Empleo de 225Ac y 213Bi como radioisótopos en la terapia alfa dirigida para tratamiento de cáncer
Resumen
Este trabajo introduce el concepto de la radioinmunoterapia en cáncer, así como las principales ventajas de la terapia alfa dirigida, TAT (del inglés targeted α-therapy) sobre otros métodos. Las discusiones se centran principalmente en el uso terapéutico de los radioisótopos 225Ac y 213Bi en la reciente técnica y se mencionan sus principales ventajas sobre los métodos convencionales. También se discuten las propiedades de estos radionúclidos y sus medios de extracción y producción estudiados hasta ahora. Luego, se comentan sus propiedades fundamentales junto con la química de coordinación de ambos isótopos. Además, se proporciona una descripción general de las consideraciones a tener en cuenta para el diseño de un radiofármaco, y los agentes quelantes bifuncionales disponibles para el actinio y el bismuto. Finalmente, se describen algunos estudios preclínicos y clínicos que involucran a ambos isótopos, así como las perspectivas a futuro de este prometedor tratamiento para el cáncer.
Referencias bibliográficas
(1) Institute of Medicine and National Research Council. “Targeted Radionuclide Therapy”, Capítulo 4 en Institute of Medicine and National Research Council: Advancing Nuclear Medicine through Innovation. The National Academies Press: Washington, D.C., 2007; https://nap.nationalacademies.org/catalog/11985/advancing-nuclear-medicine-through-innovation (Acceso diciembre 2022).
(2) Bruchertseifer, F.; Kellerbauer, A.; Malmbeck, R.; Morgenstern, A. Targeted Alpha Therapy with Bismuth-213 and Actinium-225: Meeting Future Demand. J. Label. Compd. Radiopharm. 2019, 62 (11), 794–802. https://doi.org/10.1002/JLCR.3792
(3) Thiele, N. A.; Wilson, J. J. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018, 33 (8), 336–348. https://doi.org/10.1089/CBR.2018.2494
(4) Gudkov, S. V.; Shilyagina, N. Y.; Vodeneev, V. A.; Zvyagin, A. V. Targeted Radionuclide Therapy of Human Tumors. Int. J. Mol. Sci. 2016, Vol. 17, Page 33 2015, 17 (1), 33. https://doi.org/10.3390/IJMS17010033
(5) Lacoeuille, F.; Arlicot, N.; Faivre-Chauvet, A. Targeted Alpha and Beta Radiotherapy: An Overview of Radiopharmaceutical and Clinical Aspects. Médecine Nucléaire 2018, 42 (1), 32–44. https://doi.org/10.1016/J.MEDNUC.2017.12.002
(6) Kratochwil, C.; Giesel, F. L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC Receptor-Targeted Alpha-Radionuclide Therapy Induces Remission in Neuroendocrine Tumours Refractory to Beta Radiation: A First-in-Human Experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41 (11), 2106–2119. https://doi.org/10.1007/S00259-014-2857-9
(7) Ahenkorah, S.; Cassells, I.; Deroose, C. M.; Cardinaels, T.; Burgoyne, A. R.; Bormans, G.; Ooms, M.; Cleeren, F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021, 13 (5), 599. https://doi.org/10.3390/PHARMACEUTICS13050599
(8) Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An Overview of Targeted Alpha Therapy with 225 Actinium and 213 Bismuth. Curr. Radiopharm. 2018, 11 (3), 200–208. https://doi.org/10.2174/1874471011666180502104524
(9) Forsberg, C. W.; Lewis, L. C. Uses For Uranium-233 : What Should Be Kept for Future Needs ? ORNL-6952 1999, No. 208, 78. https://doi.org/http://moltensalt.org/references/static/downloads/pdf/ORNL-6952.pdf
(10) Robertson, A. K. H.; Ramogida, C. F.; Schaffer, P.; Radchenko, V. Development of 225 Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences . Curr. Radiopharm. 2018, 11 (3), 156–172. https://doi.org/10.2174/1874471011666180416161908
(11) Morgenstern, A.; Bruchertseifer, F.; Apostolidis, C. Targeted Alpha Therapy with 213Bi. Curr. Radiopharm. 2011, 4 (4), 295–305. https://doi.org/10.2174/1874471011104040295
(12) Zielinska, B.; Apostolidis, C.; Bruchertseifer, F.; Morgenstern, A. An Improved Method for the Production of Ac-225/Bi-213 from Th-229 for Targeted Alpha Therapy. Solvent Extr. Ion Exch. 2007, 25 (3), 339–349. https://doi.org/10.1080/07366290701285108
(13) Ramogida, C. F.; Robertson, A. K. H.; Jermilova, U.; Zhang, C.; Yang, H.; Kunz, P.; Lassen, J.; Bratanovic, I.; Brown, V.; Southcott, L.; Rodríguez-Rodríguez, C.; Radchenko, V.; Bénard, F.; Orvig, C.; Schaffer, P. Evaluation of Polydentate Picolinic Acid Chelating Ligands and an α-Melanocyte-Stimulating Hormone Derivative for Targeted Alpha Therapy Using ISOL-Produced 225Ac. EJNMMI Radiopharm. Chem. 2019, 4 (1). https://doi.org/10.1186/S41181-019-0072-5
(14) Engle, J. W. The Production of Ac-225. Curr. Radiopharm. 2018, 11 (3), 173–179. https://doi.org/10.2174/1874471011666180418141357
(15) Apostolidis, C.; Molinet, R.; McGinley, J.; Abbas, K.; Möllenbeck, J.; Morgenstern, A. Cyclotron Production of Ac-225 for Targeted Alpha Therapy. Appl. Radiat. Isot. 2005, 62 (3), 383–387. https://doi.org/10.1016/J.APRADISO.2004.06.013
(16) Weidner, J. W.; Mashnik, S. G.; John, K. D.; Hemez, F.; Ballard, B.; Bach, H.; Birnbaum, E. R.; Bitteker, L. J.; Couture, A.; Dry, D.; Fassbender, M. E.; Gulley, M. S.; Jackman, K. R.; Ullmann, J. L.; Wolfsberg, L. E.; Nortier, F. M. Proton-Induced Cross Sections Relevant to Production of 225Ac and 223Ra in Natural Thorium Targets below 200 MeV. Appl. Radiat. Isot. 2012, 70 (11), 2602–2607. https://doi.org/10.1016/J.APRADISO.2012.07.006
(17) Griswold, J. R.; Medvedev, D. G.; Engle, J. W.; Copping, R.; Fitzsimmons, J. M.; Radchenko, V.; Cooley, J. C.; Fassbender, M. E.; Denton, D. L.; Murphy, K. E.; Owens, A. C.; Birnbaum, E. R.; John, K. D.; Nortier, F. M.; Stracener, D. W.; Heilbronn, L. H.; Mausner, L. F.; Mirzadeh, S. Large Scale Accelerator Production of 225Ac: Effective Cross Sections for 78–192 MeV Protons Incident on 232Th Targets. Appl. Radiat. Isot. 2016, 118, 366–374. https://doi.org/10.1016/J.APRADISO.2016.09.026
(18) Apostolidis, C.; Molinet, R.; Rasmussen, G.; Morgenstern, A. Production of Ac-225 from Th-229 for Targeted α Therapy. Anal. Chem. 2005, 77 (19), 6288–6291. https://doi.org/10.1021/AC0580114
(19) Hu, A.; Wilson, J. J. Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications. Acc. Chem. Res. 2022, 55 (6), 904–915. https://doi.org/https://doi.org/10.1021/acs.accounts.2c00003
(20) Roscher, M.; Bakos, G.; Benešová, M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals 2020, 13 (4), 1–21. https://doi.org/10.3390/ph13040076
(21) Wilson, J. J.; Ferrier, M.; Radchenko, V.; Maassen, J. R.; Engle, J. W.; Batista, E. R.; Martin, R. L.; Nortier, F. M.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R. Evaluation of Nitrogen-Rich Macrocyclic Ligands for the Chelation of Therapeutic Bismuth Radioisotopes. Nucl. Med. Biol. 2015, 42 (5), 428–438. https://doi.org/10.1016/J.NUCMEDBIO.2014.12.007
(22) Kovács, A. Theoretical Study of Actinide(III)-DOTA Complexes. ACS Omega 2021, 6 (20), 13321–13330. https://doi.org/https://doi.org/10.1021/acsomega.1c01292
(23) Majkowska-Pilip, A.; Rius, M.; Bruchertseifer, F.; Apostolidis, C.; Weis, M.; Bonelli, M.; Laurenza, M.; Królicki, L.; Morgenstern, A. In Vitro Evaluation of 225Ac-DOTA-Substance P for Targeted Alpha Therapy of Glioblastoma Multiforme. Chem. Biol. Drug Des. 2018, 92 (1), 1344–1356. https://doi.org/10.1111/CBDD.13199
(24) Pruszynski, M.; D’Huyvetter, M.; Bruchertseifer, F.; Morgenstern, A.; Lahoutte, T. Evaluation of an Anti-HER2 Nanobody Labeled with 225 Ac for Targeted α-Particle Therapy of Cancer. Mol. Pharm. 2018, 15 (4), 1457–1466. https://doi.org/https://doi.org/10.1021/acs.molpharmaceut.7b00985
(25) Kovács, A.; Varga, Z. Metal–Ligand Interactions in Complexes of Cyclen-Based Ligands with Bi and Ac. Struct. Chem. 2021, 32 (5), 1719–1731. https://doi.org/10.1007/s11224-021-01816-9
(26) Kratochwil, C.; Apostolidis, L.; Rathke, H.; Apostolidis, C.; Bicu, F.; Bruchertseifer, F.; Choyke, P. L.; Haberkorn, U.; Giesel, F. L.; Morgenstern, A. Dosing 225Ac-DOTATOC in Patients with Somatostatin-Receptor-Positive Solid Tumors: 5-Year Follow-up of Hematological and Renal Toxicity. Eur. J. Nucl. Med. Mol. Imaging 2021, 49 (1), 54–63. https://doi.org/10.1007/s00259-021-05474-1
(27) Autenrieth, M. E.; Seidl, C.; Bruchertseifer, F.; Horn, T.; Kurtz, F.; Feuerecker, B.; D’Alessandria, C.; Pfob, C.; Nekolla, S.; Apostolidis, C.; Mirzadeh, S.; Gschwend, J. E.; Schwaiger, M.; Scheidhauer, K.; Morgenstern, A. Treatment of Carcinoma in Situ of the Urinary Bladder with an Alpha-Emitter Immunoconjugate Targeting the Epidermal Growth Factor Receptor: A Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45 (8), 1364–1371. https://doi.org/10.1007/S00259-018-4003-6
(28) Królicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; Merlo, A.; Morgenstern, A. Safety and Efficacy of Targeted Alpha Therapy with 213Bi-DOTA-Substance P in Recurrent Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 46 (3), 614–622. https://doi.org/10.1007/s00259-018-4225-7
(29) Cordier, D.; Forrer, F.; Bruchertseifer, F.; Morgenstern, A.; Apostolidis, C.; Good, S.; Müller-Brand, J.; Mäcke, H.; Reubi, J. C.; Merlo, A. Targeted Alpha-Radionuclide Therapy of Functionally Critically Located Gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-Substance P: A Pilot Trial. Eur. J. Nucl. Med. Mol. Imaging 2010, 37 (7), 1335–1344. https://doi.org/10.1007/S00259-010-1385-5
(30) Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F. Supply and Clinical Application of Actinium-225 and Bismuth-213. Semin. Nucl. Med. 2020, 50 (2), 119–123. https://doi.org/10.1053/J.SEMNUCLMED.2020.02.003 .
(31) Deshmukh, M. V.; Voll, G.; Kühlewein, A.; Mäcke, H.; Schmitt, J.; Kessler, H.; Gemmecker, G. NMR Studies Reveal Structural Differences between the Gallium and Yttrium Complexes of DOTA-D-Phe1-Tyr3-Octreotide. J. Med. Chem. 2005, 48 (5), 1506–1514. https://doi.org/10.1021/jm0496335
(32) Kratochwil, C.; Bruchertseifer, F.; Giesel, F.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. Ac-225-DOTATOC - an Empiric Dose Finding for Alpha Particle Emitter Based Radionuclide Therapy of Neuroendocrine Tumors. J. Nucl. Med. 2015, 56 (supplement 3), 1232–1232. https://jnm.snmjournals.org/content/56/supplement_3/1232
(33) Barinka, C.; Šácha, P.; Sklenář, J.; Man, P.; Bezouška, K.; Slusher, B. S.; Konvalinka, J. Identification of the N-Glycosylation Sites on Glutamate Carboxypeptidase II Necessary for Proteolytic Activity. Protein Sci. 2004, 13 (6), 1627. https://doi.org/10.1110/PS.04622104
Descargas
Derechos de autor 2022 Vanessa Mayorga-Martino, Tatiana E. Vélez Puyen
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.