Controllability of linear systems on non-abelian compact lie groups
Palabras clave:
teoría del control, Grupos de Lie, Álgebras de Lie
Resumen
In this paper, we shall deal with a linear control system ∑ defined on a Lie group G with Lie algebra L(G). We prove that, if G is a compact connected Lie group, then the vector fields associated to dynamic of ∑ are conservative, and that if G is also non-Abelian then, by using Poincare Theorem, ∑ is transitive if and only if it is controllable.
Descargas
El artículo aún no registra descargas.
Cómo citar
Gül, E. (1998). Controllability of linear systems on non-abelian compact lie groups. Pro Mathematica, 12(23-24), 17-22. Recuperado a partir de https://revistas.pucp.edu.pe/index.php/promathematica/article/view/8126
Derechos de autor 2016 Pro Mathematica
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.