La revolución quimioinformática: enseñándole química a los robots
Resumen
En este artículo se describen los avances más recientes en la automatización de la química orgánica con un enfoque en la química medicinal. Diferentes plataformas han permitido la ejecución de cientos e incluso miles de reacciones en paralelo con el fin de acelerar el descubrimiento de un medicamento. Por otro lado, modelos de inteligencia artificial están siendo aplicados en química orgánica para diseñar experimentos con condiciones que aumenten la probabilidad de éxito. Estos avances en conjunto prometen revolucionar la síntesis orgánica y los campos de la industria que dependen de ella.
Referencias bibliográficas
(1) Cernak, T.; Gesmundo, N. J.; Dykstra, K.; Yu, Y.; Wu, Z.; Shi, Z. C.; Vachal, P.; Sperbeck, D.; He, S.; Murphy, B. A.; Sonatore, L.; Williams, S.; Madeira, M.; Verras, A.; Reiter, M.; Lee, C. H.; Cuff, J.; Sherer, E. C.; Kuethe, J.; Goble, S.; Perrotto, N.; Pinto, S.; Shen, D. M.; Nargund, R.; Balkovec, J.; DeVita, R. J.; Dreher, S. D. Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)Pyridinyl 1H benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors. J. Med. Chem. 2017, 60 (9), 3594–3605. https://doi.org/10.1021/acs.jmedchem.6b01543.
(2) Krska, S. W.; DiRocco, D. A.; Dreher, S. D.; Shevlin, M. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis. Acc. Chem. Res. 2017, 50 (12), 2976–2985. https://doi.org/10.1021/acs.accounts.7b00428.
(3) Montero Bastidas, J. R.; Marrouni, A. E.; Chiriac, M. I.; Struble, T.; Kalyani, D. Accelerating Drug Discovery by High-Throughput Experimentation; Medicinal Chemistry Reviews; 2022; pp 443–463. https://doi.org/10.1021/mc-2022-vol57.ch18
(4) Mennen, S. M.; Alhambra, C.; Allen, C. L.; Barberis, M.; Berritt, S.; Brandt, T. A.; Campbell, A. D.; Castañón, J.; Cherney, A. H.; Christensen, M.; Damon, D. B.; Diego, J. E. de; García-Cerrada, S.; García-Losada, P.; Haro, R.; Janey, J.; Leitch, D. C.; Li, L.; Liu, F.; Lobben, P. C.; MacMillan, D. W. C.; Magano, J.; McInturff, E.; Monfette, S.; Post, R. J.; Schultz, D.; Sitter, B. J.; Stevens, J. M.; Strambeanu, I. I.; Twilton, J.; Wang, K.; Zajac, M. A. The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Org. Process Res. Dev. 2019, 23 (6), 1213–1242. https://doi.org/10.1021/acs.oprd.9b00140
(5) Lin, S.; Dikler, S.; Blincoe, W. D.; Ferguson, R. D.; Sheridan, R. P.; Peng, Z.; Conway, D. V.; Zawatzky, K.; Wang, H.; Cernak, T.; Davies, I. W.; DiRocco, D. A.; Sheng, H.; Welch, C. J.; Dreher, S. D. Mapping the Dark Space of Chemical Reactions with Extended Nanomole Synthesis and MALDI-TOF MS. Science 2018, 361 (6402). https://doi.org/10.1126/science.aar6236.
(6) Osipyan, A.; Shaabani, S.; Warmerdam, R.; Shishkina, S. V.; Boltz, H.; Dömling, A. Automated, Accelerated Nanoscale Synthesis of Iminopyrrolidines. Angew. Chem. Int. Ed. 2020, 59 (30), 12423–12427. https://doi.org/10.1002/anie.202000887.
(7) Mahjour, B.; Shen, Y.; Cernak, T. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis. Acc. Chem. Res. 2021, 54 (10), 2337–2346. https://doi.org/10.1021/acs.accounts.1c00119.
(8) Gesmundo, N.; Dykstra, K.; Douthwaite, J. L.; Kao, Y. T.; Zhao, R.; Mahjour, B.; Ferguson, R.; Dreher, S.; Sauvagnat, B.; Saurí, J.; Cernak, T. Miniaturization of Popular Reactions from the Medicinal Chemists’ Toolbox for Ultrahigh-Throughput Experimentation. Nat. Synth. 2023, 1–10. https://doi.org/10.1038/s44160-023-00351-1.
(9) Gensch, T.; Glorius, F. The Straight Dope on the Scope of Chemical Reactions. Science 2016, 352 (6283), 294–295. https://doi.org/10.1126/science.aaf3539.
(10) Collins, K. D.; Glorius, F. A Robustness Screen for the Rapid Assessment of Chemical Reactions. Nat. Chem. 2013, 5 (7), 597–601. https://doi.org/10.1038/nchem.1669.
(11) Kariofillis, S. K.; Jiang, S.; Żurański, A. M.; Gandhi, S. S.; Alvarado, J. I. M.; Doyle, A. G. Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. J. Am. Chem. Soc. 2022, 144 (2), 1045–1055. https://doi.org/10.1021/jacs.1c12203.
(12) Dreher, S. D.; Krska, S. W. Chemistry Informer Libraries: Conception, Early Experience, and Role in the Future of Cheminformatics. Acc. Chem. Res. 2021, 54 (7), 1586–1596. https://doi.org/10.1021/acs.accounts.0c00760.
(13) Kutchukian, P. S.; Dropinski, J. F.; Dykstra, K. D.; Li, B.; DiRocco, D. A.; Streckfuss, E. C.; Campeau, L. C.; Cernak, T.; Vachal, P.; Davies, I. W.; Krska, S. W.; Dreher, S. D. Chemistry Informer Libraries: A Chemoinformatics Enabled Approach to Evaluate and Advance Synthetic Methods. Chem. Sci. 2016, 7 (4), 2604–2613. https://doi.org/10.1039/c5sc04751j.
(14) Bahr, M. N.; Morris, M. A.; Tu, N. P.; Nandkeolyar, A. Recent Advances in High-Throughput Automated Powder Dispensing Platforms for Pharmaceutical Applications. Org. Process Res. Dev. 2020, 24 (11), 2752–2761. https://doi.org/10.1021/acs.oprd.0c00411.
(15) Bahr, M. N.; Damon, D. B.; Yates, S. D.; Chin, A. S.; Christopher, J. D.; Cromer, S.; Perrotto, N.; Quiroz, J.; Rosso, V. Collaborative Evaluation of Commercially Available Automated Powder Dispensing Platforms for High-Throughput Experimentation in Pharmaceutical Applications. Org. Process Res. Dev. 2018, 22 (11), 1500–1508. https://doi.org/10.1021/acs.oprd.8b00259.
(16) Gesmundo, N. J.; Tu, N. P.; Sarris, K. A.; Wang, Y. ChemBeads-Enabled Photoredox High-Throughput Experimentation Platform to Improve C(sp2)–C(sp3) Decarboxylative Couplings. ACS Med. Chem. Lett. 2023, 14 (4), 521–529. https://doi.org/10.1021/acsmedchemlett.2c00538.
(17) Tu, N. P.; Dombrowski, A. W.; Goshu, G. M.; Vasudevan, A.; Djuric, S. W.; Wang, Y. High‐Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads. Angew. Chem. Int. Ed. 2019, 58 (24), 7987–7991. https://doi.org/10.1002/anie.201900536.
(18) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52 (21), 6752–6756. https://doi.org/10.1021/jm901241e.
(19) Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem. Rev. 2022, 122 (2), 2752–2906. https://doi.org/10.1021/acs.chemrev.1c00332.
(20) Rein, J.; Annand, J. R.; Wismer, M. K.; Fu, J.; Siu, J. C.; Klapars, A.; Strotman, N. A.; Kalyani, D.; Lehnherr, D.; Lin, S. Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor. ACS Cent. Sci. 2021, 7 (8), 1347–1355. https://doi.org/10.1021/acscentsci.1c00328.
(21) Dykstra, K. D.; Streckfuss, E.; Liu, M.; Liu, J.; Yu, Y.; Wang, M.; Kozlowski, J. A.; Myers, R. W.; Buevich, A. V.; Maletic, M. M.; Vachal, P.; Krska, S. W. Synthesis of HDAC Inhibitor Libraries via Microscale Workflow. ACS Med. Chem. Lett. 2021, 12 (3), 337–342. https://doi.org/10.1021/acsmedchemlett.0c00596.
(22) Gesmundo, N. J.; Sauvagnat, B.; Curran, P. J.; Richards, M. P.; Andrews, C. L.; Dandliker, P. J.; Cernak, T. Nanoscale Synthesis and Affinity Ranking. Nature 2018, 557 (7704), 228–232. https://doi.org/10.1038/s41586-018-0056-8.
(23) Hendrick, C. E.; Jorgensen, J. R.; Chaudhry, C.; Strambeanu, I. I.; Brazeau, J. F.; Schiffer, J.; Shi, Z.; Venable, J. D.; Wolkenberg, S. E. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation. ACS Med. Chem. Lett. 2022, 13 (7), 1182–1190. https://doi.org/10.1021/acsmedchemlett.2c00124.
(24) Soares, T. A.; Nunes-Alves, A.; Mazzolari, A.; Ruggiu, F.; Wei, G. W.; Merz, K. The (Re)-Evolution of Quantitative Structure–Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods. J. Chem. Inf. Model. 2022, 62 (22), 5317–5320. https://doi.org/10.1021/acs.jcim.2c01422.
(25) Corey, E. J.; Wipke, W. T. Computer-Assisted Design of Complex Organic Syntheses. Science 1969, 166, 178–192. https://doi.org/10.1126/science.166.3902.178.
(26) Grzybowski, B. A.; Szymkuć, S.; Gajewska, E. P.; Molga, K.; Dittwald, P.; Wołos, A.; Klucznik, T. Chematica: A Story of Computer Code That Started to Think like a Chemist. Chem 2018, 4 (3), 390–398. https://doi.org/10.1016/j.chempr.2018.02.024.
(27) Klucznik, T.; Mikulak-Klucznik, B.; McCormack, M. P.; Lima, H.; Szymkuć, S.; Bhowmick, M.; Molga, K.; Zhou, Y.; Rickershauser, L.; Gajewska, E. P.; Toutchkine, A.; Dittwald, P.; Startek, M. P.; Kirkovits, G. J.; Roszak, R.; Adamski, A.; Sieredzińska, B.; Mrksich, M.; Trice, S. L. J.; Grzybowski, B. A. Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory. Chem 2018, 4 (3), 522–532. https://doi.org/10.1016/j.chempr.2018.02.002.
(28) Lin, Y.; Zhang, Z.; Mahjour, B.; Wang, D.; Zhang, R.; Shim, E.; McGrath, A.; Shen, Y.; Brugger, N.; Turnbull, R.; Trice, S.; Jasty, S.; Cernak, T. Reinforcing the Supply Chain of Umifenovir and Other Antiviral Drugs with Retrosynthetic Software. Nat. Commun. 2021, 12, 7327. https://doi.org/10.1038/s41467-021-27547-3.
(29) Mikulak-Klucznik, B.; Gołębiowska, P.; Bayly, A. A.; Popik, O.; Klucznik, T.; Szymkuć, S.; Gajewska, E. P.; Dittwald, P.; Staszewska-Krajewska, O.; Beker, W.; Badowski, T.; Scheidt, K. A.; Molga, K.; Mlynarski, J.; Mrksich, M.; Grzybowski, B. A. Computational Planning of the Synthesis of Complex Natural Products. Nature 2020, 588 (7836), 83–88. https://doi.org/10.1038/s41586-020-2855-y.
(30) Lin, Y.; Zhang, R.; Wang, D.; Cernak, T. Computer-Aided Key Step Generation in Alkaloid Total Synthesis. Science 2023, 379 (6631), 453–457. https://doi.org/10.1126/science.ade8459.
(31) Hardy, M. A.; Nan, B.; Wiest, O.; Sarpong, R. Strategic Elements in Computer-Assisted Retrosynthesis: A Case Study of the Pupukeanane Natural Products. Tetrahedron 2022, 104, 132584. https://doi.org/10.1016/j.tet.2021.132584.
(32) Struble, T. J.; Alvarez, J. C.; Brown, S. P.; Chytil, M.; Cisar, J.; DesJarlais, R. L.; Engkvist, O.; Frank, S. A.; Greve, D. R.; Griffin, D. J.; Hou, X.; Johannes, J. W.; Kreatsoulas, C.; Lahue, B.; Mathea, M.; Mogk, G.; Nicolaou, C. A.; Palmer, A. D.; Price, D. J.; Robinson, R. I.; Salentin, S.; Xing, L.; Jaakkola, T.; Green, William. H.; Barzilay, R.; Coley, C. W.; Jensen, K. F. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. J. Med. Chem. 2020, 63 (16), 8667–8682. https://doi.org/10.1021/acs.jmedchem.9b02120.
(33) Coley, C. W.; III, D. A. T.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K. F. A Robotic Platform for Flow Synthesis of Organic Compounds Informed by AI Planning. Science 2019, 365, 557. https://doi/10.1126/science.aax1566.
(34) Genheden, S.; Thakkar, A.; Chadimová, V.; Reymond, J. L.; Engkvist, O.; Bjerrum, E. AiZynthFinder: A Fast, Robust and Flexible Open-Source Software for Retrosynthetic Planning. J. Cheminformatics 2020, 12 (1), 70. https://doi.org/10.1186/s13321-020-00472-1.
(35) Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Predicting Retrosynthetic Pathways Using Transformer-Based Models and a Hyper-Graph Exploration Strategy. Chem. Sci. 2020, 11 (12), 3316–3325. https://doi.org/10.1039/c9sc05704h.
(36) Guan, Y.; Coley, C. W.; Wu, H.; Ranasinghe, D.; Heid, E.; Struble, T. J.; Pattanaik, L.; Green, W. H.; Jensen, K. F. Regio-Selectivity Prediction with a Machine-Learned Reaction Representation and on-the-Fly Quantum Mechanical Descriptors. Chem. Sci. 2020, 12 (6), 2198–2208. https://doi.org/10.1039/d0sc04823b.
(37) Struble, T. J.; Coley, C. W.; Jensen, K. F. Multitask Prediction of Site Selectivity in Aromatic C–H Functionalization Reactions. React. Chem. Eng. 2020, 5 (5), 896–902. https://doi.org/10.1039/d0re00071j.
(38) Mahjour, B.; Hoffstadt, J.; Cernak, T. Designing Chemical Reaction Arrays Using Phactor and ChatGPT. Org. Process Res. Dev. 2023, 27 (8), 1510–1516. https://doi.org/10.1021/acs.oprd.3c00186.
(39) Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Bayesian Reaction Optimization as a Tool for Chemical Synthesis. Nature 2021, 590 (7844), 89–96. https://doi.org/10.1038/s41586-021-03213-y.
(40) Torres, J. A. G.; Lau, S. H.; Anchuri, P.; Stevens, J. M.; Tabora, J. E.; Li, J.; Borovika, A.; Adams, R. P.; Doyle, A. G. A Multi-Objective Active Learning Platform and Web App for Reaction Optimization. J. Am. Chem. Soc. 2022, 144 (43), 19999–20007. https://doi.org/10.1021/jacs.2c08592.
(41) Taylor, C. J.; Felton, K. C.; Wigh, D.; Jeraal, M. I.; Grainger, R.; Chessari, G.; Johnson, C. N.; Lapkin, A. A. Accelerated Chemical Reaction Optimization Using Multi-Task Learning. ACS Cent. Sci. 2023, 9, 957−968. https://doi.org/10.1021/acscentsci.3c00050.
(42) Felton, K. C.; Rittig, J. G.; Lapkin, A. A. Summit: Benchmarking Machine Learning Methods for Reaction Optimisation. Chem. Methods 2021, 1 (2), 116–122. https://doi.org/10.1002/cmtd.202000051.
(43) Maloney, M. P.; Coley, C. W.; Genheden, S.; Carson, N.; Helquist, P.; Norrby, P. O.; Wiest, O. Negative Data in Data Sets for Machine Learning Training. J. Org. Chem. 2023, 88 (9), 5239–5241. https://doi.org/10.1021/acs.joc.3c00844.
(44) Kozlowski, M. C. On the Topic of Substrate Scope. Org. Lett. 2022, 24 (40), 7247–7249. https://doi.org/10.1021/acs.orglett.2c03246.
(45) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A. Estimation of the Size of Drug-like Chemical Space Based on GDB-17 Data. J. Comput.-Aided Mol. Des. 2013, 27 (8), 675–679. https://doi.org/10.1007/s10822-013-9672-4.
(46) Henle, A. F. Z. J. J.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Prediction of Higher-Selectivity Catalysts by Computer-Driven Workflow and Machine Learning. Science 2019, No. 363. https://doi.org/10.1126/science.aau5631.
(47) Zhang, P.; Eun, J.; Elkin, M.; Zhao, Y.; Cantrell, R. L.; Newhouse, T. R. A Neural Network Model Informs the Total Synthesis of Clovane Sesquiterpenoids. Nat. Synth. 2023, 2 (6), 527–534. https://doi.org/10.1038/s44160-023-00271-0.
(48) Newhouse, T. R.; Zhang, P.; Eun, J.; Elkin, M.; Zhao, Y.; Cantrell, R. L. A Neural Network Model Informs Total Synthesis of Clovane Sesquiterpenoids. ChemRxiv 2021. https://doi.org/10.26434/chemrxiv-2021-41d5z.
(49) Kearnes, S. M.; Maser, M. R.; Wleklinski, M.; Kast, A.; Doyle, A. G.; Dreher, S. D.; Hawkins, J. M.; Jensen, K. F.; Coley, C. W. The Open Reaction Database. J. Am. Chem. Soc. 2021, 143 (45), 18820–18826. https://doi.org/10.1021/jacs.1c09820.
(50) Mason, J.; Wilders, H.; Fallon, D. J.; Thomas, R. P.; Bush, J. T.; Tomkinson, N. C. O.; Rianjongdee, F. Automated LC-MS Analysis and Data Extraction for High-Throughput Chemistry. Digit. Discov. 2023, 2 (6), 1894–1899. https://doi.org/10.1039/d3dd00167a.
Descargas
Derechos de autor 2024 José Raúl Montero-Bastidas
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.