La aplicación y práctica de la química en dispositivos ponibles para el análisis de fluidos corporales

  • Hsin-Hua Nien National Yang Ming Chiao Tung University

    (1) Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

    (2) College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

  • Bor-Ran Li National Yang Ming Chiao Tung University

    (1)  Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

    (2)  Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

    (3) Center for Emergent Functional Matter of Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Palabras clave: Dispositivo ponible, glucosa, lactato, atencion médica

Resumen

Los dispositivos ponibles mejoran la atención médica personalizada. Estos dispositivos pueden presentarse en varias formas como lentes de contacto, relojes y parches cutáneos para adaptarse a la aplicación clínica final. Los dispositivos ponibles se pueden usar para analizar diferentes fluidos corporales como el líquido intersticial, la orina, las lágrimas, la saliva y el sudor. La química juega un papel esencial en el análisis de los componentes de los fluidos corporales. De hecho, el diseño del método de análisis químico afecta el modo de visualización de los resultados analíticos, la precisión de la detección y la estabilidad del dispositivo. Este artículo es una revisión de cómo se puede aplicar de manera práctica la química en dispositivos ponibles para el análisis de fluidos corporales. La integración de la química con otros sistemas de detección ofrece muchas posibilidades y oportunidades para el desarrollo futuro de dispositivos ponibles para el cuidado de la salud.

Referencias bibliográficas

(1) An, H.; Chen, L.; Liu, X.; Zhao, B.; Zhang, H.; Wu, Z. Microfluidic Contact Lenses for Unpowered, Continuous and Non-Invasive Intraocular Pressure Monitoring. Sensors and Actuators A: Physical 2019, 295, 177–187. https://doi.org/10.1016/j.sna.2019.04.050

(2) An, H.; Chen, L.; Liu, X.; Zhao, B.; Ma, D.; Wu, Z. A Method of Manufacturing Microfluidic Contact Lenses by Using Irreversible Bonding and Thermoforming. J. Micromech. Microeng. 2018, 28 (10), 105008. https://doi.org/10.1088/1361-6439/aaceb7

(3) Ranamukhaarachchi, S. A.; Padeste, C.; Dübner, M.; Häfeli, U. O.; Stoeber, B.; Cadarso, V. J. Integrated Hollow Microneedle-Optofluidic Biosensor for Therapeutic Drug Monitoring in Sub-Nanoliter Volumes. Sci Rep 2016, 6 (1), 29075. https://doi.org/10.1038/srep29075

(4) Jina, A.; Tierney, M. J.; Tamada, J. A.; McGill, S.; Desai, S.; Chua, B.; Chang, A.; Christiansen, M. Design, Development, and Evaluation of a Novel Microneedle Array-Based Continuous Glucose Monitor. J Diabetes Sci Technol 2014, 8 (3), 483–487. https://doi.org/10.1177/1932296814526191

(5) Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; Manco, M. C.; Wang, L.; Ammann, K. R.; Jang, K.-I.; Won, P.; Han, S.; Ghaffari, R.; Paik, U.; Slepian, M. J.; Balooch, G.; Huang, Y.; Rogers, J. A. A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat. Sci. Transl. Med. 2016, 8 (366). https://doi.org/10.1126/scitranslmed.aaf2593

(6) Choi, J.; Xue, Y.; Xia, W.; Ray, T. R.; Reeder, J. T.; Bandodkar, A. J.; Kang, D.; Xu, S.; Huang, Y.; Rogers, J. A. Soft, Skin-Mounted Microfluidic Systems for Measuring Secretory Fluidic Pressures Generated at the Surface of the Skin by Eccrine Sweat Glands. Lab Chip 2017, 17 (15), 2572–2580. https://doi.org/10.1039/C7LC00525C

(7) Choi, J.; Kang, D.; Han, S.; Kim, S. B.; Rogers, J. A. Thin, Soft, Skin-Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of Sweat. Advanced Healthcare Materials 2017, 6 (5), 1601355. https://doi.org/10.1002/adhm.201601355

(8) Yang, X.; Yao, H.; Zhao, G.; Ameer, G. A.; Sun, W.; Yang, J.; Mi, S. Flexible, Wearable Microfluidic Contact Lens with Capillary Networks for Tear Diagnostics. J Mater Sci 2020, 55 (22), 9551–9561. https://doi.org/10.1007/s10853-020-04688-2

(9) Moreddu, R.; Wolffsohn, J. S.; Vigolo, D.; Yetisen, A. K. Laser-Inscribed Contact Lens Sensors for the Detection of Analytes in the Tear Fluid. Sensors and Actuators B: Chemical 2020, 317, 128183. https://doi.org/10.1016/j.snb.2020.128183

(10) Choi, J.; Bandodkar, A. J.; Reeder, J. T.; Ray, T. R.; Turnquist, A.; Kim, S. B.; Nyberg, N.; Hourlier-Fargette, A.; Model, J. B.; Aranyosi, A. J.; Xu, S.; Ghaffari, R.; Rogers, J. A. Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sens. 2019, 4 (2), 379–388. https://doi.org/10.1021/acssensors.8b01218

(11) Reeder, J. T.; Choi, J.; Xue, Y.; Gutruf, P.; Hanson, J.; Liu, M.; Ray, T.; Bandodkar, A. J.; Avila, R.; Xia, W.; Krishnan, S.; Xu, S.; Barnes, K.; Pahnke, M.; Ghaffari, R.; Huang, Y.; Rogers, J. A. Waterproof, Electronics-Enabled, Epidermal Microfluidic Devices for Sweat Collection, Biomarker Analysis, and Thermography in Aquatic Settings. Sci. Adv. 2019, 5 (1), eaau6356. https://doi.org/10.1126/sciadv.aau6356

(12) Benito-Lopez, F.; Coyle, S.; Byrne, R.; Smeaton, A.; O’Connor, N. E.; Diamond, D. Pump Less Wearable Microfluidic Device for Real Time PH Sweat Monitoring. Procedia Chemistry 2009, 1 (1), 1103–1106. https://doi.org/10.1016/j.proche.2009.07.275

(13) Moreddu, R.; Nasrollahi, V.; Kassanos, P.; Dimov, S.; Vigolo, D.; Yetisen, A. K. Lab-on-a-Contact Lens Platforms Fabricated by Multi-Axis Femtosecond Laser Ablation. Small 2021, 17 (38), 2102008. https://doi.org/10.1002/smll.202102008

(14) Martín, A.; Kim, J.; Kurniawan, J. F.; Sempionatto, J. R.; Moreto, J. R.; Tang, G.; Campbell, A. S.; Shin, A.; Lee, M. Y.; Liu, X.; Wang, J. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection. ACS Sens. 2017, 2 (12), 1860–1868. https://doi.org/10.1021/acssensors.7b00729

(15) Lee, Y.; Howe, C.; Mishra, S.; Lee, D. S.; Mahmood, M.; Piper, M.; Kim, Y.; Tieu, K.; Byun, H.-S.; Coffey, J. P.; Shayan, M.; Chun, Y.; Costanzo, R. M.; Yeo, W.-H. Wireless, Intraoral Hybrid Electronics for Real-Time Quantification of Sodium Intake toward Hypertension Management. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (21), 5377–5382. https://doi.org/10.1073/pnas.1719573115

(16) Vinoth, R.; Nakagawa, T.; Mathiyarasu, J.; Mohan, A. M. V. Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sens. 2021, 6 (3), 1174–1186. https://doi.org/10.1021/acssensors.0c02446

(17) Anastasova, S.; Crewther, B.; Bembnowicz, P.; Curto, V.; Ip, H. M.; Rosa, B.; Yang, G.-Z. A Wearable Multisensing Patch for Continuous Sweat Monitoring. Biosensors and Bioelectronics 2017, 93, 139–145. https://doi.org/10.1016/j.bios.2016.09.038

(18) Zhang, S.; Zahed, M. A.; Sharifuzzaman, Md.; Yoon, S.; Hui, X.; Chandra Barman, S.; Sharma, S.; Yoon, H. S.; Park, C.; Park, J. Y. A Wearable Battery-Free Wireless and Skin-Interfaced Microfluidics Integrated Electrochemical Sensing Patch for on-Site Biomarkers Monitoring in Human Perspiration. Biosensors and Bioelectronics 2021, 175, 112844. https://doi.org/10.1016/j.bios.2020.112844

(19) Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Skin-like Biosensor System via Electrochemical Channels for Noninvasive Blood Glucose Monitoring. Sci Adv 2017, 3 (12), e1701629. https://doi.org/10.1126/sciadv.1701629

(20) Arakawa, T.; Tomoto, K.; Nitta, H.; Toma, K.; Takeuchi, S.; Sekita, T.; Minakuchi, S.; Mitsubayashi, K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal. Chem. 2020, 92 (18), 12201–12207. https://doi.org/10.1021/acs.analchem.0c01201

(21) García-Carmona, L.; Martín, A.; Sempionatto, J. R.; Moreto, J. R.; González, M. C.; Wang, J.; Escarpa, A. Pacifier Biosensor: Toward Noninvasive Saliva Biomarker Monitoring. Anal. Chem. 2019, 91 (21), 13883–13891. https://doi.org/10.1021/acs.analchem.9b03379

(22) Pankratov, D.; González-Arribas, E.; Blum, Z.; Shleev, S. Tear Based Bioelectronics. Electroanalysis 2016, 28 (6), 1250–1266. https://doi.org/10.1002/elan.201501116

(23) Kim, J.; Kim, M.; Lee, M.-S.; Kim, K.; Ji, S.; Kim, Y.-T.; Park, J.; Na, K.; Bae, K.-H.; Kyun Kim, H.; Bien, F.; Young Lee, C.; Park, J.-U. Wearable Smart Sensor Systems Integrated on Soft Contact Lenses for Wireless Ocular Diagnostics. Nat Commun 2017, 8 (1), 14997. https://doi.org/10.1038/ncomms14997

(24) Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-Dimensional Paper-Based Microfluidic Electrochemical Integrated Devices (3D-PMED) for Wearable Electrochemical Glucose Detection. RSC Adv. 2019, 9 (10), 5674–5681. https://doi.org/10.1039/C8RA09157A

(25) Lin, H.; Tan, J.; Zhu, J.; Lin, S.; Zhao, Y.; Yu, W.; Hojaiji, H.; Wang, B.; Yang, S.; Cheng, X.; Wang, Z.; Tang, E.; Yeung, C.; Emaminejad, S. A Programmable Epidermal Microfluidic Valving System for Wearable Biofluid Management and Contextual Biomarker Analysis. Nat Commun 2020, 11 (1), 4405. https://doi.org/10.1038/s41467-020-18238-6

(26) Lin, H.; Zhao, Y.; Lin, S.; Wang, B.; Yeung, C.; Cheng, X.; Wang, Z.; Cai, T.; Yu, W.; King, K.; Tan, J.; Salahi, K.; Hojaiji, H.; Emaminejad, S. A Rapid and Low-Cost Fabrication and Integration Scheme to Render 3D Microfluidic Architectures for Wearable Biofluid Sampling, Manipulation, and Sensing. Lab Chip 2019, 19 (17), 2844–2853. https://doi.org/10.1039/C9LC00418A .

(27) Kownacka, A. E.; Vegelyte, D.; Joosse, M.; Anton, N.; Toebes, B. J.; Lauko, J.; Buzzacchera, I.; Lipinska, K.; Wilson, D. A.; Geelhoed-Duijvestijn, N.; Wilson, C. J. Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules 2018, 19 (11), 4504–4511. https://doi.org/10.1021/acs.biomac.8b01429

(28) Yokus, M. A.; Saha, T.; Fang, J.; Dickey, M. D.; Velev, O. D.; Daniele, M. A. Towards Wearable Electrochemical Lactate Sensing Using Osmotic-Capillary Microfluidic Pumping. In 2019 IEEE SENSORS; 2019; pp 1–4. https://doi.org/10.1109/SENSORS43011.2019.8956651

(29) Lee, H.-B.; Meeseepong, M.; Trung, T. Q.; Kim, B.-Y.; Lee, N.-E. A Wearable Lab-on-a-Patch Platform with Stretchable Nanostructured Biosensor for Non-Invasive Immunodetection of Biomarker in Sweat. Biosensors and Bioelectronics 2020, 156, 112133. https://doi.org/10.1016/j.bios.2020.112133

(30) Xuan, X.; Pérez-Ràfols, C.; Chen, C.; Cuartero, M.; Crespo, G. A. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens. 2021, 6 (7), 2763–2771. https://doi.org/10.1021/acssensors.1c01009

(31) Lee, H.; Hong, Y. J.; Baik, S.; Hyeon, T.; Kim, D.-H. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Advanced Healthcare Materials 2018, 7 (8), 1701150. https://doi.org/10.1002/adhm.201701150

(32) Madden, J.; O’Mahony, C.; Thompson, M.; O’Riordan, A.; Galvin, P. Biosensing in Dermal Interstitial Fluid Using Microneedle Based Electrochemical Devices. Sensing and Bio-Sensing Research 2020, 29, 100348. https://doi.org/10.1016/j.sbsr.2020.100348

(33) Samant, P. P.; Prausnitz, M. R. Mechanisms of Sampling Interstitial Fluid from Skin Using a Microneedle Patch. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (18), 4583–4588. https://doi.org/10.1073/pnas.1716772115

(34) Promphet, N.; Ummartyotin, S.; Ngeontae, W.; Puthongkham, P.; Rodthongkum, N. Non-Invasive Wearable Chemical Sensors in Real-Life Applications. Analytica Chimica Acta 2021, 1179, 338643. https://doi.org/10.1016/j.aca.2021.338643

(35) Bosch, J. A. The Use of Saliva Markers in Psychobiology: Mechanisms and Methods. In Monographs in Oral Science; Ligtenberg, A. J. M., Veerman, E. C. I., Eds.; S. Karger AG, 2014; Vol. 24, pp 99–108. https://doi.org/10.1159/000358864

(36) Lee, Y.-H.; Wong, D. T. Saliva: An Emerging Biofluid for Early Detection of Diseases. Am J Dent 2009, 22 (4), 241–248

(37) Kaufman, E.; Lamster, I. B. The Diagnostic Applications of Saliva— A Review. Critical Reviews in Oral Biology & Medicine 2002, 13 (2), 197–212. https://doi.org/10.1177/154411130201300209

(38) Wang, A.; Wang, C. P.; Tu, M.; Wong, D. T. W. Oral Biofluid Biomarker Research: Current Status and Emerging Frontiers. Diagnostics (Basel) 2016, 6 (4), 45. https://doi.org/10.3390/diagnostics6040045

(39) Zhang, C.-Z.; Cheng, X.-Q.; Li, J.-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.-D. Saliva in the Diagnosis of Diseases. Int J Oral Sci 2016, 8 (3), 133–137. https://doi.org/10.1038/ijos.2016.38

(40) Zhang, J.; Liu, J.; Su, H.; Sun, F.; Lu, Z.; Su, A. A Wearable Self-Powered Biosensor System Integrated with Diaper for Detecting the Urine Glucose of Diabetic Patients. Sensors and Actuators B: Chemical 2021, 341, 130046. https://doi.org/10.1016/j.snb.2021.130046

(41) Pilardeau, P.; Vaysse, J.; Garnier, M.; Joublin, M.; Valeri, L. Secretion of Eccrine Sweat Glands during Exercise. British Journal of Sports Medicine 1979, 13 (3), 118–121. https://doi.org/10.1136/bjsm.13.3.118

(42) Gamella, M.; Campuzano, S.; Manso, J.; Rivera, G. G. de; López-Colino, F.; Reviejo, A. J.; Pingarrón, J. M. A Novel Non-Invasive Electrochemical Biosensing Device for in Situ Determination of the Alcohol Content in Blood by Monitoring Ethanol in Sweat. Analytica Chimica Acta 2014, 806, 1–7. https://doi.org/10.1016/j.aca.2013.09.020

(43) Klesges, R. C. Changes in Bone Mineral Content in Male Athletes. Mechanisms of Action and Intervention Effects. JAMA: The Journal of the American Medical Association 1996, 276 (3), 226–230. https://doi.org/10.1001/jama.276.3.226

(44) Ray, T. R.; Ivanovic, M.; Curtis, P. M.; Franklin, D.; Guventurk, K.; Jeang, W. J.; Chafetz, J.; Gaertner, H.; Young, G.; Rebollo, S.; Model, J. B.; Lee, S. P.; Ciraldo, J.; Reeder, J. T.; Hourlier-Fargette, A.; Bandodkar, A. J.; Choi, J.; Aranyosi, A. J.; Ghaffari, R.; McColley, S. A.; Haymond, S.; Rogers, J. A. Soft, Skin-Interfaced Sweat Stickers for Cystic Fibrosis Diagnosis and Management. Sci. Transl. Med. 2021, 13 (587), eabd8109. https://doi.org/10.1126/scitranslmed.abd8109

(45) Burns, M.; Baselt, R. C. Monitoring Drug Use with a Sweat Patch: An Experiment with Cocaine*. Journal of Analytical Toxicology 1995, 19 (1), 41–48. https://doi.org/10.1093/jat/19.1.41

(46) Nie, C.; Frijns, A.; Zevenbergen, M.; Toonder, J. den. An Integrated Flex-Microfluidic-Si Chip Device towards Sweat Sensing Applications. Sensors and Actuators B: Chemical 2016, 227, 427–437. https://doi.org/10.1016/j.snb.2015.12.083

(47) Nyein, H. Y. Y.; Bariya, M.; Tran, B.; Ahn, C. H.; Brown, B. J.; Ji, W.; Davis, N.; Javey, A. A Wearable Patch for Continuous Analysis of Thermoregulatory Sweat at Rest. Nat Commun 2021, 12 (1), 1823. https://doi.org/10.1038/s41467-021-22109-z

(48) Shay, T.; Dickey, M. D.; Velev, O. D. Hydrogel-Enabled Osmotic Pumping for Microfluidics: Towards Wearable Human-Device Interfaces. Lab Chip 2017, 17 (4), 710–716. https://doi.org/10.1039/C6LC01486K

(49) Ma, B.; Chi, J.; Xu, C.; Ni, Y.; Zhao, C.; Liu, H. Wearable Capillary Microfluidics for Continuous Perspiration Sensing. Talanta 2020, 212, 120786. https://doi.org/10.1016/j.talanta.2020.120786

(50) Torrente-Rodríguez, R. M.; Tu, J.; Yang, Y.; Min, J.; Wang, M.; Song, Y.; Yu, Y.; Xu, C.; Ye, C.; IsHak, W. W.; Gao, W. Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless MHealth System. Matter 2020, 2 (4), 921–937. https://doi.org/10.1016/j.matt.2020.01.021

(51) Gao, Y.; Nguyen, D. T.; Yeo, T.; Lim, S. B.; Tan, W. X.; Madden, L. E.; Jin, L.; Long, J. Y. K.; Aloweni, F. A. B.; Liew, Y. J. A.; Tan, M. L. L.; Ang, S. Y.; Maniya, S. D.; Abdelwahab, I.; Loh, K. P.; Chen, C.-H.; Becker, D. L.; Leavesley, D.; Ho, J. S.; Lim, C. T. A Flexible Multiplexed Immunosensor for Point-of-Care in Situ Wound Monitoring. Sci Adv 2021, 7 (21), eabg9614. https://doi.org/10.1126/sciadv.abg9614

Descargas

El artículo aún no registra descargas.
Cómo citar
Nien, H.-H., & Li, B.-R. (2023). La aplicación y práctica de la química en dispositivos ponibles para el análisis de fluidos corporales. Revista De Química, 37(2), 21-32. https://doi.org/10.18800/quimica.202302.003