||f ||+ n

m
||f ||+ 1

m− n

m−n−1∑
i=0

|f(xn+i)− f(yi))|

and the result follows.

We next introduce an important technical concept.

Start with x0 ∈ X and a convergent subsequence xnα of its forward

orbit. We say that xnα is weakly shadowable when for all ϵ > 0 there are

k < l and a periodic point p of period nl − nk such that

d(T ◦i(xnk
), T ◦i(p)) < ϵ,

for i = 0, . . . , nl − nk − 1. We insist in two points. First, the shadowing

does not necessarily starts at xn0 = x0 but at any xnk
. Second, the

shadowing not necessarily goes on for a single approximation to the

cluster point of the sequence but for as many as necessary (l − k in the

notation).

We say that T enjoys the weak shadowing property for x0 if every

convergent subsequence of xn is weakly shadowable. More generally, T

enjoys the weak shadowing property if it enjoys this property for all x0.

Proposition 3.2. Suppose that T enjoys the weak shadowing property

for x0 ∈ X. Then any measure σU ,x0 can be ∗-weakly approximated by

averages along periodic orbits.

Proof. Start with a representing subsequence n0 = 0 < n1 < n2 < . . . of

the convergence of Dn(x0) to σU ,x0 (compare Lemma 1.5). As X is com-

pact, we can suppose xnα converges. By taking a further subsequence,
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we can assume that 10αnα < nα+1 holds. Note that this property will

still be satisfied even if we keep taking refinements.

Let k0 < l0 be such that there is a periodic point p0 of period

nl0 − nk0 such that

d(T ◦i(xnk0
), T ◦i(p0)) < 1

for i = 0, . . . , nl0 − nk0 − 1.

We continue inductively as follows. Momentarily erase n1, n2, . . . nlm

from the list and use the shadowing property to get nlm+1 > nkm+1 (no-

tice that nlm+1
is bigger than nlm , hence also bigger thanm by induction)

and a periodic point pm+1 of period nlm+1 − nkm+1 such that

d(T ◦i(xnkm+1
), T ◦i(pm+1)) < 1/2m+1

for i = 0, . . . , nlm+1 − nkm+1 − 1.

For them we get

|Anlm
(x0)(f)−Anlm−nkm

(pm)(f)| ≤ 2

10m
||f ||+Mm,

where Mm = max0≤i≤nlm−nkm−1 |f(xnkm+i) − f(T ◦i(pm)))|. Here we

are applying Lemma 3.1 with the trivial estimate nkm
/nlm ≤ 1/10m.

Finally let us prove that the periodic averages Anlm−nkm
(pm) con-

verge ∗-weakly to σU ,x0 . By Lemma 1.5, for f ∈ C(X) we have

σU,x0(f) = lim
m→∞

Ankm
(x0)(f).

Because f is uniformly continuous in X, given ϵ > 0 there is m so that

|x− y| < 1
2m implies |f(x)− f(y)| < ϵ. In particular we get Mm ≤ ϵ as

d(T ◦i(xnkm
), T ◦i(pm)) < 1/2m for i = 0, . . . , nlm − nkm − 1. Therefore

we get Mm → 0 and with this

σU ,x0(f) = limAnkm
(x0)(f) = limAnlm−nkm

(pm)(f),

as claimed.
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Theorem 3.3. If T enjoys the weak showing property, then linear com-

binations of averages along periodic orbits are ∗-weak dense in MT (X).

Proof. In view of Theorem 2.2, this a corollary to last proposition.

It is important to notice that the weak shadowing property is hered-

itary in the sense that it passes through to factor systems.

Proposition 3.4. Let X and Y be compact metric spaces. Suppose

S : Y → Y is a continuous semiconjugacy of T : X → X in the sense

that there is a continuous surjection φ : X → Y such that the diagram

X
T ��

φ

��

X

φ

��

Y
S �� Y

commutes. If T enjoys the weak shadowing property, then so does S.

Proof. Fix y0 ∈ Y and a convergent subsequence ynk
. As φ is surjective,

we can choose x0 such that φ(x0) = y0. Since X is compact, by taking

a refinement we can suppose that xnk
is convergent. But φ : X → Y is

uniformly continuous, so given ϵ > 0, there is η > 0 such that |x− x̂| <
η implies |φ(x) − φ(x̂)| < ϵ. Now, by the shadowing property of T ,

there are indices l > k and a periodic p of period nl − nm such that

d(T ◦i(xnk
), T ◦i(p)) < η, for i = 0, . . . , nl − nk − 1. Now since φ(p) has

period (dividing) nl − nm, the result follows.

4. Examples

Proposition 4.1. Multiplication by d ≥ 2 modulo 1 enjoys the weak

shadowing property. Hence averages along periodic orbits generate the

invariant measures.

44 Pro Mathematica, 26, 51-52 (2012), 35-47, ISSN 1012-3938



Invariant measures and a weak shadowing condition

Proof. Suppose dnk
θ0 converges to θ̂. Fix ϵ > 0 and pick nk < nl so that

|djθ0−θ̂|S1 ≤ ϵ/4 for j = nk, nl. In the circle we have |dnkθ0−dnlθ0|S1 ≤
ϵ/2 so there is an integer m such that |m− θ0(d

nk − dnl)| ≤ ϵ/2. Since

2dnk ≤ ddnk ≤ dnk+1 ≤ dnl implies dnl ≤ 2(dnl − dnk), we get

����
m

dnl − dnk
− θ0

���� ≤
ϵ

2(dnl − dnk)
≤ ϵ

dnl
.

Therefore, θ0 and
m

dnl − dnk
stay ϵ-close for at least nl iterates. However,

the nk-th iterate of
m

dnl − dnk
, that is, the angle

mdnk

dnl − dnk
=

m

dnl−nk − 1
,

is periodic of period nl − nk.

Corollary 4.2. Let P be a degree d ≥ 2 polynomial whose Julia set

J is connected and locally connected. Then P enjoys the weak shad-

owing property and therefore averages along periodic orbits generate the

invariant measures.

Proof. In fact, in this case the dynamics in the Julia set is semiconju-

gated to multiplication by d in the unit circle (cf. [5, Theorem 18.3])

We provide Σn = {(a0, a1, . . . ) : ai ∈ {0, . . . , d − 1}}, the space of

infinite words on an alphabet of d symbols, with a distance

D((a0, a1, . . . ), (b0, b1, . . . )) =
∑ ρ(ai, bi)

3i
,

where ρ(ai, bi) equals 1 if ai = bi but equals 0 otherwise. With this metric

Σn becomes a compact metric space. Here, to claim that two point

are close really means that their first, say r, entries agree. Therefore

neighborhoods are given by sequences with the same initial blocks. The

shift σ : Σn → Σn is the continuous map given by σ((a0, a1, a2, . . . )) =

(a1, a2, . . . ). For those and further properties of the shift we refer the

reader to [6].
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Proposition 4.3. The shift σ in the space Σn of n symbols enjoys the

weak shadowing property.

Proof. Given x0 = (a0, . . . ) suppose xnk
= (ank

, ank+1, . . . ) converges

to y = (b0, b1, . . . ). For ϵ > 0 let r be such that for two points to be

ϵ-close is equivalent for them to agree at least for the first r spots. By

refining into a further subsequence we assume that the first r entries of

all xnk
agree. Define pi = xj , where j = i mod n1, in order to get a

period n1 = n1 − n0 symbol sequence. By definition p and x0 agree for

the first n1 symbols. If we apply σ◦n1 to p and x0 we get p (because of

the period) and xn1 , respectively. But both of these words agree in the

first r terms with those of x0. In brief, we have just proved that p and

x0 agree for at least n1 + r terms. In other words, we have that σi(p)

and σi(x0) have in common their first r terms for i = 0, . . . , n1 − 1.

Corollary 4.4. Let P be a degree d ≥ 2 polynomial all of its criti-

cal points escape to infinity. Then P restricted to its Julia sets enjoys

the weak shadowing property and therefore averages along periodic orbits

generate the invariant measures.

Proof. In fact, that in this case the dynamics is conjugated to the shift

in d symbols is classical, and was already known to Fatou and Julia

(compare [2, Theorem 2.1]).
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Resumen

Revisamos el concepto de medida invariante y estudiamos condiciones

bajo las cuales combinaciones lineales de promedios a lo largo de órbitas

periódicas son densas en el espacio de medidas invariantes

Palabras clave: Teoŕıa ergódica, medidas invariantes, persecución de

órbitas.
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Pontificia Universidad Católica del Perú,
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