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Abstract

In this paper I extend the method of mixed monotony, to

construct monotone sequences that converge to the unique

solution of an initial value delay differential equation.
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1. Introduction

One of the most useful methods in proving existence of solutions of

delay differential equation, initial and boundary value problems is the

monotone iterative technique. The method of upper and lower solutions

coupled with the monotone iterative technique offers a flexible and ef-

fective mechanism for proving constructive existence result in a sector.

The upper and lower solutions that generate the sector serve as upper

and lower bounds for solutions which can be improved by the monotone

iterative procedure. Moreover, the iterative schemes are also useful to

investigate qualitative properties of solutions. In recent years, the ideas

imbedded in these combined techniques have played an important role

in unifying a variety of nonlinear problems and have also proved to be

of immense value [1].

Consider the initial delay differential equation

u′ = f(t, u(t), ut), ut = φ ∈ C,

where

f ∈ C[I0 ×R× C,R], C = C([−τ, 0], R), I0 = [t0, t0 + T ], for t0 ≥ 0(1.1)

In order to develop monotone iterative technique for (1.1) f should be at

least mixed quasi-monotone in which case employing the notion of quasi-

solutions and the theory of mixed monotone operators, one can construct

monotone sequences that converge to quasi-solutions (1.1), if further f

satisfies a uniqueness condition, then it can be shown that monotone

sequences converge to the unique solution of (1.1) in the sector [1].

The question of whether it is possible to construct monotone se-

quences that converge to the unique solutions of (1.1) even when f does

not possess any monotone properties is natural and interesting. See [4].

See [5] - [13] for related results and notation.
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In papers [1], [2], and [3], the authors have developed a new method,

called the method of mixed monotony, which makes it possible to con-

struct monotone sequences that converge to the unique solution of initial

and boundary value problems. In this paper, I extend this method to

an initial value problem for delay differential equations.

2. Method of Mixed Monotony for DDES

Given the delay differential equation (DDE)

u′ = f(t, u(t), ut), ut = φ ∈ C (2.1)

where f ∈ C[I0×R×C,R], C = C([−τ, 0], R), I0 = [t0, t0+T ], for t0 ≥ 0.

and for any t ∈ I0, ut ∈ C is defined by ut(s) = u(t+ s),−τ ≤ s ≤ 0.

Suppose that there exist functions

F ∈ C[I ×R×R× C,R] and α, β ∈ C[I, R] ∩ C ′[I0, R],

satisfying the following conditions:

(I) α′ ≤ F (t, α, β, αt), β
′ ≥ F (t, β, α, βt)

(II) F is mixed monotone so F (t, x, y, z) is monotone nondecreasing in

x, and monotone nondecreasing in y.

(III) F is locally Lipschitzian on I relative to the pair (α, β).

(IV) If ℓ, k ∈ [I, R] such that ℓ ≤ k on I ℓ′ = F (t, ℓ, k, ℓt), ℓt0 = ϕ,

and k′ = F (t, r, ℓ, rt), rt0 = ϕ, then ℓ = k on I.

Then we say that the DDE (2.1) admits a process of mixed monopoliza-

tion.

To prove the main result, we need the following comparison result; see

[7].
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Lemma 2.1. Assume that

p′ ≤ −Mp(t)−N

∫ 0

−τ

pt(s)ds, on I0 = t[t0, t0 + T ] (2.2)

Suppose further that

(I) Either p(t0) ≤ pt0(s) ≤ 0, s ∈ [−τ, 0] and

(M +Nτ)T ≤ 1 or (2.3)

(II) Pt0(s) ≤ 0, s ∈ [−τ, 0], p ∈ c′[t0 − τ, t0] and

p′(t) ≤ λ

T + τ
, t ∈ [t0 − τ, t0] (2.4)

where min
[t0−τ,t0]

p(t) = −λ, λ ≥ 0

(M +Nτ)(T + τ) ≤ 1. (2.5)

Then p(t) ≤ 0 on I0.

Proof.

Assume that the conclusion of the lemma is false. Let us consider the

case (I). Then there exist t1, t2 ∈ I0 such that t1 < t2, p(t2) > 0 and

min
[t0−τ,t2]

p(t) = −λ = p(t1) ≤ 0

Let us first consider the case λ > 0. By the mean value theorem, there

exists a t̄ ∈ [t1, t2] such that

p′(t̄) =
p(t2)− p(t1)

t2 − t1
>

λ

T
.

On the other hand, we have

p′(t̄) ≤ −Mp(t̄)−N

∫ 0

−τ

pt̄(s)ds ≤ (M +Nτ)λ
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which contradicts the assumption (2.3). If λ = 0, a contradiction is

obtained also. In case of (II) minimal value of p(t) on [t0 − τ, t2] lies

on [t0 − τ, t0]. Hence using mean value theorem on [t′, t2], where −λ =

p(t′)t′ ∈ [t0 − τ, t0] and p(t′) is minimal value of p(t) on [t0 − τ, t0], there

exist a ¯̄t ∈ [t′, t2], such that

p′
(¯̄t) = p(t2)− p(t′)

t2 − t′
>

λ

T + τ
(2.6)

There are two possibilities, namely ¯̄t ∈ [t0, t2] and ¯̄t ∈ [t0 − τ, t0]. If
¯̄t ∈ [t0, t2] then by using (2.2) we get

p′
(¯̄t) ≤ (M +Nτ)λ

which in view of (2.6) contradicts (2.5). If

¯̄t ∈ [t0 − τ, t0],

then (2.6) contradicts (2.4). The Proof is therefore complete.

Theorem 2.1. Consider the DDE (2.1) and assume that DDE (2.1)

admits a process of mixed monopolization. Then there exist monotone

sequences {αn(t), βn(t)} which converge uniformly on I0 to the unique

solution u(t) of DDE (2.1).

Furthermore, we have

α(t) ≤ α1(t) ≤ . . . ≤ αn(t) ≤ . . . ≤ β1(t) ≤ β(t) on I0

Proof.

Let η, µ ∈ C[I, R], η, µ ∈ [α, β] = {u ∈ C[I,R] : α(t) ≤ u(t) ≤ β(t) on I}.
Consider the linear DDE:

ū′ = F (t, η, µ, η) +M(η − ū) +N

∫ 0

−τ

[ηt(s)− ūt(s)]ds,

ūt0 = ϕ0. (2.7)
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Given any η, µ, using standard method of steps clearly there exists a

unique solution u of the linear DDE (2.7) on I.

Pick η = α, µ = β, and ū′ = α′
1, then equation (2.7) becomes

α′
1 = F (t, α, β, α) +M(α− α1) +N

∫ 0

−τ

[αt(s)− α1t(s)]ds,

α1t0 = ϕ0. (2.8)

Equation (2.8) and assumption (I) imply that:

α′ − α′
1 ≤ −M(α− α1)−N

∫ 0

−τ

[αt(s)− α1t(s)]ds,

which reduces to

p′ ≤ −Mp−N

∫ 0

−τ

pt(s)ds, pt0 = ϕ0 − αt0 ≤ 0. (2.9)

By Lemma (2.1), we have p(t) = α−α1 ≤ 0, which implies that α ≤ α1.

Choose η = β, µ = β, and ū′ = β′, then equation (2.2) yields

β′
1 = F (t, β, α, β) +M(β − β1) +N

∫ 0

−τ

[βt(s)− β1t(s)]ds, (2.10)

Equation (2.10) and (I) give

β′
1 − β ≤ −M(β1 − β)−N

∫ 0

−τ

[β1t(s)− βt(s)]ds,

which yields β1 ≤ β.

Let η1 ≤ η2, η1, η2 ∈ C[I,R] and η1, η2 ∈ [α, β].

Consider

v′ = F (t, η1, µ1, η2) +M(η1 − v) +N

∫ 0

−τ

[η1t(s)− vt(s)]ds, (2.11)

w′ = F (t, η2, µ1, η1) +M(η2 − w) +N

∫ 0

−τ

[η2t(s)− wt(s)]ds, (2.12)

R = v − w. (2.13)
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By using mixed monotony of F, equation (2.10), (2.11), (2.12), and

Lemma (2.1), we get v ≤ w for all t0 ≤ t ≤ t1.

Similarly if we switch the roles of η and µ and use mixed monotony of

F , one can prove that v ≥ w.

By defining a mapping A[η, µ] = u, where u is the unique solution to

equation

u′ = F (t, η, µ, η) +M(η − u) +N

∫ 0

−τ

[ηt(s)− ut(s)]ds, (2.14)

ut0 = ϕ0.

and by taking into account that α ≤ α1, β ≥ β1, v ≤ w, where η1 ≤ η2,

we can conclude that

(a) α ≤ A[α, β]

(b) β ≥ A[β, α]

(c) A[η1, µ] ≤ A[η2, µ] if η1 ≤ η2

(d) A[η, µ1] ≤ A[η, µ2] if µ1 ≥ µ2.

Define the sequences {αn}, {βn} with α0 = α, β0 = β, by αn+1 =

A[αn, βn] and, βn+1 = A[βn, αn].

Using (a), (b) and, (c), we can conclude that α ≤ α1 ≤ . . . ≤ αn ≤ βn ≤
. . . ≤ β1 ≤ β on I. By a standard argument we can show limn→∞ αn =

ℓ, limn→∞ βn = k, exist uniformly on I, and (ℓ, k) satisfy ℓ′ = F (t, ℓ, k, ℓ),

k′ = F (t, k, ℓ, k). From (IV) we see that u = ℓ = k is the unique solution

of DDE (2.1). The proof is complete.

Theorem 2.2. Consider the DDE (2.1).

Suppose that
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(H1) α, β ∈ C[I,R]; α ≤ β(t) on I

α′ ≤ f(t, α, αt)−M(β − α)−N

∫ 0

−τ

(βt(s)− αt(s))ds

β′ ≥ f(t, β, βt) +M(β − α) +N

∫ 0

−τ

(βt(s)− αt(s))ds

(H2) f satisfy |f(t, x, ϕ2) − f(t, y, ϕ1)| ≤ M(x − y) + N
∫ 0

−τ
(ϕ2(s) −

ϕ1(s))ds whenever α(t) ≤ y ≤ x ≤ β(t), αt ≤ ϕ1 ≤ ϕ2 ≤ βt on I0
and M,N ∈ R+.

Then DDE (2.1) admits the method of mixed monotony.

Proof.

Define

F (t, y, z, yt) =
1

2
[f(t, y, yt)+f(t, z, zt)]+M(y−z)+N

∫ 0

−τ

[yt(s)−zt(s)]ds.

It is easy to see that F is mixed monotone and locally Lipschitzian.

F (t, y, z, yt)− F (t, ȳ, z̄, ȳt) ≥ M(y − ȳ) +N

∫ 0

−τ

[yt(s)− ȳt(s)]ds, (2.15)

whenever α(t) ≤ ȳ ≤ y ≤ β(t), and αt(t) ≤ ȳt ≤ yt ≤ βt(t)

In particular we have

F (t, y, z, yt)− F (t, z, y, zt) = M(y − z) +N

∫ 0

−τ

(yt(s)− zt(s))ds (2.16)

From (2.13),

F (t, α, β, αt)− F (t, β, α, βt) ≥ −M(α− β)−N

∫ 0

−τ

(αt(s)− βt(s))ds, or

F (t, α, β, αt) +M(β − α)−N

∫ 0

−τ

(βt(s)− αt(s))ds ≤ F (t, α, β, αt),
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this yields α′ ≤ F (t, α, β, αt). Similarly we get β′ ≥ F (t, β, α, βt).

Finally F (t, x, x, xt) = F (t, x, xt) by setting x = y = z, and the

proof is complete.
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Resumen

En este art́ıculo se prueba una generalización del método de monotońıa

mixta, para construir sucesiones monótonas que convergen a la solución

única de una ecuación diferencial de retraso con valor inicial.

Palabras clave: Ecuación diferencial de retraso, operador de monotońıa

mixto, procesos iterativos
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