Teoremas de Stokes y Divergencia usando Mathematica
Palabras clave:
Superficie regular, superficie orientable, campo vectorial, vector normal unitario exterior, rotacional, divergencia, integral de línea, integral de superficie e integral triple
Resumen
En esta publicación presentamos una propuesta para el uso del software Mathematica en el desarrollo de dos de los teoremas fundamentales del Cálculo Vectorial: Teorema de Stokes y divergencia de Gauss. La experiencia se desarrolló en cuatro horarios del curso Cálculo 4 en la Facultad de EE.GG.CC. de la PUCP. Destacando la representación gráfica de los objetos matemáticos que intervienen en estos resultados. Obviamente, sin perder de vista el aspecto algebraico. Para conjugar estos dos aspectos se ha escrito secuencias de funciones del software Mathematica para: graficar las superficies y sus vectores normales como también los campos vectoriales, calcular integrales triples, integrales de superficie e integrales de línea. Estas secuencias nos han permitido mostrar las aplicaciones de los teoremas de Stokes y divergencia mediante representaciones textual, algebraica y gráfica; lo cual despierta el interés de los alumnos por los teoremas tratados y se logra, además, un manejo más adecuado de dichos teoremas.Descargas
El artículo aún no registra descargas.
Cómo citar
González Ulloa, M., Saravia Molina, N., & Tapia Chinchay, C. (2013). Teoremas de Stokes y Divergencia usando Mathematica. En Blanco Y Negro, 4(2). Recuperado a partir de https://revistas.pucp.edu.pe/index.php/enblancoynegro/article/view/8930
Derechos de autor 2016 En Blanco y Negro
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.