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Abstract

We review properties of the Beurling correlation function

related to differentiability and functional equations. The

relevance of this function is due to the fact that some

properties of the Riemann zeta function can be expressed in

terms of it.
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In 1955 A. Beurling proved the following theorem [5]

Theorem 1. If

M = {f |f(x) =
N∑

k=1

akρ

(
θk
x

)
,

N∑
k=1

akθk = 0, 0 < θk ≤ 1, ak ∈ C,

1 ≤ k ≤ N,N ≥ 2}

where ρ(x) = x− [x], is the fractionary part function, then the Riemann

Hypothesis (RH) holds iff M = L2(0, 1). Moreover this last condition

holds iff 1 ∈ M .

In trying to verify the condition 1 ∈ M , one comes across the fol-

lowing integrals

∫ 1

0

ρ

(
θ

x

)
dx = −θ ln θ + (1− γ)θ, θ ∈ [0, 1],

∫ 1

0

ρ

(
θ

x

)2

dx = (ln(2π)− γ) θ − θ2, θ ∈ [0, 1],

∫ 1

0

ρ
(α
x

)
ρ

(
β

x

)
dx = β

∫ 1

0

ρ

(
1

x

)
ρ

( α
β

x

)
dx+ (1− β)α

where 0 < α ≤ β ≤ 1 and γ is Euler constant.

The Beurling correlation function is defined by

J(β) =

∫ 1

0

ρ

(
1

x

)
ρ

(
β

x

)
dx, β ∈ [0, 1] (1)

In [4] it is studied the closely related function

A(λ) =

∫ ∞

0

ρ (t) ρ (λt) t−2dt, λ > 0 (2)
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that is called the multiplicative correlation function for the fractionary

part function. It is not difficult to show that

A(λ) =

{
λ+ J(λ) if λ ∈ [0, 1]

1 + λJ(λ−1) if λ > 1
(3)

It is proven in [4] that A is absolutely continuous, has a strict local max-

imum at each point in Q∩]0, 1[, and it is not differentiable in this set.

If in (1) we assume that β > 1, it can be shown that

J(β) = βJ(β−1) + 1− β + [β] lnβ − ln[β]!, β > 1 (4)

where [β] is the greatest integer ≤ β.

In [2] from the fact that the function

ρ
(α
x

)
+ ρ

(
1− α

x

)
− ρ

(
1

x

)

only takes the values 0 and 1, it is proven that J obeys the following

functional equation

−α lnα

2
− (1− α) ln(1− α)

2
= J(1)− J(α)− J(1− α) + α+

+(1− α)J(
α

1− α
), ∀α ∈

[
0,

1

2

]
(5)

In a similar way from the fact that the function

ρ
( α

2x

)
+ ρ

(
β

2x

)
+ ρ

(
α+ β

2x

)
− ρ

(α
x

)
− ρ

(
β

x

)

only takes the values 0 and 1 we get the functional equations
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1

2
[ln 2 + 3 lnπ − 3γ] + 4(1− α)J

(
α

1− α

)
+ 2α2

= 1 + 2(1− α)J

(
α

2(1− α)

)
+

+(1− α)J

(
2α

1− α

)
+ α(α+ 1) + J(2α) + 2(1− α)J

(
1

2(1− α)

)
,

∀α ∈
[
0,

1

3

]
(6)

1

2
[2 ln 2 + 3 lnπ − 3γ] + 4(1− α)J

(
α

1− α

)
+ 2α2

= 1 + 2(1− α)J

(
α

2(1− α)

)
+

+2αJ

(
1− α

2α

)
+ (1− α)2 + J(2α) + 2(1− α)J

(
1

2(1− α)

)
,

∀α ∈
[
1

3
,
1

2

]
(7)

A closed formula for J is

J(α) = −α lnα

2
−

∑
n≥1







[nα ]∑
k=1

1

k


− ln

[n
α

]
− γ − 1

2[nα ]


+

−
∑
n≥1

{
ln

(
1−

αρ
(
n
α

)
n

)
+

αρ
(
n
α

)
n

}
− 1

2

∑
n≥1

αρ
(
n
α

)
[
n
α

]
n

+

+
α

2
{ln(2π)− γ − 1} , ∀α ∈ [0, 1] (8)

From (8) we can get the behaviour of J for small α:
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J(α) = −α lnα

2
+

α

2
{ln(2π)− γ − 1}+

+ α2





π2

72
+

1

2

∑
n≥1

ρ
(
n
α

)2
n2

− 1

2

∑
n≥1

ρ
(
n
α

)
n2



+

+α3




1

6

∑
n≥1

ρ
(
n
α

)
n3

+
1

3

∑
n≥1

ρ
(
n
α

)3
n3

− 1

2

∑
n≥1

ρ
(
n
α

)2
n3


+O(α4) (9)

If µ is the Möbius function it can be shown that [7]

∑
n≥1

µ(n)
[x
n

]
= 1, ∀x ≥ 1 (10)

and

∑
n≥1

µ(n)

n
= 0 (11)

From these last two equations it follows that

∑
n≥1

µ(n)ρ

(
θ

nx

)
= −χ]0.θ](x), ∀θ, x ∈]0, 1] (12)

It can be shown that this series (θ fixed, x variable) does not con-

verge in L2(0, 1), but it does in L1(0, 1), [3], theorem 2.2. Therefore one

can multiply (12) by ρ
(
1
x

)
and integrate from 0 to 1 to get

∞∑
n≥1

µ(n)J

(
θ

n

)
= γ − ln θ−

[ 1θ ]∑
n=1

1

n
− θρ

(
1

θ

)
(13)
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The series in (13) converges since [9], p.74

∑
n≥1

µ(n)

n
lnn = −1 (14)

To find the distributional derivative of J it is convenient to rewrite (8) as

J(α) = −α lnα

2
+

α

2
{ln(2π)− γ − 1}−

∑
n≥1

∫ α
n

0

{
ρ

(
1

t

)
− 1

2

}
dt

∀α ∈ [0, 1] (15)

From the formula

∫ α
n

0

{
ρ

(
1

t

)
− 1

2

}
dt = 1− γ − ln

(n
α

)
+

[nα ]∑
l=1

1

l
− α

n

[n
α

]
− α

2n
(16)

it can be shown that the right hand side is differentiable if and only if
n

α
∈/ N and the value of the derivative is

ρ
(
n
α

)
− 1

2

n
, but if

n

α
∈ N the

value of the left hand derivative is − 1

2n
and of the right hand derivative

is
1

2n
. Therefore for α irrational in [0, 1] the distributional derivative of

the Beurling correlation function is

J ′(α) =
1

2
{ln(2π)− γ − 2} − lnα

2
−

∑
n≥1

ρ
(
n
α

)
− 1

2

n
(17)

Now it is known that for an absolutely continuous function the dis-

tributional derivative and the usual derivative coincide almost every-

where [11], p.5, corollary 1.1. We conjecture that the ordinary derivative

of J coincides with (17) at every point where the series

∑
n≥1

ρ
(
n
α

)
− 1

2

n
(18)
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converges. Fortunately the convergence of the series (18) has been stud-

ied in the literature [6], [8], where it is proven that if {qj(x)}j≥1 is the

sequence of denominators of the convergents of the continued fraction

expansion of the irrational number x, then the series

∑
n≥1

ρ (nx)− 1
2

n
(19)

converges if and only if the series

∑
j≥1

(−1)j ln qj+1(x)

qj(x)
(20)

converges.

It is shown in [8] that the Hausdorff dimension of the divergence set

of (20) is equal to zero. If we derive (5) and replace (17) in the resulting

equation we get

J(β) =

(
1− β

2

)
lnβ − β +

(
1 + β

2

)
{ln(2π)− γ}+

−β
∑
m≥1

ρ
(

m
β

)
− 1

2

m
−

∑
m≥1

ρ (mβ)− 1
2

m
(21)

This formula can also be proven rigourosly by other method if we assume

the convergence of both series.

In [1] it is proven the following theorem

Theorem 2. Let

[Aρf ](θ) =

∫ 1

0

ρ

(
θ

x

)
f(x) dx
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be considered as an operator on L2(0, 1). Then RH holds iff KerAρ = 0

or iff h ∈/ R(Aρ), where h(x) = x, ∀x ∈ [0, 1].

By a result of Sebestyén [10], h ∈ R(Aρ) iff there is a constant

mh > 0 such that

| < ϕ, h > | ≤ mh∥A∗
ρϕ∥, ∀ϕ ∈ L2(0, 1) (22)

If ϕ is real one can show that

∥A∗
ρϕ∥2 = 2

∫ 1

0

∫ u

0

ϕ(u)ϕ(v)
{
uJ

( v
u

)
+ v − uv

}
dv du (23)

Therefore RH holds iff one can find a sequence {ϕn}n≥1 in L2(0, 1)

such that

lim
| < ϕn, h > |

∥A∗
ρϕn∥

= ∞ (24)

The relation (24) could be amenable to numerical experimentation.
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Resumen

Se repasan algunas propiedades de la función de correlación de Beurl-

ing, que sirven para expresar ciertas propiedades de la función zeta de

Riemann.
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