Química bioortogonal: cuando los organismos vivos se convierten en matraces de reacción

  • Javier Idiago-López Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza)

    Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), 50009, Zaragoza, España

  • Jesus M. De la Fuente Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza) y Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III

    Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), 50009, Zaragoza, España
    y Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 50018 Zaragoza, España

  • Raluca Maria Fratila Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza)

    Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), 50009, Zaragoza, España; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 50018 Zaragoza, España y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, España

Palabras clave: Química clic, Química bioortogonal, Glicoingeniería metabólica, Nanomedicina, Diagnóstico, Terapia

Resumen

En este artículo se introducen los conceptos de química “click” y química bioortogonal, que han recibido el Premio Nobel de Química 2022 por sus numerosas ventajas (sencillez, robustez, rendimientos prácticamente cuantitativos, etc.). Se describen en detalle las principales reacciones bioortogonales, las cuales se pueden llevar a cabo en sistemas vivos, como células e incluso animales, que se convierten en exóticos “matraces de reacción”. También se proporciona una visión general de los últimos avances en bionanomedicina, surgidos gracias a la combinación de la química bioortogonal con las propiedades únicas de los nanomateriales. Para ello, se presentan las principales características de los nanomateriales y describen algunos estudios recientes relacionados con el desarrollo de nuevas herramientas de imagen y terapia.

Referencias bibliográficas

(1) Nobel Prize website. https://www.nobelprize.org/prizes/chemistry/2022/press-release/ (accessed 2023-01-04).

(2) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl 2001, 40 (11), 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x .

(3) Prescher, J. A.; Bertozzi, C. R. Chemistry in Living Systems. Nat Chem Biol 2005, 1 (1), 13–21. https://doi.org/10.1038/nchembio0605-13

(4) Pearce, O. M. T.; Läubli, H. Sialic Acids in Cancer Biology and Immunity. Glycobiology 2016, 26 (2), 111–128. https://doi.org/10.1093/glycob/cwv097

(5) Idiago-López, J.; Moreno-Antolín, E.; de la Fuente, J. M.; Fratila, R. M. Nanoparticles and Bioorthogonal Chemistry Joining Forces for Improved Biomedical Applications. Nanoscale Adv 2021, 3 (5), 1261–1292. https://doi.org/10.1039/D0NA00873G

(6) Griffin, R. J. The Medicinal Chemistry of the Azido Group. In Progress in medicinal chemistry; NETHERLANDS, 1994; Vol. 31, pp 121–232. https://doi.org/10.1016/S0079-6468(08)70020-1

(7) Du, J.; Meledeo, M. A.; Wang, Z.; Khanna, H. S.; Paruchuri, V. D. P.; Yarema, K. J. Metabolic Glycoengineering: Sialic Acid and Beyond. Glycobiology 2009, 19 (12), 1382–1401. https://doi.org/10.1093/glycob/cwp115

(8) Ying, L.; Xu, J.; Han, D.; Zhang, Q.; Hong, Z. The Applications of Metabolic Glycoengineering. Front Cell Dev Biol 2022, 10. https://doi.org/10.3389/fcell.2022.840831

(9) Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R. In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish. Science (1979) 2008, 320 (5876), 664–667. https://doi.org/10.1126/science.1155106.In

(10) Moons, S. J.; Adema, G. J.; Derks, M. T.; Boltje, T. J.; Büll, C. Sialic Acid Glycoengineering Using N-Acetylmannosamine and Sialic Acid Analogs. Glycobiology 2019. https://doi.org/10.1093/glycob/cwz026

(11) Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. Science (1979) 2000, 287 (5460), 2007–2010. https://doi.org/10.1126/science.287.5460.2007

(12) Staudinger, H.; Hauser, E. Über Neue Organische Phosphorverbindungen IV Phosphinimine. Helv Chim Acta 1921, 4 (1), 861–886. https://doi.org/10.1002/hlca.19210040192

(13) Chang, P. v.; Prescher, J. A.; Hangauer, M. J.; Bertozzi, C. R. Imaging Cell Surface Glycans with Bioorthogonal Chemical Reporters. J Am Chem Soc 2007, 129 (27), 8400–8401. https://doi.org/10.1021/ja070238o

(14) Sletten, E. M.; Bertozzi, C. R. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 2011, 44 (9), 666–676. https://doi.org/10.1021/ar200148z

(15) Rostovtsev, V. v.; Green, L. G.; Fokin, V. v.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process Catalyzed by Copper ( I ): Regioselective Ligation of Azides and Terminal Alkynes. Angew. Chem., Int. Ed. Engl. 2002, 41 (14), 2596–2599. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

(16) Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. Journal of Organic Chemistry 2002, 67 (9), 3057–3064. https://doi.org/10.1021/jo011148j

(17) Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed 1963, 2 (10), 565–598. https://doi.org/10.1002/anie.196305651

(18) Kennedy, D. C.; McKay, C. S.; Legault, M. C. B.; Danielson, D. C.; Blake, J. A.; Pegoraro, A. F.; Stolow, A.; Mester, Z.; Pezacki, J. P. Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions. J Am Chem Soc 2011, 133 (44), 17993–18001. https://doi.org/10.1021/ja2083027

(19) Wittig, G.; Krebs, A. Zur Existenz Niedergliedriger Cycloalkine, I. Chem Ber 1961, 94 (12), 3260–3275. https://doi.org/10.1002/cber.19610941213

(20) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J Am Chem Soc 2004, 126 (46), 15046–15047. https://doi.org/10.1021/ja044996f

(21) Debets, M. F.; van Hest, J. C. M.; Rutjes, F. P. J. T. Bioorthogonal Labelling of Biomolecules: New Functional Handles and Ligation Methods. Org Biomol Chem 2013, 11 (38), 6439–6455. https://doi.org/10.1039/c3ob41329b

(22) Rigolot, V.; Biot, C.; Lion, C. To View Your Biomolecule, Click inside the Cell. Angew. Chem. Int. Ed. 2021, 60 (43), 23084–23105. https://doi.org/10.1002/anie.202101502

(23) Blackman, M. L.; Royzen, M.; Fox, J. M. Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels−Alder Reactivity. J Am Chem Soc 2008, 130 (41), 13518–13519. https://doi.org/10.1021/ja8053805

(24) Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging. Bioconjug Chem 2008, 19 (12), 2297–2299. https://doi.org/10.1021/bc8004446

(25) Rondon, A.; Degoul, F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020, 31 (2), 159–173. https://doi.org/10.1021/acs.bioconjchem.9b00761

(26) Fairbanks, B. D.; Macdougall, L. J.; Mavila, S.; Sinha, J.; Kirkpatrick, B. E.; Anseth, K. S.; Bowman, C. N. Photoclick Chemistry: A Bright Idea. Chem Rev 2021, 121 (12), 6915–6990. https://doi.org/10.1021/acs.chemrev.0c01212

(27) Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Chemical Remodelling of Cell Surfaces in Living Animals. Nature 2004, 430 (August), 873–878. https://doi.org/10.1038/nature02817

(28) Laughlin, S. T.; Bertozzi, C. R. In Vivo Imaging of Caenorhabditis Elegans Glycans. ACS Chem Biol 2009, 4 (12), 1068–1072. https://doi.org/10.1021/cb900254y

(29) Rossin, R.; Renart Verkerk, P.; van den Bosch, S. M.; Vulders, R. C. M.; Verel, I.; Lub, J.; Robillard, M. S. In Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice. Angew. Chem. Int. Ed. 2010, 49: 3375-3378. https://doi.org/10.1002/anie.200906294

(30) Rondon, A.; Degoul, F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020, 31 (2), 159–173. https://doi.org/10.1021/acs.bioconjchem.9b00761

(31) Patra, M.; Zarschler, K.; Pietzsch, H.-J.; Stephan, H.; Gasser, G. New Insights into the Pretargeting Approach to Image and Treat Tumours. Chem Soc Rev 2016, 45 (23), 6415–6431. https://doi.org/10.1039/C5CS00784D

(32) Devaraj, N. K. The Future of Bioorthogonal Chemistry. ACS Cent Sci 2018, acscentsci.8b00251. https://doi.org/10.1021/acscentsci.8b00251

(33) Mejia Oneto, J. M.; Khan, I.; Seebald, L.; Royzen, M. In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma. ACS Cent Sci 2016, 2 (7), 476–482. https://doi.org/10.1021/acscentsci.6b00150

(34) Xie, X.; Li, B.; Wang, J.; Zhan, C.; Huang, Y.; Zeng, F.; Wu, S. Tetrazine-Mediated Bioorthogonal System for Prodrug Activation, Photothermal Therapy, and Optoacoustic Imaging. ACS Appl Mater Interfaces 2019, 11 (45), 41875–41888. https://doi.org/10.1021/acsami.9b13374

(35) https://www.shasqi.com.

(36) https://clinicaltrials.gov/ct2/show/NCT04106492.

(37) Richard P. Feynman. There’s Plenty of Room at the Bottom. Eng Sci 1960, 23, 22–35.

(38) Roduner, E. Size Matters: Why Nanomaterials Are Different. Chem Soc Rev 2006, 35 (7), 583. https://doi.org/10.1039/b502142c

(39) Whitesides, G. M. The “right” Size in Nanobiotechnology. Nat Biotechnol 2003, 21 (10), 1161–1165. https://doi.org/10.1038/nbt872

(40) Terai, T.; Nagano, T. Fluorescent Probes for Bioimaging Applications. Curr Opin Chem Biol 2008, 12 (5), 515–521. https://doi.org/10.1016/j.cbpa.2008.08.007

(41) Bernardin, A.; Cazet, A.; Guyon, L.; Delannoy, P.; Vinet, F.; Bonnaffé, D.; Texier, I. Copper-Free Click Chemistry for Highly Luminescent Quantum Dot Conjugates: Application to in Vivo Metabolic Imaging. Bioconjug Chem 2010, 21 (4), 583–588. https://doi.org/10.1021/bc900564w

(42) Hsieh, F.-J.; Sotoma, S.; Lin, H.-H.; Cheng, C.-Y.; Yu, T.-Y.; Hsieh, C.-L.; Lin, C.-H.; Chang, H.-C. Bioorthogonal Fluorescent Nanodiamonds for Continuous Long-Term Imaging and Tracking of Membrane Proteins. ACS Appl Mater Interfaces 2019, 11 (22), 19774–19781. https://doi.org/10.1021/acsami.9b03640

(43) Liu, R.; Zhao, J.; Han, G.; Zhao, T.; Zhang, R.; Liu, B.; Liu, Z.; Zhang, C.; Yang, L.; Zhang, Z. Click-Functionalized SERS Nanoprobes with Improved Labeling Efficiency and Capability for Cancer Cell Imaging. ACS Appl Mater Interfaces 2017, 9 (44), 38222–38229. https://doi.org/10.1021/acsami.7b10409

(44) Lee, S.; Yoon, H. I.; Na, J. H.; Jeon, S.; Lim, S.; Koo, H.; Han, S.-S.; Kang, S.-W.; Park, S.-J.; Moon, S.-H.; Park, J. H.; Cho, Y. W.; Kim, B.-S.; Kim, S. K.; Lee, T.; Kim, D.; Lee, S.; Pomper, M. G.; Kwon, I. C.; Kim, K. In Vivo Stem Cell Tracking with Imageable Nanoparticles That Bind Bioorthogonal Chemical Receptors on the Stem Cell Surface. Biomaterials 2017, 139, 12–29. https://doi.org/10.1016/j.biomaterials.2017.05.050

(45) Haun, J. B.; Devaraj, N. K.; Hilderbrand, S. A.; Lee, H.; Weissleder, R. Bioorthogonal Chemistry Amplifies Nanoparticle Binding and Enhances the Sensitivity of Cell Detection. Nat Nano 2010, 5 (9), 660–665. https://doi.org/10.1038/nnano.2010.148

(46) Peterson, V. M.; Castro, C. M.; Lee, H.; Weissleder, R. Orthogonal Amplification of Nanoparticles for Improved Diagnostic Sensing. ACS Nano 2012, 6 (4), 3506–3513. https://doi.org/10.1021/nn300536y

(47) Liong, M.; Fernandez-Suarez, M.; Issadore, D.; Min, C.; Tassa, C.; Reiner, T.; Fortune, S. M.; Toner, M.; Lee, H.; Weissleder, R. Specific Pathogen Detection Using Bioorthogonal Chemistry and Diagnostic Magnetic Resonance. Bioconjugate Chem. 2011, 22 (12), 2390–2394. https://doi.org/10.1021/bc200490r

(48) Idiago-López, J.; Moreno-Antolín, E.; Eceiza, M.; Aizpurua, J. M.; Grazú, V.; de la Fuente, J. M.; Fratila, R. M. From Bench to Cell: A Roadmap for Assessing the Bioorthogonal “Click” Reactivity of Magnetic Nanoparticles for Cell Surface Engineering. Bioconjug Chem 2022, 33 (9), 1620–1633. https://doi.org/10.1021/acs.bioconjchem.2c00230

(49) Koo, H.; Lee, S.; Na, J. H.; Kim, S. H.; Hahn, S. K.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Bioorthogonal Copper-Free Click Chemistry in Vivo for Tumor-Targeted Delivery of Nanoparticles. Angew. Chem. Int. Ed. 2012, 51 (47), 11836–11840. https://doi.org/10.1002/anie.201206703

(50) Lee, S.; Koo, H.; Na, J. H.; Han, S. J.; Min, H. S.; Lee, S. J.; Kim, S. H.; Yun, S. H.; Jeong, S. Y.; Kwon, I. C.; Choi, K.; Kim, K. Chemical Tumor-Targeting of Nanoparticles Based on Metabolic Glycoengineering and Click Chemistry. ACS Nano 2014, 8 (3), 2048–2063. https://doi.org/10.1021/nn406584y

(51) Hapuarachchige, S.; Kato, Y.; Artemov, D. Bioorthogonal Two-Component Drug Delivery in HER2(+) Breast Cancer Mouse Models. Sci Rep 2016, 6 (1), 24298. https://doi.org/10.1038/srep24298

(52) Lee, S. H.; Park, O. K.; Kim, J.; Shin, K.; Pack, C. G.; Kim, K.; Ko, G.; Lee, N.; Kwon, S.-H.; Hyeon, T. Deep Tumor Penetration of Drug-Loaded Nanoparticles by Click Reaction-Assisted Immune Cell Targeting Strategy. J Am Chem Soc 2019, 141 (35), 13829–13840. https://doi.org/10.1021/jacs.9b04621

(53) Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021, acs.chemrev.1c00484. https://doi.org/10.1021/acs.chemrev.1c00484

(54) Francisco Javier Idiago López. Tesis Doctoral - Unión Covalente de Nanopartículas Magnéticas a Membranas Celulares Para La Modulación de Sus Propiedades Biofísicas Con Hipertermia Localizada, Universidad de Zaragoza, 2022.

(55) Row, R. D.; Prescher, J. A. Constructing New Bioorthogonal Reagents and Reactions. Acc Chem Res 2018, 51 (5), 1073–1081. https://doi.org/10.1021/acs.accounts.7b00606

Descargas

El artículo aún no registra descargas.
Cómo citar
Idiago-López, J., De la Fuente, J. M., & Fratila, R. M. (2023). Química bioortogonal: cuando los organismos vivos se convierten en matraces de reacción. Revista De Química, 37(1), 2-12. https://doi.org/10.18800/quimica.202301.001