La Era Digital en la Química Farmacéutica: Transformando el Diseño de Medicamentos con Métodos Computacionales
Resumen
El diseño de medicamentos se ha beneficiado significativamente de los avances en la química computacional y las redes neuronales. En este artículo, exploramos el papel fundamental que desempeñan técnicas de la química computacional como la Teoría del Funcional de la Densidad (DFT), el Docking Molecular y la Dinámica Molecular (MD) en la comprensión y optimización de interacciones a nivel atómico y molecular. Además, examinamos cómo la integración de redes neuronales ha impulsado la precisión y eficiencia en el diseño de fármacos. Presentamos ejemplos concretos de proyectos de investigación que demuestran la sinergia entre estos métodos y destacan avances significativos en la búsqueda de soluciones médicas efectivas. Asimismo, discutimos los desafíos y consideraciones clave para seguir avanzando en este campo multidisciplinario.
Referencias bibliográficas
Dias, D. A.; Urban, S.; Roessner, U., A historical overview of natural products in drug discovery. Metabolites 2012, 2 (2), 303-336 https://www.mdpi.com/2218-1989/2/2/303
Rubin, R. P., A brief history of great discoveries in pharmacology: in celebration of the centennial anniversary of the founding of the American Society of Pharmacology and Experimental Therapeutics. Pharmacol. Rev. 2007, 59 (4), 289-359. https://doi.org/10.1124/pr.107.70102
Baseden, K. A.; Tye, J. W., Introduction to density functional theory: Calculations by hand on the helium atom. J. Chem. Educ. 2014, 91 (12), 2116-2123. https://doi.org/10.1021/ed5004788
Prieto-Martínez, F. D.; Arciniega, M.; Medina-Franco, J. L., Molecular docking: current advances and challenges. TIP. Revista especializada en ciencias químico-biológicas 2018, 21. https://doi.org/10.22201/fesz.23958723e.2018.0.143
Lamberti, V. E.; Fosdick, L. D.; Jessup, E. R.; Schauble, C. J., A hands-on introduction to molecular dynamics. J. Chem. Educ. 2002, 79 (5), 601. https://doi.org/10.1021/ed079p601
Schlander, M.; Hernandez-Villafuerte, K.; Cheng, C.-Y.; Mestre-Ferrandiz, J.; Baumann, M., How much does it cost to research and develop a new drug? A systematic review and assessment. PharmacoEconomics 2021, 39, 1243-1269. https://doi.org/10.1007/s40273-021-01065-y
Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D., In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851
Chan, H. S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S., Advancing drug discovery via artificial intelligence. Trends Pharm. Sci. 2019, 40 (8), 592-604. https://doi.org/10.1016/j.tips.2019.06.004
Zhang, Y.; Luo, M.; Wu, P.; Wu, S.; Lee, T.-Y.; Bai, C., Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci. 2022, 23 (21), 13568. https://doi.org/10.3390/ijms232113568
Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.; Tkatchenko, A., Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 2021, 121 (16), 9816-9872. https://doi.org/10.1021/acs.chemrev.1c00107
Sanam, M.; Ashraf, S.; Saeed, M.; Khalid, A.; Abdalla, A. N.; Qureshi, U.; Ul‐Haq, Z., Cebranopadol: An Assessment for Its Biased Activation Potential at the Mu Opioid Receptor by DFT, Molecular Docking and Molecular Dynamic Simulation Studies. ChemistrySelect 2023, 8 (37), e202302090. https://doi.org/10.1002/slct.202302090
Cavalli, A.; Carloni, P.; Recanatini, M., Target-related applications of first principles quantum chemical methods in drug design. Chem. Rev. 2006, 106 (9), 3497-3519. https://doi.org/10.1021/cr050579p
Kashyap, J.; Datta, D., Drug repurposing for SARS-CoV-2: a high-throughput molecular docking, molecular dynamics, machine learning, and DFT study. J. Mater Science 2022, 57 (23), 10780-10802. https://doi.org/10.1007/s10853-022-07195-8
Murugan, N. A.; Podobas, A.; Gadioli, D.; Vitali, E.; Palermo, G.; Markidis, S., A review on parallel virtual screening softwares for high-performance computers. Pharmaceuticals 2022, 15 (1), 63. https://doi.org/10.3390/ph15010063
El Fadili, M.; Er-Rajy, M.; Kara, M.; Assouguem, A.; Belhassan, A.; Alotaibi, A.; Mrabti, N. N.; Fidan, H.; Ullah, R.; Ercisli, S., QSAR, ADMET In silico pharmacokinetics, molecular docking and molecular dynamics studies of novel bicyclo (aryl methyl) benzamides as potent GlyT1 inhibitors for the treatment of schizophrenia. Pharmaceuticals 2022, 15 (6), 670. https://doi.org/10.3390/ph15060670
Van Houten, J., A century of chemical dynamics traced through the nobel prizes. 1998: Walter kohn and john pople. J. Chem. Educ. 2002, 79 (11), 1297. https://doi.org/10.1021/ed079p1297
Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A., Density functional theory is straying from the path toward the exact functional. Science 2017, 355 (6320), 49-52. https://doi.org/10.1126/science.aah5975
Mardirossian, N.; Head-Gordon, M., Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115 (19), 2315-2372. https://doi.org/10.1080/00268976.2017.1333644
Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P., Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016, 21 (6), 748. https://doi.org/10.3390/molecules21060748
Vennelakanti, V.; Nazemi, A.; Mehmood, R.; Steeves, A. H.; Kulik, H. J., Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Curr. Opin. Struct. Biol. 2022, 72, 9-17. https://doi.org/10.1016/j.sbi.2021.07.004
Huang, B.; Von Lilienfeld, O. A., Ab initio machine learning in chemical compound space. Chem. Rev. 2021, 121 (16), 10001-10036. https://doi.org/10.1021/acs.chemrev.0c01303
Kar, R. K., Benefits of hybrid QM/MM over traditional classical mechanics in Pharmaceutical systems. Drug Discovery Today 2023, 28 (1), 103374. https://doi.org/10.1016/j.drudis.2022.103374
Anighoro, A. (2020). Underappreciated Chemical Interactions in Protein–Ligand Complexes. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_5
Yang, C.; Chen, E. A.; Zhang, Y., Protein–ligand docking in the machine-learning era. Molecules 2022, 27 (14), 4568. https://doi.org/10.3390/molecules27144568
André, J.-M., The Nobel Prize in Chemistry 2013: The Alliance of Newton’s Apple and Schrödinger’s Cat. Chem. Int. 2014, 36 (2), 2-7. https://doi.org/10.1515/ci.2014.36.2.2
Salo-Ahen, O. M.; Alanko, I.; Bhadane, R.; Bonvin, A. M.; Honorato, R. V.; Hossain, S.; Juffer, A. H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A. S., Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020, 9 (1), 71. https://doi.org/10.3390/pr9010071
Durrant, J. D.; McCammon, J. A., Molecular dynamics simulations and drug discovery. BMC biology 2011, 9 (1), 1-9. https://doi.org/10.1186/1741-7007-9-71
Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S., Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019, 119 (18), 10520-10594. https://doi.org/10.1021/acs.chemrev.8b00728
Walczak, S., Artificial neural networks. In Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction, IGI global: 2019; pp 40-53. https://doi.org/10.4018/978-1-5225-7368-5.ch004
Kim, J.; Park, S.; Min, D.; Kim, W., Comprehensive survey of recent drug discovery using deep learning. Int. J. Mol. Sci. 2021, 22 (18), 9983. https://doi.org/10.3390/ijms22189983
Mater, A. C.; Coote, M. L., Deep learning in chemistry. J. Chem. Inf. Model. 2019, 59 (6), 2545-2559. https://doi.org/10.1021/acs.jcim.9b00266
Kulichenko, M.; Smith, J. S.; Nebgen, B.; Li, Y. W.; Fedik, N.; Boldyrev, A. I.; Lubbers, N.; Barros, K.; Tretiak, S., The rise of neural networks for materials and chemical dynamics. J. Phys. Chem. Lett. 2021, 12 (26), 6227-6243. https://doi.org/10.1021/acs.jpclett.1c01357
Jiménez-Luna, J.; Grisoni, F.; Schneider, G., Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2 (10), 573-584. https://doi.org/10.1038/s42256-020-00236-4
Deng, T.; Jia, G.-z., Prediction of aqueous solubility of compounds based on neural network. Mol. Phys. 2020, 118 (2), e1600754. https://doi.org/10.1080/00268976.2019.1600754
Pu, L.; Naderi, M.; Liu, T.; Wu, H.-C.; Mukhopadhyay, S.; Brylinski, M., e toxpred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019, 20, 1-15. https://doi.org/10.1186/s40360-018-0282-6
Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52 (7), 1757-1768. https://doi.org/10.1021/ci3001277
Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A., Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. biotechnol. 2019, 37 (9), 1038-1040. https://doi.org/10.1038/s41587-019-0224-x
Wang, H.; Liu, H.; Ning, S.; Zeng, C.; Zhao, Y., DLSSAffinity: protein–ligand binding affinity prediction via a deep learning model. Phys. Chem. Chem. Phys. 2022, 24 (17), 10124-10133. https://doi.org/10.1039/D1CP05558E
Sabe, V. T.; Ntombela, T.; Jhamba, L. A.; Maguire, G. E.; Govender, T.; Naicker, T.; Kruger, H. G., Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705
Arshia, A. H.; Shadravan, S.; Solhjoo, A.; Sakhteman, A.; Sami, A., De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Comput. Biol. Med. 2021, 139, 104967. https://doi.org/10.1016/j.compbiomed.2021.104967
Liu, G.; Catacutan, D. B.; Rathod, K.; Swanson, K.; Jin, W.; Mohammed, J. C.; Chiappino-Pepe, A.; Syed, S. A.; Fragis, M.; Rachwalski, K., Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 2023, 1-9. https://doi.org/10.1038/s41589-023-01349-8
Copeland, M. M.; Do, H. N.; Votapka, L.; Joshi, K.; Wang, J.; Amaro, R. E.; Miao, Y., Gaussian accelerated molecular dynamics in OpenMM. J. Phys. Chem. B 2022, 126 (31), 5810-5820. https://doi.org/10.1021/acs.jpcb.2c03765
Thomas, M., Boardman, A., Garcia-Ortegon, M., Yang, H., de Graaf, C., Bender, A. (2022). Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_1
Arantes, P. R.; Polêto, M. D.; Pedebos, C.; Ligabue-Braun, R., Making it rain: cloud-based molecular simulations for everyone. J. Chem. Inf. Model. 2021, 61 (10), 4852-4856. https://doi.org/10.1021/acs.jcim.1c00998
Hosny, A.; Aerts, H. J., Artificial intelligence for global health. Science 2019, 366 (6468), 955-956. https://doi.org/10.1126/science.aay5189
Blanco-Gonzalez, A.; Cabezon, A.; Seco-Gonzalez, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Pineiro, A.; Garcia-Fandino, R., The role of ai in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals 2023, 16 (6), 891. https://doi.org/10.3390/ph16060891
Yver, A., Osimertinib (AZD9291)—a science-driven, collaborative approach to rapid drug design and development. Annals of Oncology 2016, 27 (6), 1165-1170. https://doi.org/10.1093/annonc/mdw129
Yazdanpanah, N.; Rezaei, N., Interdisciplinary Approaches in Cancer Research. Springer: 2022. https://doi.org/10.1007/16833_2022_19
Artrith, N.; Butler, K. T.; Coudert, F.-X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A., Best practices in machine learning for chemistry. Nat. Chem. 2021, 13 (6), 505-508. https://doi.org/10.1038/s41557-021-00716-z
Walters, W. P.; Murcko, M., Assessing the impact of generative AI on medicinal chemistry. Nat. biotechnol. 2020, 38 (2), 143-145. https://doi.org/10.1038/s41587-020-0418-2
Melissa, L. B.; Daren, F.; Matteo, F.; Mihajlo, F.; Lizbé, K.; Matthew, C. R.; The, C. M. C.; John, D. C.; Alpha, A. L.; Nir, L.; Annette von, D.; Frank von, D., Open Science Discovery of Potent Non-Covalent SARS-CoV-2 Main Protease Inhibitors. bioRxiv 2023, 2020.10.29.339317.https://doi.org/10.1101/2020.10.29.339317
Descargas
Derechos de autor 2023 Jesus Valdiviezo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.