Movimiento propulsado por reacciones químicas y mediante luz en partículas Janus y coloides activos
Resumen
A diferencia de los materiales inertes en equilibrio, la materia activa como los organismos biológicos se encuentran fuera del equilibrio generando movimiento y ensamblajes a partir de interacciones moleculares y reacciones químicas en la nano- y microescala. Anteriormente, estas propiedades se consideraban exclusivas de organismos vivos; sin embargo, los avances en la ciencia de coloides han permitido generar análogos sintéticos conocidos como coloides activos que emulan dichas propiedades. En este artículo, se realiza primero una introducción a los coloides activos y a las partículas Janus, los ejemplos más resaltantes de esta área emergente. Se presentan brevemente los métodos de síntesis de coloides activos y los principales mecanismos de propulsión a nivel de coloide individual. Se describe también cómo dichas partículas pueden generar un comportamiento colectivo y ensamblarse en condiciones de no equilibrio. Finalmente, se detallan las características más importantes de estos coloides activos para su aplicación en las áreas de biomedicina y remediación ambiental.
Referencias bibliográficas
(1) Zhang, J.; Grzybowski, B. A.; Granick, S. Janus Particle Synthesis, Assembly, and Application. Langmuir 2017, 33, 6964-6977. https://doi.org/10.1021/acs.langmuir.7b01123
(2) Su, H.; Hurd Price, C. -A.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus particles: design, preparation, and biomedical applications. Mater. Today Bio 2019, 4, 1-19. https://doi.org/10.1016/j.mtbio.2019.100033
(3) Safaie, N.; Ferrier, Jr., R. C. Janus nanoparticle synthesis: Overview, recent developments, and applications. J. Appl. Phys. 2020, 127, 1-13. https://doi.org/10.1063/5.0003329
(4) De Gennes, P. G. Soft Matter. Angew. Chem. int. Ed. EngI. 1992, 31, 842-845. https://doi.org/10.1002/anie.199208421
(5) Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; Angelo, S. K. St.; Cao, Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic Nanomotors: Autonomous Movement of Striped Nanorods. J. Am. Chem. Soc. 2004, 126, 13424-13431. https://doi.org/10.1021/ja047697z
(6) Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M.; Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods. Adv. Mater. 1999, 11, 1021-1025. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1021::AID-ADMA1021>3.0.CO;2-S
(7) Wang, Y.; Hernandez, R. M.; Bartlett, Jr., D. J.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions. Langmuir 2006, 22, 10451-10456. https://doi.org/10.1021/la0615950
(8) Paxton, W. F.; Baker, P. T.; Kline, T. R.; Wang, Y.; Mallouk, T. E.; Sen, A. Catalytically Induced Electrokinetics for Motors and Micropumps. J. Am. Chem. Soc. 2006, 128, 14881-14888. https://doi.org/10.1021/ja0643164
(9) Howse, J. R.; Jones, R. A. L.; Ryan, A. J.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Phys. Rev. Lett. 2007, 99, 1-4. https://doi.org/10.1103/PhysRevLett.99.048102
(10) Zong, Y.; Liu, J.; Liu, R.; Guo, H.; Yang, M.; Li, Z.; Chen, K. An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings. ACS Nano 2015, 9, 10844-10851. https://doi.org/10.1021/acsnano.5b03565
(11) Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 2009, 48, 3308-3312. https://doi.org/10.1002/anie.200804704
(12) Hong, Y.; Diaz, M.; Cordova-Figueroa, U. M.; Sen, A. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Adv. Funct. Mater. 2010, 20, 1568-1576. https://doi.org/10.1002/adfm.201000063
(13) Vutukuri, H. R.; Lisicki, M.; Lauga, E.; Vermant, J. Light-switchable propulsion of active particles with reversible interactions. Nat. Commun. 2020, 11, 1-9. https://doi.org/10.1038/s41467-020-15764-1
(14) Ge, L.; Shao, W.; Lu, S.; Guo, R. Droplet topology control of Janus emulsion prepared in one-step high energy mixing. Soft Matter, 2014, 10, 4498-4505. https://doi.org/10.1039/C4SM00456F
(15) Wei, D.; Ge, L.; Lu, S.; Li, J.; Guo, R. Janus Particles Templated by Janus Emulsions and Application as a Pickering Emulsifier. Langmuir 2017, 33, 5819-5828. https://doi.org/10.1021/acs.langmuir.7b00939
(16) Deng, R.; Liang, F.; Qu, X.; Wang, Q.; Zhu, J.; Yang, Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750-755. https://doi.org/10.1021/ma502339s
(17) Bishop, K. J. M.; Biswal, S. L.; Bharti, B. Active Colloids as Models, Materials, and Machines. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 1-30. https://doi.org/10.1146/annurev-chembioeng-101121-084939
(18) Brown, A.; Poon, W. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 2014, 10, 4016-4027. https://doi.org/10.1039/C4SM00340C
(19) Duhr, S.; Braun, D. Why molecules move along a temperature gradient. PNAS 2006, 103, 19678-1968. https://doi.org/10.1073/pnas.060387310
(20) Xuan, M.; Wu, Z.; Shao, J.; Dai, L.; Si, T.; He, Q. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J. Am. Chem. Soc. 2016, 138, 6492-6497. https://doi.org/10.1021/jacs.6b00902
(21) Jiang, H.-R.; Yoshinaga, N.; Sano, M. Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam. Phys. Rev. Lett. 2010, 105, 1-4. https://doi.org/10.1103/PhysRevLett.105.268302
(22) Rey, M.; Volpe, G.; Volpe, G. Light, Matter, Action: Shining Light on Active Matter. ACS Photonics 2023, 10, 1188-1201. https://doi.org/10.1021/acsphotonics.3c00140
(23) Bregulla, A.P.; Yang, H.; Cichos, F. Stochastic Localization of Microswimmers by Photon Nudging. ACS Nano 2014, 8, 6542-6550. https://doi.org/10.1021/nn501568e
(24) Muiños-Landin, S.; Fischer, A.; Holubec, V.; Cichos, F. Reinforcement learning with artificial microswimmers. Sci. Robot. 2021, 6, 1-8. DOI: 10.1126/scirobotics.abd9285
(25) Zhang, Y.; Hess, H. Chemically-powered swimming and diffusion in the microscopic world. Nat. Rev. Chem. 2021, 5, 500-510. https://doi.org/10.1038/s41570-021-00281-6
(26) Wang, W.; Chiang, T. -Y.; Velegol, D.; Mallouk, T. E. Understanding the Efficiency of Autonomous Nano- and Microscale Motors. J. Am. Chem. Soc. 2013, 135, 10557-10565. https://doi.org/10.1021/ja405135f
(27) Kinosita Jr., K.; Yasuda, R.; Noji, H.; Adachi, K. A rotatory molecular motor that can work at near 100% efficiency. Phil. Trans. R. Soc. Lond. B 2000, 355, 473-489. https://doi.org/10.1098/rstb.2000.0589
(28) Chattopadhyay, S.; Moldovan, R.; Yeung, C.; Wu, X. L. Swimming efficiency of bacterium Escherichia coli. PNAS 2006, 103, 13712-13717. https://doi.org/10.1073/pnas.0602043103
(29) Paxton, W. F.; Sen, A.; Mallouk, T. E. Motility of Catalytic Nanoparticles through self-generated forces. Chem. Eur. J. 2005, 11, 6462-6470. https://doi.org/10.1002/chem.200500167
(30) Shah, Z. H.; Wang, S.; Xian, L.; Zhou, X.; Chen, Y.; Lin, G.; Gao, Y. Highly efficient chemically-driven micromotors with controlled snowman-like morphology. Chem. Commun. 2020, 56, 15301-15304. https://doi.org/10.1039/D0CC06812H
(31) Wang, W.; Duan, W.; Ahmed, S.; Sen, A.; Mallouk, T.E. From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors. Acc. Chem. Res. 2015, 48, 7, 1938-1946. https://doi.org/10.1021/acs.accounts.5b00025
(32) Jones, M.R.; Seeman, N.C.; Mirkin, C.A. Programmable materials and the nature of the DNA bond. Science 2015, 347, 1-11. https://doi.org/10.1126/science.1260901
(33) Jiang, S.; Zhang, F.; Yan, H. Complex assemblies and crystals guided by DNA. Nat. Mater 2020, 19, 694-700. https://doi.org/10.1038/s41563-020-0719-3
(34) Oh, J.S.; Lee, S.; Glotzer, S.C.; Yi, G.R.; Pine, D.J. Colloidal fibers and rings by cooperative assembly. Nat. Commun. 2019, 10, 1-10. https://doi.org/10.1038/s41467-019-11915-1
(35) Aubret, A.; Martinet, Q.; Palacci, J. Metamachines of pluripotent colloids. Nat. Commun. 2021, 12, 1-9. https://doi.org/10.1038/s41467-021-26699-6
(36) Wrede, P.; Degtyaruk, O.; Kumar Kalva, S.; Dean-Ben, X. L.; Bozuyuk, U.; Aghakhani, A.; Akolpoglu, B.; Sitti, M.; Razansky, D. Real-time 3D optoacoustic tracking of cell-sized magnetic microrobots circulating in the mouse brain vasculature. Sci. Adv. 2022, 8, 1-13. https://doi.org/10.1126/sciadv.abm9132
(37) Gao, W.; Dong, R.; Thamphiwatana, S.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Artificial micromotors in the mouse’s stomach: A step toward in Vivo use of synthetic motors. ACS Nano 2015, 9, 117-123. https://doi.org/10.1021/nn507097k
(38) Li, J.; Angsantikul, P.; Liu, W.; Esteban-Fernández de Ávila, B.; Thamphiwatana, S.; Xu, M.; Sandraz, E.; Wang, X.; Delezuk, J.; Gao, W.; Zhang, L.; Wang, J. Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew. Chem. Int. Ed. 2017, 56, 2156-2161. https://doi.org/10.1002/anie.201611774
(39) Esteban-Fernández de Ávila, B.; Angsantikul, P.; Li, J.; Lopez-Ramirez, M. A.; Ramírez-Herrera, D. E.; Thamphiwatana, S.; Chen, C.; Delezuk, J.; Samakapiruk, R.; Ramez, V.; Obonyo, M.; Zhang, L.; Wang, J. Micromotors-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 2017, 8, 1-9. https://doi.org/10.1038/s41467-017-00309-w
(40) Zhang, Z.; Zhao, A.; Wang, F.; Ren, J.; Qu, X. Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. Chem. Commun. 2016, 52, 5550-5553. https://doi.org/10.1039/C6CC00910G
(41) Vaghasiya, J. V.; Mayorga-Martinez, C. C.; Matějková, S.; Pumera, M. Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nat. Commun. 2022, 13, 1-10. https://doi.org/10.1038/s41467-022-28406-5
Descargas
Derechos de autor 2024 Katherinne I. Requejo, Cristhian Cañari-Chumpitaz
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.