Characteristic classes of modules

Autores/as

  • Maynard Kong Pontificia Universidad Católica del Perú

Palabras clave:

Lie algebra, projective modules, Chern classes, Euler classes, cohomology, curvature form, connection, invariante maps

Resumen

In this paper we have developed a general theory of characteristic classes of modules. To a given invariant map defined on a Lie algebra, we associate a cohomology class by using the curvature form of a certain kind of connections. Here we present a very simple proof of the invariance theorem (Theorem 12), which states that equivalent connections give rise to the same characteristic class. We have used those invariant maps of {9} to define Chern classes of projective modules and we have derived their basic properties.

It might be interesting to observe that this theory could be applied to define characteristic classes of bilinear maps. In particular, the Euler classes of {6} can be obtained in this way.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2008-09-07

Cómo citar

Kong, M. (2008). Characteristic classes of modules. Pro Mathematica, 22(43-44), 51–65. Recuperado a partir de https://revistas.pucp.edu.pe/index.php/promathematica/article/view/10256

Número

Sección

Artículos