Hacia el desarrollo de alternativas sostenibles al combustible diésel: síntesis de 1,1-dimetoximetano (OME1) a través de catálisis bifuncional
Resumen
Disminuir el impacto ambiental derivado del uso de combustibles fósiles necesita el desarrollo de fuentes de energía renovables, y la producción sostenible de combustibles líquidos. Los éteres de oximetileno (OMEs), son compuestos oxigenados que han surgido como una potencial alternativa para sustituir el combustible Diesel. El uso de estos éteres en los motores disminuye la formación de hollín y óxidos de nitrógeno (NOx) durante la combustión. Dentro de esta familia de compuestos, el 1,1-dimetoximetano (OME1) tiene especial interés, no solo por su uso como solvente industrial o como intermediario químico, sino, también porque puede ser usado como materia prima para la producción de OMEs de cadena larga. La síntesis directa de OME1 involucra la oxidación selectiva de metanol sobre catalizadores bifuncionales, los cuales han sido objeto de estudio durante las últimas décadas. Este trabajo resume las principales características de los distintos sistemas catalíticos desarrollados, los cuales juegan un papel fundamental para la producción comercial del 1,1-dimetoximetano.
Referencias bibliográficas
(1) Thavornprasert, K.A.; Capron, M.; Jalowiecki-Duhamel, L.; Dumeignil, F. One-Pot 1,1-Dimethoxymethane Synthesis from Methanol: A Promising Pathway over Bifunctional Catalysts. Catal. Sci. Technol. 2016, 6, 958-970. https://doi.org/10.1039/c5cy01858g
(2) Liu, J.; Wang, L.; Wang, P.; Sun, P.; Liu, H.; Meng, Z.; Zhang, L.; Ma, H. An Overview of Polyoxymethylene Dimethyl Ethers as Alternative Fuel for Compression Ignition Engines. Fuel., 2022, 318, 123582. https://doi.org/10.1016/j.fuel.2022.123582
(3) ABC: Canada’s Clean Fuel Standard takes step forward. Biomass Magazine. http://biomassmagazine.com/articles/15835/abc-canadaundefineds-clean-fuel-standard-takes-step-forward (accessed 2022-04-04).
(4) Hausfather, Z.; Friedlingstein, P. Analysis: Global CO2 emissions from fossil fuels hits record high in 2022. World Economic Forum. https://www.weforum.org/agenda/2022/11/global-co2-emissions-fossil-fuels-hit-record-2022 (accessed 2023-02-19).
(5) Exxon Mobile Corporation. 2018 Outlook for Energy: A View to 2040; Irving, 2018. https://www.aop.es/wp-content/uploads/2019/05/2018-Outlook-for-Energy-Exxon.pdf (accessed 2023-04-18).
(6) Energy Agency, I. Global Energy Review: CO2 Emissions in 2021 Global Emissions Rebound Sharply to Highest Ever Level; 2021. https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed 2023-04-18).
(7) Zhao, W.; Yan, J.; Gao, S.; Lee, T.H.; Li, X. The Combustion and Emission Characteristics of a Common-Rail Diesel Engine Fueled with Diesel, Propanol, and Pentanol Blends under Low Intake Pressures. Fuel 2022, 307, 121692. https://doi.org/10.1016/j.fuel.2021.121692
(8) Gierlich, C.H.; Beydoun, K.; Klankermayer, J.; Palkovits, R. Challenges and Opportunities in the Production of Oxymethylene Dimethylether. Chem. Ing. Tech., 2020, 92, 116-124. https://doi.org/10.1002/cite.201900187
(9) Hackbarth, K.; Haltenort, P.; Arnold, U.; Sauer, J. Recent Progress in the Production, Application and Evaluation of Oxymethylene Ethers. Chem. Ing. Tech., 2018, 90, 1520-1528. https://doi.org/10.1002/cite.201800068
(10) Baranowski, C.J.; Bahmanpour, A.M.; Kröcher, O. Catalytic Synthesis of Polyoxymethylene Dimethyl Ethers (OME): A Review. Appl. Catal. B-Environ., 2017, 217, 407-420. https://doi.org/10.1016/j.apcatb.2017.06.007
(11) Sun, R.; Delidovich, I.; Palkovits, R. Dimethoxymethane as a Cleaner Synthetic Fuel: Synthetic Methods, Catalysts, and Reaction Mechanism. ACS Catal. 2019, 9 (2), 1298-1318. https://doi.org/10.1021/acscatal.8b04441
(12) Ahmad, W.; Chan, F.L.; Hoadley, A.; Wang, H.; Tanksale, A. Synthesis of Oxymethylene Dimethyl Ethers (OMEn) via Methanol Mediated COx Hydrogenation over Ru/BEA Catalysts. Appl Catal. B-Environ., 2020, 269, 118765. https://doi.org/10.1016/j.apcatb.2020.118765
(13) Thavornprasert, K.; Capron, M.; Jalowiecki-Duhamel, L.; Gardoll, O.; Trentesaux, M.; Mamede, A.S.; Fang, G.; Faye, J.; Touati, N.; Vezin, H.; Dubois, J.L.; Couturier, J.L.; Dumeignil, F. Highly Productive Iron Molybdate Mixed Oxides and Their Relevant Catalytic Properties for Direct Synthesis of 1,1-Dimethoxymethane from Methanol. Appl. Catal. B-Environ., 2014, 145, 126-135. https://doi.org/10.1016/j.apcatb.2013.01.043
(14) Yuan, Y.; Shido, T.; Iwasawa, Y. The New Catalytic Property of Supported Rhenium Oxides for Selective Oxidation of Methanol to Methylal. Chem. Commun., 2000, 15, 1421-1422. https://doi.org/10.1039/b003870i
(15) Nikonova, O.A.; Capron, M.; Fang, G.; Faye, J.; Mamede, A.S.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Seisenbaeva, G.A. Novel Approach to Rhenium Oxide Catalysts for Selective Oxidation of Methanol to DMM. J. Catal., 2011, 279, 310-318. https://doi.org/10.1016/j.jcat.2011.01.028
(16) Liu, H.; Iglesia, E. Selective Oxidation of Methanol and Ethanol on Supported Ruthenium Oxide Clusters at Low Temperatures. J. Phys. Chem. B, 2005, 109, 2155-2163. https://doi.org/10.1021/jp0401980
(17) Li, M.; Long, Y.; Deng, Z.; Zhang, H.; Yang, X.; Wang, G. Ruthenium Trichloride as a New Catalyst for Selective Production of Dimethoxymethane from Liquid Methanol with Molecular Oxygen as Sole Oxidant. Catal. Commun., 2015, 68, 46-48. https://doi.org/10.1016/j.catcom.2015.04.031
(18) Zou, S.; Wang, H.; Li, S.; Lu, B.; Zhao, J.; Cai, Q. Selective Oxidation of Methanol to Dimethoxymethane over Iron and Vanadate Modified Phosphotungstate. Appl. Surf. Sci., 2022, 574, 151516. https://doi.org/10.1016/j.apsusc.2021.151516
(19) Rocchiccioli-Deltcheff, C.; Aouissi, A.; Bettahar, M.M.; Launay, S.; Fournier, M. Catalysis by 12-Molybdophosphates 1. Catalytic Reactivity of 12-Molybdophosphoric Acid Related to Its Thermal Behavior Investigated through IR, Raman, Polarographic, and X-Ray Diffraction Studies: A Comparison with 12-Molybdosilicic Acid. J. Catal., 1996, 164, 16-27.
(20) Liu, H.; Iglesia, E. Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+nVnMo12-nPO40 Keggin Structures. J. Phys. Chem. B 2003, 107, 10840-10847. https://doi.org/10.1021/jp0301554
(21) Wang, W.X.; Gao, X.J.; Xiong, P.; Zhang, J.F.; Song, F.E.; Zhang, Q. de; Han, Y.Z.; Tan, Y.S. Low-Temperature Oxidation of Methanol to Dimethoxymethane over Mo-Sn Catalyst. J. Fuel Chem. Technol. 2021, 49, 1487-1494. https://doi.org/10.1016/S1872-5813(21)60094-4
(22) Fu, Y.; Shen, J. Selective Oxidation of Methanol to Dimethoxymethane under Mild Conditions over V2O5/TiO2 with Enhanced Surface Acidity. Chem. Commun. 2007, 21, 2172-2174. https://doi.org/10.1039/b618898b
(23) Lu, X.; Qin, Z.; Dong, M.; Zhu, H.; Wang, G.; Zhao, Y.; Fan, W.; Wang, J. Selective Oxidation of Methanol to Dimethoxymethane over Acid-Modified V2O5/TiO2 Catalysts. Fuel 2011, 90, 1335-1339. https://doi.org/10.1016/j.fuel.2011.01.007
(24) Broomhead, W.T.; Tian, W.; Herrera, J.E.; Chin, Y.H.C. Kinetic Coupling of Redox and Acid Chemistry in Methanol Partial Oxidation on Vanadium Oxide Catalysts. ACS Catal 2022, 12, 11801-11820. https://doi.org/10.1021/acscatal.2c01852
(25) Raun, K.V.; Johannessen, J.; McCormack, K.; Appel, C.C.; Baier, S.; Thorhauge, M.; Høj, M.; Jensen, A.D. Modeling of the Molybdenum Loss in Iron Molybdate Catalyst Pellets for Selective Oxidation of Methanol to Formaldehyde. Chem. Eng. J., 2019, 361, 1285-1295. https://doi.org/10.1016/j.cej.2018.12.142
(26) Yuan, M.; Tang, R.; Sun, X.; Zhang, Z.; Tian, Y.; Qiao, Y. Effects of the Support on Bifunctional One-Step Synthesis of Methylal: Via Methanol Oxidation Catalysed by Fe-Mo-Based Bifunctional Catalysts. Sustain. Energy Fuels 2021, 5, 246-260. https://doi.org/10.1039/d0se01194k
(27) Brookes, C.; Bowker, M.; Wells, P.P. Catalysts for the Selective Oxidation of Methanol. Catalysts., 2016, 6, 92. https://doi.org/10.3390/catal6070092
(28) Yuan, M.; Che, Y.; Tang, R.; Li, S.; Zhang, Y.; Tian, Y.; Qiao, Y.; Liu, Q.; Li, D. One-Step Synthesis of Methylal via Methanol Oxidation by Mo:Fe(x)/HZSM-5 Bifunctional Catalyst. Fuel 2020, 261, 116416. https://doi.org/10.1016/j.fuel.2019.116416
Descargas
Derechos de autor 2023 Jose Efrain Herrera, Andrés F. Rodriguez
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.