Reduccion del grado en aplicaciones de Keller

Authors

  • Percy Fernández Sánchez Pontificia Universidad Católica del Perú
    Sección Matemáticas
    Departamento de Ciencias
    Ponticia Universidad Católica del Perú
    Av. Universitaria 1801, San Miguel, Lima 32, Perú
  • Roland Rabanal Pontificia Universidad Católica del Perú
    Sección Matemáticas
    Departamento de Ciencias
    Ponticia Universidad Católica del Perú
    Av. Universitaria 1801, San Miguel, Lima 32, Perú

Keywords:

Keller maps, polinomial ring, automorphism

Abstract

The polynomial maps whose Jacobian determinant is equal to 1 are called Keller maps. The Keller Jacobian conjecture claims that every Kellermap is injective. This conjecture is true for polynomials whose degree is less than or equal to two. In this paper we prove that the general casereduces to the study of the injectivity of maps of the form z 7! z+H(z),where the nonzero components of H are homogeneous polynomials of degree three, and every Jacobian matrix DH(z) is nilpotent.

Downloads

Download data is not yet available.

Published

2014-12-02

How to Cite

Fernández Sánchez, P., & Rabanal, R. (2014). Reduccion del grado en aplicaciones de Keller. Pro Mathematica, 28(55), 41–56. Retrieved from https://revistas.pucp.edu.pe/index.php/promathematica/article/view/11047

Issue

Section

Artículos