La Era Digital en la Química Farmacéutica: Transformando el Diseño de Medicamentos con Métodos Computacionales

  • Jesus Valdiviezo Dana-Farber Cancer Institute y Harvard Medical School, Boston, EEUU

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA.

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115 USA.

Palabras clave: Diseño de medicamentos, Quimica computacional, inteligencia artificial, Farmacología

Resumen

El diseño de medicamentos se ha beneficiado significativamente de los avances en la química computacional y las redes neuronales. En este artículo, exploramos el papel fundamental que desempeñan técnicas de la química computacional como la Teoría del Funcional de la Densidad (DFT), el Docking Molecular y la Dinámica Molecular (MD) en la comprensión y optimización de interacciones a nivel atómico y molecular. Además, examinamos cómo la integración de redes neuronales ha impulsado la precisión y eficiencia en el diseño de fármacos. Presentamos ejemplos concretos de proyectos de investigación que demuestran la sinergia entre estos métodos y destacan avances significativos en la búsqueda de soluciones médicas efectivas. Asimismo, discutimos los desafíos y consideraciones clave para seguir avanzando en este campo multidisciplinario.

Referencias bibliográficas

Dias, D. A.; Urban, S.; Roessner, U., A historical overview of natural products in drug discovery. Metabolites 2012, 2 (2), 303-336 https://www.mdpi.com/2218-1989/2/2/303

Rubin, R. P., A brief history of great discoveries in pharmacology: in celebration of the centennial anniversary of the founding of the American Society of Pharmacology and Experimental Therapeutics. Pharmacol. Rev. 2007, 59 (4), 289-359. https://doi.org/10.1124/pr.107.70102

Baseden, K. A.; Tye, J. W., Introduction to density functional theory: Calculations by hand on the helium atom. J. Chem. Educ. 2014, 91 (12), 2116-2123. https://doi.org/10.1021/ed5004788

Prieto-Martínez, F. D.; Arciniega, M.; Medina-Franco, J. L., Molecular docking: current advances and challenges. TIP. Revista especializada en ciencias químico-biológicas 2018, 21. https://doi.org/10.22201/fesz.23958723e.2018.0.143

Lamberti, V. E.; Fosdick, L. D.; Jessup, E. R.; Schauble, C. J., A hands-on introduction to molecular dynamics. J. Chem. Educ. 2002, 79 (5), 601. https://doi.org/10.1021/ed079p601

Schlander, M.; Hernandez-Villafuerte, K.; Cheng, C.-Y.; Mestre-Ferrandiz, J.; Baumann, M., How much does it cost to research and develop a new drug? A systematic review and assessment. PharmacoEconomics 2021, 39, 1243-1269. https://doi.org/10.1007/s40273-021-01065-y

Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D., In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851

Chan, H. S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S., Advancing drug discovery via artificial intelligence. Trends Pharm. Sci. 2019, 40 (8), 592-604. https://doi.org/10.1016/j.tips.2019.06.004

Zhang, Y.; Luo, M.; Wu, P.; Wu, S.; Lee, T.-Y.; Bai, C., Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci. 2022, 23 (21), 13568. https://doi.org/10.3390/ijms232113568

Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.; Tkatchenko, A., Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 2021, 121 (16), 9816-9872. https://doi.org/10.1021/acs.chemrev.1c00107

Sanam, M.; Ashraf, S.; Saeed, M.; Khalid, A.; Abdalla, A. N.; Qureshi, U.; Ul‐Haq, Z., Cebranopadol: An Assessment for Its Biased Activation Potential at the Mu Opioid Receptor by DFT, Molecular Docking and Molecular Dynamic Simulation Studies. ChemistrySelect 2023, 8 (37), e202302090. https://doi.org/10.1002/slct.202302090

Cavalli, A.; Carloni, P.; Recanatini, M., Target-related applications of first principles quantum chemical methods in drug design. Chem. Rev. 2006, 106 (9), 3497-3519. https://doi.org/10.1021/cr050579p

Kashyap, J.; Datta, D., Drug repurposing for SARS-CoV-2: a high-throughput molecular docking, molecular dynamics, machine learning, and DFT study. J. Mater Science 2022, 57 (23), 10780-10802. https://doi.org/10.1007/s10853-022-07195-8

Murugan, N. A.; Podobas, A.; Gadioli, D.; Vitali, E.; Palermo, G.; Markidis, S., A review on parallel virtual screening softwares for high-performance computers. Pharmaceuticals 2022, 15 (1), 63. https://doi.org/10.3390/ph15010063

El Fadili, M.; Er-Rajy, M.; Kara, M.; Assouguem, A.; Belhassan, A.; Alotaibi, A.; Mrabti, N. N.; Fidan, H.; Ullah, R.; Ercisli, S., QSAR, ADMET In silico pharmacokinetics, molecular docking and molecular dynamics studies of novel bicyclo (aryl methyl) benzamides as potent GlyT1 inhibitors for the treatment of schizophrenia. Pharmaceuticals 2022, 15 (6), 670. https://doi.org/10.3390/ph15060670

Van Houten, J., A century of chemical dynamics traced through the nobel prizes. 1998: Walter kohn and john pople. J. Chem. Educ. 2002, 79 (11), 1297. https://doi.org/10.1021/ed079p1297

Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A., Density functional theory is straying from the path toward the exact functional. Science 2017, 355 (6320), 49-52. https://doi.org/10.1126/science.aah5975

Mardirossian, N.; Head-Gordon, M., Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115 (19), 2315-2372. https://doi.org/10.1080/00268976.2017.1333644

Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P., Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016, 21 (6), 748. https://doi.org/10.3390/molecules21060748

Vennelakanti, V.; Nazemi, A.; Mehmood, R.; Steeves, A. H.; Kulik, H. J., Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Curr. Opin. Struct. Biol. 2022, 72, 9-17. https://doi.org/10.1016/j.sbi.2021.07.004

Huang, B.; Von Lilienfeld, O. A., Ab initio machine learning in chemical compound space. Chem. Rev. 2021, 121 (16), 10001-10036. https://doi.org/10.1021/acs.chemrev.0c01303

Kar, R. K., Benefits of hybrid QM/MM over traditional classical mechanics in Pharmaceutical systems. Drug Discovery Today 2023, 28 (1), 103374. https://doi.org/10.1016/j.drudis.2022.103374

Anighoro, A. (2020). Underappreciated Chemical Interactions in Protein–Ligand Complexes. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_5

Yang, C.; Chen, E. A.; Zhang, Y., Protein–ligand docking in the machine-learning era. Molecules 2022, 27 (14), 4568. https://doi.org/10.3390/molecules27144568

André, J.-M., The Nobel Prize in Chemistry 2013: The Alliance of Newton’s Apple and Schrödinger’s Cat. Chem. Int. 2014, 36 (2), 2-7. https://doi.org/10.1515/ci.2014.36.2.2

Salo-Ahen, O. M.; Alanko, I.; Bhadane, R.; Bonvin, A. M.; Honorato, R. V.; Hossain, S.; Juffer, A. H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A. S., Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020, 9 (1), 71. https://doi.org/10.3390/pr9010071

Durrant, J. D.; McCammon, J. A., Molecular dynamics simulations and drug discovery. BMC biology 2011, 9 (1), 1-9. https://doi.org/10.1186/1741-7007-9-71

Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S., Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019, 119 (18), 10520-10594. https://doi.org/10.1021/acs.chemrev.8b00728

Walczak, S., Artificial neural networks. In Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction, IGI global: 2019; pp 40-53. https://doi.org/10.4018/978-1-5225-7368-5.ch004

Kim, J.; Park, S.; Min, D.; Kim, W., Comprehensive survey of recent drug discovery using deep learning. Int. J. Mol. Sci. 2021, 22 (18), 9983. https://doi.org/10.3390/ijms22189983

Mater, A. C.; Coote, M. L., Deep learning in chemistry. J. Chem. Inf. Model. 2019, 59 (6), 2545-2559. https://doi.org/10.1021/acs.jcim.9b00266

Kulichenko, M.; Smith, J. S.; Nebgen, B.; Li, Y. W.; Fedik, N.; Boldyrev, A. I.; Lubbers, N.; Barros, K.; Tretiak, S., The rise of neural networks for materials and chemical dynamics. J. Phys. Chem. Lett. 2021, 12 (26), 6227-6243. https://doi.org/10.1021/acs.jpclett.1c01357

Jiménez-Luna, J.; Grisoni, F.; Schneider, G., Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2 (10), 573-584. https://doi.org/10.1038/s42256-020-00236-4

Deng, T.; Jia, G.-z., Prediction of aqueous solubility of compounds based on neural network. Mol. Phys. 2020, 118 (2), e1600754. https://doi.org/10.1080/00268976.2019.1600754

Pu, L.; Naderi, M.; Liu, T.; Wu, H.-C.; Mukhopadhyay, S.; Brylinski, M., e toxpred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019, 20, 1-15. https://doi.org/10.1186/s40360-018-0282-6

Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52 (7), 1757-1768. https://doi.org/10.1021/ci3001277

Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A., Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. biotechnol. 2019, 37 (9), 1038-1040. https://doi.org/10.1038/s41587-019-0224-x

Wang, H.; Liu, H.; Ning, S.; Zeng, C.; Zhao, Y., DLSSAffinity: protein–ligand binding affinity prediction via a deep learning model. Phys. Chem. Chem. Phys. 2022, 24 (17), 10124-10133. https://doi.org/10.1039/D1CP05558E

Sabe, V. T.; Ntombela, T.; Jhamba, L. A.; Maguire, G. E.; Govender, T.; Naicker, T.; Kruger, H. G., Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705

Arshia, A. H.; Shadravan, S.; Solhjoo, A.; Sakhteman, A.; Sami, A., De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Comput. Biol. Med. 2021, 139, 104967. https://doi.org/10.1016/j.compbiomed.2021.104967

Liu, G.; Catacutan, D. B.; Rathod, K.; Swanson, K.; Jin, W.; Mohammed, J. C.; Chiappino-Pepe, A.; Syed, S. A.; Fragis, M.; Rachwalski, K., Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 2023, 1-9. https://doi.org/10.1038/s41589-023-01349-8

Copeland, M. M.; Do, H. N.; Votapka, L.; Joshi, K.; Wang, J.; Amaro, R. E.; Miao, Y., Gaussian accelerated molecular dynamics in OpenMM. J. Phys. Chem. B 2022, 126 (31), 5810-5820. https://doi.org/10.1021/acs.jpcb.2c03765

Thomas, M., Boardman, A., Garcia-Ortegon, M., Yang, H., de Graaf, C., Bender, A. (2022). Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_1

Arantes, P. R.; Polêto, M. D.; Pedebos, C.; Ligabue-Braun, R., Making it rain: cloud-based molecular simulations for everyone. J. Chem. Inf. Model. 2021, 61 (10), 4852-4856. https://doi.org/10.1021/acs.jcim.1c00998

Hosny, A.; Aerts, H. J., Artificial intelligence for global health. Science 2019, 366 (6468), 955-956. https://doi.org/10.1126/science.aay5189

Blanco-Gonzalez, A.; Cabezon, A.; Seco-Gonzalez, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Pineiro, A.; Garcia-Fandino, R., The role of ai in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals 2023, 16 (6), 891. https://doi.org/10.3390/ph16060891

Yver, A., Osimertinib (AZD9291)—a science-driven, collaborative approach to rapid drug design and development. Annals of Oncology 2016, 27 (6), 1165-1170. https://doi.org/10.1093/annonc/mdw129

Yazdanpanah, N.; Rezaei, N., Interdisciplinary Approaches in Cancer Research. Springer: 2022. https://doi.org/10.1007/16833_2022_19

Artrith, N.; Butler, K. T.; Coudert, F.-X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A., Best practices in machine learning for chemistry. Nat. Chem. 2021, 13 (6), 505-508. https://doi.org/10.1038/s41557-021-00716-z

Walters, W. P.; Murcko, M., Assessing the impact of generative AI on medicinal chemistry. Nat. biotechnol. 2020, 38 (2), 143-145. https://doi.org/10.1038/s41587-020-0418-2

Melissa, L. B.; Daren, F.; Matteo, F.; Mihajlo, F.; Lizbé, K.; Matthew, C. R.; The, C. M. C.; John, D. C.; Alpha, A. L.; Nir, L.; Annette von, D.; Frank von, D., Open Science Discovery of Potent Non-Covalent SARS-CoV-2 Main Protease Inhibitors. bioRxiv 2023, 2020.10.29.339317.https://doi.org/10.1101/2020.10.29.339317

Descargas

El artículo aún no registra descargas.
Cómo citar
Valdiviezo, J. (2023). La Era Digital en la Química Farmacéutica: Transformando el Diseño de Medicamentos con Métodos Computacionales. Revista De Química, 37(2), 11-20. https://doi.org/10.18800/quimica.202302.002