Empleo de 225Ac y 213Bi como radioisótopos en la terapia alfa dirigida para tratamiento de cáncer

  • Vanessa Mayorga-Martino Sección Química, Facultad de Ciencias e Ingeniería, Pontificia Universidad Católica del Perú

    Sección Química, Facultad de Ciencias e Ingeniería, Pontificia Universidad Católica del Perú

  • Tatiana E. Vélez Puyen Sección Química, Facultad de Ciencias e Ingeniería, Pontificia Universidad Católica del Perú

    Sección Química, Facultad de Ciencias e Ingeniería, Pontificia Universidad Católica del Perú

Palabras clave: terapia alfa dirigida (TAT), actinio-225, bismuto-213

Resumen

Este trabajo introduce el concepto de la radioinmunoterapia en cáncer, así como las principales ventajas de la terapia alfa dirigida, TAT (del inglés targeted α-therapy) sobre otros métodos. Las discusiones se centran principalmente en el uso terapéutico de los radioisótopos 225Ac y 213Bi en la reciente técnica y se mencionan sus principales ventajas sobre los métodos convencionales. También se discuten las propiedades de estos radionúclidos y sus medios de extracción y producción estudiados hasta ahora. Luego, se comentan sus propiedades fundamentales junto con la química de coordinación de ambos isótopos. Además, se proporciona una descripción general de las consideraciones a tener en cuenta para el diseño de un radiofármaco, y los agentes quelantes bifuncionales disponibles para el actinio y el bismuto. Finalmente, se describen algunos estudios preclínicos y clínicos que involucran a ambos isótopos, así como las perspectivas a futuro de este prometedor tratamiento para el cáncer.

Referencias bibliográficas

(1) Institute of Medicine and National Research Council. “Targeted Radionuclide Therapy”, Capítulo 4 en Institute of Medicine and National Research Council: Advancing Nuclear Medicine through Innovation. The National Academies Press: Washington, D.C., 2007; https://nap.nationalacademies.org/catalog/11985/advancing-nuclear-medicine-through-innovation (Acceso diciembre 2022).

(2) Bruchertseifer, F.; Kellerbauer, A.; Malmbeck, R.; Morgenstern, A. Targeted Alpha Therapy with Bismuth-213 and Actinium-225: Meeting Future Demand. J. Label. Compd. Radiopharm. 2019, 62 (11), 794–802. https://doi.org/10.1002/JLCR.3792

(3) Thiele, N. A.; Wilson, J. J. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018, 33 (8), 336–348. https://doi.org/10.1089/CBR.2018.2494

(4) Gudkov, S. V.; Shilyagina, N. Y.; Vodeneev, V. A.; Zvyagin, A. V. Targeted Radionuclide Therapy of Human Tumors. Int. J. Mol. Sci. 2016, Vol. 17, Page 33 2015, 17 (1), 33. https://doi.org/10.3390/IJMS17010033

(5) Lacoeuille, F.; Arlicot, N.; Faivre-Chauvet, A. Targeted Alpha and Beta Radiotherapy: An Overview of Radiopharmaceutical and Clinical Aspects. Médecine Nucléaire 2018, 42 (1), 32–44. https://doi.org/10.1016/J.MEDNUC.2017.12.002

(6) Kratochwil, C.; Giesel, F. L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC Receptor-Targeted Alpha-Radionuclide Therapy Induces Remission in Neuroendocrine Tumours Refractory to Beta Radiation: A First-in-Human Experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41 (11), 2106–2119. https://doi.org/10.1007/S00259-014-2857-9

(7) Ahenkorah, S.; Cassells, I.; Deroose, C. M.; Cardinaels, T.; Burgoyne, A. R.; Bormans, G.; Ooms, M.; Cleeren, F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021, 13 (5), 599. https://doi.org/10.3390/PHARMACEUTICS13050599

(8) Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An Overview of Targeted Alpha Therapy with 225 Actinium and 213 Bismuth. Curr. Radiopharm. 2018, 11 (3), 200–208. https://doi.org/10.2174/1874471011666180502104524

(9) Forsberg, C. W.; Lewis, L. C. Uses For Uranium-233 : What Should Be Kept for Future Needs ? ORNL-6952 1999, No. 208, 78. https://doi.org/http://moltensalt.org/references/static/downloads/pdf/ORNL-6952.pdf

(10) Robertson, A. K. H.; Ramogida, C. F.; Schaffer, P.; Radchenko, V. Development of 225 Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences . Curr. Radiopharm. 2018, 11 (3), 156–172. https://doi.org/10.2174/1874471011666180416161908

(11) Morgenstern, A.; Bruchertseifer, F.; Apostolidis, C. Targeted Alpha Therapy with 213Bi. Curr. Radiopharm. 2011, 4 (4), 295–305. https://doi.org/10.2174/1874471011104040295

(12) Zielinska, B.; Apostolidis, C.; Bruchertseifer, F.; Morgenstern, A. An Improved Method for the Production of Ac-225/Bi-213 from Th-229 for Targeted Alpha Therapy. Solvent Extr. Ion Exch. 2007, 25 (3), 339–349. https://doi.org/10.1080/07366290701285108

(13) Ramogida, C. F.; Robertson, A. K. H.; Jermilova, U.; Zhang, C.; Yang, H.; Kunz, P.; Lassen, J.; Bratanovic, I.; Brown, V.; Southcott, L.; Rodríguez-Rodríguez, C.; Radchenko, V.; Bénard, F.; Orvig, C.; Schaffer, P. Evaluation of Polydentate Picolinic Acid Chelating Ligands and an α-Melanocyte-Stimulating Hormone Derivative for Targeted Alpha Therapy Using ISOL-Produced 225Ac. EJNMMI Radiopharm. Chem. 2019, 4 (1). https://doi.org/10.1186/S41181-019-0072-5

(14) Engle, J. W. The Production of Ac-225. Curr. Radiopharm. 2018, 11 (3), 173–179. https://doi.org/10.2174/1874471011666180418141357

(15) Apostolidis, C.; Molinet, R.; McGinley, J.; Abbas, K.; Möllenbeck, J.; Morgenstern, A. Cyclotron Production of Ac-225 for Targeted Alpha Therapy. Appl. Radiat. Isot. 2005, 62 (3), 383–387. https://doi.org/10.1016/J.APRADISO.2004.06.013

(16) Weidner, J. W.; Mashnik, S. G.; John, K. D.; Hemez, F.; Ballard, B.; Bach, H.; Birnbaum, E. R.; Bitteker, L. J.; Couture, A.; Dry, D.; Fassbender, M. E.; Gulley, M. S.; Jackman, K. R.; Ullmann, J. L.; Wolfsberg, L. E.; Nortier, F. M. Proton-Induced Cross Sections Relevant to Production of 225Ac and 223Ra in Natural Thorium Targets below 200 MeV. Appl. Radiat. Isot. 2012, 70 (11), 2602–2607. https://doi.org/10.1016/J.APRADISO.2012.07.006

(17) Griswold, J. R.; Medvedev, D. G.; Engle, J. W.; Copping, R.; Fitzsimmons, J. M.; Radchenko, V.; Cooley, J. C.; Fassbender, M. E.; Denton, D. L.; Murphy, K. E.; Owens, A. C.; Birnbaum, E. R.; John, K. D.; Nortier, F. M.; Stracener, D. W.; Heilbronn, L. H.; Mausner, L. F.; Mirzadeh, S. Large Scale Accelerator Production of 225Ac: Effective Cross Sections for 78–192 MeV Protons Incident on 232Th Targets. Appl. Radiat. Isot. 2016, 118, 366–374. https://doi.org/10.1016/J.APRADISO.2016.09.026

(18) Apostolidis, C.; Molinet, R.; Rasmussen, G.; Morgenstern, A. Production of Ac-225 from Th-229 for Targeted α Therapy. Anal. Chem. 2005, 77 (19), 6288–6291. https://doi.org/10.1021/AC0580114

(19) Hu, A.; Wilson, J. J. Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications. Acc. Chem. Res. 2022, 55 (6), 904–915. https://doi.org/https://doi.org/10.1021/acs.accounts.2c00003

(20) Roscher, M.; Bakos, G.; Benešová, M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals 2020, 13 (4), 1–21. https://doi.org/10.3390/ph13040076

(21) Wilson, J. J.; Ferrier, M.; Radchenko, V.; Maassen, J. R.; Engle, J. W.; Batista, E. R.; Martin, R. L.; Nortier, F. M.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R. Evaluation of Nitrogen-Rich Macrocyclic Ligands for the Chelation of Therapeutic Bismuth Radioisotopes. Nucl. Med. Biol. 2015, 42 (5), 428–438. https://doi.org/10.1016/J.NUCMEDBIO.2014.12.007

(22) Kovács, A. Theoretical Study of Actinide(III)-DOTA Complexes. ACS Omega 2021, 6 (20), 13321–13330. https://doi.org/https://doi.org/10.1021/acsomega.1c01292

(23) Majkowska-Pilip, A.; Rius, M.; Bruchertseifer, F.; Apostolidis, C.; Weis, M.; Bonelli, M.; Laurenza, M.; Królicki, L.; Morgenstern, A. In Vitro Evaluation of 225Ac-DOTA-Substance P for Targeted Alpha Therapy of Glioblastoma Multiforme. Chem. Biol. Drug Des. 2018, 92 (1), 1344–1356. https://doi.org/10.1111/CBDD.13199

(24) Pruszynski, M.; D’Huyvetter, M.; Bruchertseifer, F.; Morgenstern, A.; Lahoutte, T. Evaluation of an Anti-HER2 Nanobody Labeled with 225 Ac for Targeted α-Particle Therapy of Cancer. Mol. Pharm. 2018, 15 (4), 1457–1466. https://doi.org/https://doi.org/10.1021/acs.molpharmaceut.7b00985

(25) Kovács, A.; Varga, Z. Metal–Ligand Interactions in Complexes of Cyclen-Based Ligands with Bi and Ac. Struct. Chem. 2021, 32 (5), 1719–1731. https://doi.org/10.1007/s11224-021-01816-9

(26) Kratochwil, C.; Apostolidis, L.; Rathke, H.; Apostolidis, C.; Bicu, F.; Bruchertseifer, F.; Choyke, P. L.; Haberkorn, U.; Giesel, F. L.; Morgenstern, A. Dosing 225Ac-DOTATOC in Patients with Somatostatin-Receptor-Positive Solid Tumors: 5-Year Follow-up of Hematological and Renal Toxicity. Eur. J. Nucl. Med. Mol. Imaging 2021, 49 (1), 54–63. https://doi.org/10.1007/s00259-021-05474-1

(27) Autenrieth, M. E.; Seidl, C.; Bruchertseifer, F.; Horn, T.; Kurtz, F.; Feuerecker, B.; D’Alessandria, C.; Pfob, C.; Nekolla, S.; Apostolidis, C.; Mirzadeh, S.; Gschwend, J. E.; Schwaiger, M.; Scheidhauer, K.; Morgenstern, A. Treatment of Carcinoma in Situ of the Urinary Bladder with an Alpha-Emitter Immunoconjugate Targeting the Epidermal Growth Factor Receptor: A Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45 (8), 1364–1371. https://doi.org/10.1007/S00259-018-4003-6

(28) Królicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; Merlo, A.; Morgenstern, A. Safety and Efficacy of Targeted Alpha Therapy with 213Bi-DOTA-Substance P in Recurrent Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 46 (3), 614–622. https://doi.org/10.1007/s00259-018-4225-7

(29) Cordier, D.; Forrer, F.; Bruchertseifer, F.; Morgenstern, A.; Apostolidis, C.; Good, S.; Müller-Brand, J.; Mäcke, H.; Reubi, J. C.; Merlo, A. Targeted Alpha-Radionuclide Therapy of Functionally Critically Located Gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-Substance P: A Pilot Trial. Eur. J. Nucl. Med. Mol. Imaging 2010, 37 (7), 1335–1344. https://doi.org/10.1007/S00259-010-1385-5

(30) Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F. Supply and Clinical Application of Actinium-225 and Bismuth-213. Semin. Nucl. Med. 2020, 50 (2), 119–123. https://doi.org/10.1053/J.SEMNUCLMED.2020.02.003 .

(31) Deshmukh, M. V.; Voll, G.; Kühlewein, A.; Mäcke, H.; Schmitt, J.; Kessler, H.; Gemmecker, G. NMR Studies Reveal Structural Differences between the Gallium and Yttrium Complexes of DOTA-D-Phe1-Tyr3-Octreotide. J. Med. Chem. 2005, 48 (5), 1506–1514. https://doi.org/10.1021/jm0496335

(32) Kratochwil, C.; Bruchertseifer, F.; Giesel, F.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. Ac-225-DOTATOC - an Empiric Dose Finding for Alpha Particle Emitter Based Radionuclide Therapy of Neuroendocrine Tumors. J. Nucl. Med. 2015, 56 (supplement 3), 1232–1232. https://jnm.snmjournals.org/content/56/supplement_3/1232

(33) Barinka, C.; Šácha, P.; Sklenář, J.; Man, P.; Bezouška, K.; Slusher, B. S.; Konvalinka, J. Identification of the N-Glycosylation Sites on Glutamate Carboxypeptidase II Necessary for Proteolytic Activity. Protein Sci. 2004, 13 (6), 1627. https://doi.org/10.1110/PS.04622104

Descargas

El artículo aún no registra descargas.
Cómo citar
Mayorga-Martino, V., & Vélez Puyen, T. (2022). Empleo de 225Ac y 213Bi como radioisótopos en la terapia alfa dirigida para tratamiento de cáncer. Revista De Química, 36(2), 13-23. Recuperado a partir de https://revistas.pucp.edu.pe/index.php/quimica/article/view/26266