Kant y el problema de la geometría
Palabras clave:
Geometría, matemática, espacio, sensibilidad, a priori
Resumen
Para Kant la geometría es una disciplina matemática que contiene proposiciones y juicios sintéticos a priori. Sin embargo, esta afirmación no se encuentra libre de problemas. La intención del artículo será mostrar 1) cómo entiende Kant la apodicticidad, universalidad y sinteticidad de la geometría en la Crítica de la razón pura; y 2) qué relevancia tiene hoy en día estudiar la teoría kantiana de la geometría luego de la superación de la teoría euclidiana del espacio. Con respecto a (1): Kant entiende a la geometría como la ciencia que objetiva la intuición pura del espacio. Todo concepto geométrico se construye en la intuición del espacio mediante un proceso sintético que exhibe la figura geométrica. Además, la intuición pura del espacio es la forma del sentido externo. Por tanto, los objetos geométricos y los fenómenos externos comparten un territorio común: el espacio como intuición pura. Este aspecto común garantiza la universidad de la geometría. Con respecto a (2): la importancia de estudiar la teoría kantiana de la geometría no solo radica en que esta disciplina determina a priori su objeto y por tanto sirve de ejemplo a la filosofía, sino que la comprensión del objeto de la geometría, el espacio como intuición pura, nos obliga a pasar revista a lo qué entiende Kant por sensibilidad y su relación con el espacio. El estudio de la sensibilidad obliga a Kant a repensar qué se entiende por espacio y, con ello, qué se entiende por geometría. El análisis de la teoría kantiana de la geometría, entonces, equivale al estudio de la teoría kantiana de la sensibilidad.Descargas
El artículo aún no registra descargas.
Cómo citar
Osorio, J. (2014). Kant y el problema de la geometría. Estudios De Filosofía, (12), 56-72. https://doi.org/10.18800/estudiosdefilosofia.201401.003
Derechos de autor 2016 Estudios de Filosofía
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.