Impulsores y barreras en biotecnologías que incorporan fauna salvaje a la transición agroalimentaria

Autores/as

DOI:

https://doi.org/10.18800/kawsaypacha.202502.A004

Palabras clave:

Transiciones sostenibles, Sistema agroalimentario, Perspectiva multinivel, Fauna salvaje, Murciélagos

Resumen

La emergencia civilizatoria por transitar hacia un sistema agroalimentario sostenible se encuentra promoviendo el desarrollo de métodos y tecnologías agrícolas que permitan sustituir los insumos energéticos externos de origen químico. En esta investigación, se identifican los principales impulsores y barreras percibidas por los grupos de interés entrevistados para este estudio sobre el BATsignal, un paquete biotecnológico que incorpora los servicios ecosistémicos de murciélagos a la operatividad del sistema agroalimentario. Se emplea el enfoque teórico de las transiciones sociotécnicas a la sostenibilidad, a través de la perspectiva multinivel, para abordar la complejidad de esta innovación agrícola radical. El diseño de la investigación es un estudio de caso cualitativo, con una muestra de 75 participantes cuyas percepciones y experiencias fueron recopiladas en entrevistas semiestructuradas y grupos focales. Los resultados revelaron que la mayoría de los grupos de interés (propietarios, trabajadores, profesionales y científicos en asuntos agrícolas, así como miembros de la sociedad civil) aceptan la incorporación del BATsignal a la producción de cultivos, en base a los múltiples beneficios socioculturales, económicos, ambientales y sanitarios que los entrevistados perciben que tendría la sustitución de ciertos insumos agroquímicos por los servicios ecosistémicos de los quirópteros. Sin embargo, la asociación mediática global de los mamíferos voladores con el brote inicial de la pandemia por coronavirus (COVID-19), dificultaría el avance del BATsignal desde el paisaje sociotécnico. Finalmente, consideramos que las innovaciones sostenibles que capitalicen la actividad biológica de animales clasificados como salvajes, tienen oportunidades en la transición agroalimentaria, siempre que consigan desarraigarse de las prácticas y expectativas agroindustriales del régimen sociotécnico dominante.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andersson, J.; Lennerfors, T. T. & Fornstedt, H. (2024). Towards a socio-techno-ecological approach to sustainability transitions. Environmental Innovation and Societal Transitions, 51, 100846.

Béné, C.; Oosterveer, P.; Lamotte, L.; Brouwer, I. D.; De Haan, S.; Prager, S. D. ... & Khoury, C. K. (2019). When food systems meet sustainability–Current narratives and implications for actions. World development, 113, 116-130.

Borsellino, V.; Schimmenti, E. & El Bilali, H. (2020). Agri-food markets towards sustainable patterns. Sustainability, 12(6), 2193.

Boso, À.; Álvarez, B.; Pérez, B.; Imio, J. C.; Altamirano, A. & Lisón, F. (2021). Understanding human attitudes towards bats and the role of information and aesthetics to boost a positive response as a conservation tool. Animal Conservation, 24(6), 937-945.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.

Bui, S.; Cardona, A.; Lamine, C. & Cerf, M. (2016). Sustainability transitions: Insights on processes of niche-regime interaction and regime reconfiguration in agri-food systems. Journal of Rural Studies, 48, 92-103.

Cistrone, L.; Schofield, H. & Russo, D. (2025). Ground cover promotes enhanced bat activity in high-value insular vineyards. Agriculture, Ecosystems & Environment, 389, 109698.

Contesse, M.; Duncan, J.; Legun, K. & Klerkx, L. (2021). Unravelling non-human agency in sustainability transitions. Technological Forecasting and Social Change, 166, 120634.

Duru, M. & Therond, O. (2015). Designing agroecological transitions; A review. Agronomy for Sustainable Development, 35(4), 1237-1257.

El Bilali, H. (2019). The multi-level perspective in research on sustainability transitions in agriculture and food systems: A systematic review. Agriculture, 9(4), 74.

Elzen, B.; Van Mierlo, B. & Leeuwis, C. (2012). Anchoring of innovations: Assessing Dutch efforts to harvest energy from glasshouses. Environmental Innovation and Societal Transitions, 5, 1-18.

Firbank, L. G.; Attwood, S.; Eory, V.; Gadanakis, Y.; Lynch, J. M.; Sonnino, R. & Takahashi, T. (2018). Grand challenges in sustainable intensification and ecosystem services. Frontiers in Sustainable Food Systems, 2-7.

Galli, F. & Brunori, G. (2011). Knowledge brokerage to promote sustainable food consumption and production: linking scientists, policymakers and civil society organizations. Foodlinks Community.

Garcia, K.; Olimpi, E. M.; Karp, D. S. & Gonthier, D. J. (2020). The Good, the Bad, and the Risky: Can Birds Be Incorporated as Biological Control Agents into Integrated Pest Management Programs? Journal Integrated Pest Management, 11(1), 11.

Geels, F. W. & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36(3), 399-417.

Geels, F. W. (2002). Understanding the dynamics of technological transitions. A co-evolutionary and socio-technical analysis [Doctoral dissertation]. University of Twente Repository.

Geels, F. W. (2011). The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environmental Innovation and Societal Transitions, 1(1), 24-40.

Giagnocavo, C.; de Cara-García, M.; González, M.; Juan, M.; Marín-Guirao, J. I.; Mehrabi, S. ... & Crisol-Martínez, E. (2022). Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture, 12(2), 137.

Hermans, F.; Geerling-Eiff, F.; Potters, J. & Klerkx, L. (2019). Public-private partnerships as systemic agricultural innovation policy instruments–Assessing their contribution to innovation system function dynamics. NJAS-Wageningen Journal of Life Sciences, 88, 76-95.

Hinrichs, C. C. (2014). Transitions to sustainability: a change in thinking about food systems change? Agriculture and human values, 31(1), 143-155.

Ingram, J. (2018). Agricultural transition: Niche and regime knowledge systems’ boundary dynamics. Environmental innovation and societal transitions, 26, 117-135.

Kellert, S. R. (1984). American attitudes toward and knowledge of animals: An update. In Advances in animal welfare science 1984 (pp. 177-213). Springer Netherlands.

Klerkx, L. & Rose, D. (2020). Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, 24, 100347.

Konefal, J. (2015). Governing sustainability transitions: Multi-stakeholder initiatives and regime change in United States agriculture. Sustainability, 7(1), 612-633.

Kross, S. M.; Ingram, K. P.; Long, R. F. & Niles, M. T. (2018). Farmer perceptions and behaviors related to wildlife and on-farm conservation actions. Conservation Letters, 11, e12364.

Levidow, L. (2015). European transitions towards a corporate-environmental food regime: Agroecological incorporation or contestation? Journal of Rural Studies, 40, 76-89.

Levidow, L.; Pimbert, M. & Vanloqueren, G. (2014). Agroecological research: conforming-or transforming the dominant agro-food regime? Agroecology and sustainable food systems, 38(10), 1127-1155.

Loconto, A. (2016). The role of knowledge in transitions to sustainable food systems. In A. Meybeck & S. Redfern (Eds.), Knowledge and information for sustainable food systems (pp. 203–216). FAO.

López-García, D.; Calvet-Mir, L.; Di Masso, M. & Espluga, J. (2019). Multi-actor networks and innovation niches: university training for local Agroecological Dynamization. Agriculture and Human Values, 36(3), 567-579.

Markard, J.; Raven, R. & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research policy, 41(6), 955-967.

Meli, P.; Imio, J. C. & Lisón, F. (2024). Tradeoffs in people’s perceptions about ecosystem services and disservices related to bats: Implications for managing agroecosystems and conserving bats. Ecosystem Services, 66, 101609.

Meynard, J. M.; Charrier, F.; Le Bail, M.; Magrini, M. B.; Charlier, A. & Messéan, A. (2018). Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development, 38(5), 1-13.

Meynard, J. M.; Messéan, A.; Charlier, A.; Charrier, F.; Fares, M.; Le Bail, M.; Magrini, M. B.; Savini, I. & Rechauchère, O., (2014). La diversification des cultures. Lever les obstacles agronomiques et économiques. Editions QUAE.

Morrissey, J. E.; Mirosa, M. & Abbott, M. (2014). Identifying transition capacity for agri-food regimes: application of the multi-level perspective for strategic mapping. Journal of Environmental Policy & Planning, 16(2), 281-301.

Musila, S.; Prokop, P. & Gichuki, N. (2018). Knowledge and perceptions of, and attitudes to, bats by people living around Arabuko-Sokoke Forest, Malindi-Kenya. Anthrozoös, 31, 247–262.

Olagunju, K. O.; Angioloni, S. & Canavari, M. (2025). Niche Markets for Sustainable Agri-food Systems: A Systematic Review. Heliyon.

Padel, S., Levidow, L., & Pearce, B. (2020). UK farmers’ transition pathways towards agroecological farm redesign: evaluating explanatory models. Agroecology and Sustainable Food Systems, 44(2), 139-163.

Pant, L. P. (2016). Paradox of mainstreaming agroecology for regional and rural food security in developing countries. Technological Forecasting and Social Change, 111, 305-316.

Rip, A. & Kemp, R. (1998). Technological change. In Human choice and Climate Change: Vol. II, resources and technology (pp. 327-399). Battelle Press.

Rundgren, G. (2016). Food: From commodity to commons. Journal of Agricultural and Environmental Ethics, 29(1), 103-121.

Sasse, D. B. & Gramza, A.R. (2020). Influence of the COVID-19 pandemic on public attitudes toward bats in Arkansas and implications for bat management. Human Dimensions of Wildlife, 25(2)1-4.

Smith, A.; Voß, J. P. & Grin, J. (2010). Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Research Policy, 39(4), 435-448.

Stassart, P. M., & Jamar, D. (2012). Agriculture biologique et verrouillage des systèmes de connaissances: Conventionalisation des filières agroalimentaire bio. Carrefours de l'Innovation Agronomique, 4, 313-328.

Tilman, D. & Clark, M. (2015). Food, agriculture & the environment: can we feed the world & save the earth? Daedalus, 144(4), 8-23.

Vermunt, D. A.; Wojtynia, N.; Hekkert, M. P.; Van Dijk, J.; Verburg, R.; Verweij, P. A. ... & Runhaar, H. (2022). Five mechanisms blocking the transition towards ‘nature-inclusive’agriculture: A systemic analysis of Dutch dairy farming. Agricultural systems, 195, 103280.

Weituschat, C. S.; Pascucci, S.; Materia, V. C.; Tamas, P.; de Jong, R. & Trienekens, J. (2022). Goal frames and sustainability transitions: how cognitive lock-ins can impede crop diversification. Sustainability Science, 17(6), 2203-2219.

Descargas

Publicado

2025-11-07

Cómo citar

Imio, J. C., Lisón, F., & Fonseca Prieto, F. (2025). Impulsores y barreras en biotecnologías que incorporan fauna salvaje a la transición agroalimentaria. Revista Kawsaypacha: Sociedad Y Medio Ambiente, (16). https://doi.org/10.18800/kawsaypacha.202502.A004

Número

Sección

ARTÍCULOS Y ENSAYOS ACADÉMICOS