Voltamperometría: fundamentos electroquímicos y aplicaciones

  • Jerson González-Hernández Centro de Investigaciones Agronómicas, Universidad de Costa Rica

    Centro de Investigación en Electroquímica y Energía Química, y también del  Centro de Investigaciones Agronómicas, ambos en la Universidad de Costa Rica.

  • Jairo Garcia-Céspedes Universidad de Costa Rica

    Laboratorio de Geoquímica de la Escuela Centroamericana de Geología, Universidad de Costa Rica.

Palabras clave: Análisis químico, Diferencia de potencial, Electroquímica, Potenciostato, Voltamperometría, Voltamperograma

Resumen

La voltamperometría es una técnica electroquímica con un amplio campo de aplicación en la determinación cuantitativa de analitos, en el análisis de caracterización y en el estudio de procesos de difusión, adsorción, reducción y oxidación. La capacidad de adaptación de esta herramienta analítica se atribuye, principalmente, a la integración de diversas modificaciones en su metodología, impulsadas por los avances tecnológicos que han mejorado y evolucionado los equipos y los sistemas electródicos. En esta revisión se abordan los principios fundamentales de la voltamperometría que incluyen las bases de la instrumentación, de la termodinámica y de la cinética de los procesos electroquímicos, así como un repaso por las técnicas voltamperométricas y algunas aplicaciones relevantes en distintos campos, tales como el análisis ambiental, la industria alimenticia y las ciencias forenses. Los múltiples estudios interdisciplinarios que se basan en la voltamperometría evidencian un uso significativo y una aplicabilidad reconocida de la técnica electroquímica.

Referencias bibliográficas

(1) Nilsson, A.; Pettersson, L. G. M.; Nørskov, J. K. Chemical Bonding at Surfaces and Interfaces; 2008. https://doi.org/10.1016/B978-0-444-52837-7.X5001-1.

(2) Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; 1998. https://doi.org/10.1016/b978-044482806-4/50007-6.

(3) Gary, C. D. Química Analítica, 6th ed.; McGraw Hill Companies: Mexico D.F., 2009.

(4) Wilches, M.; Ruiz, L. F.; Hernández, M. Bioingeniería VI : Fundamentos de Instrumentación Para La Química Clínica y Las Radiaciones Ionizantes, 1st ed.; Universidad de Antioquía: Colombia, 2007.

(5) Fernández Abedul, M. T. Chapter 1 - Dynamic Electroanalysis: An Overview. In Laboratory Methods in Dynamic Electroanalysis; Fernandez Abedul, M. T., Ed.; Elsevier, 2020; pp 1–10. https://doi.org/https://doi.org/10.1016/B978-0-12-815932-3.00001-2.

(6) Ivaska, A.; Bobacka, J. Process Analysis | Electroanalytical Techniques. In Encyclopedia of Analytical Science (Second Edition); Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, 2005; pp 309–316. https://doi.org/https://doi.org/10.1016/B0-12-369397-7/00487-8.

(7) Pingarrón, J. M.; Labuda, J.; Barek, J.; Brett, C. M. A.; Camões, M. F.; Fojta, M.; Hibbert, D. B. Terminology of Electrochemical Methods of Analysis (IUPAC Recommendations 2019). Pure and Applied Chemistry 2020, 92 (4), 641–694. https://doi.org/10.1515/pac-2018-0109.

(8) Hernández, P. R.; Galán, C. A.; Morales, A.; Alegret, S. Measuring System for Amperometric Chemical Sensors Using the Three-Electrode Technique for Field Application. Journal of Applied Research and Technology 2003, 1 (02). https://doi.org/10.22201/icat.16656423.2003.1.02.605.

(9) Segura, B.; Jiménez, N.; Giraldo, R. Prototipo de Potenciostato Con Aplicaciones En Procesos Electroquímicos. Entre Ciencia e Ingeniería 2016, 10 (19), 61–69. https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/476

(10) Gamry Instruments. https://www.gamry.com/ (accessed 2024-07-10).

(11) Pine Research Instrumentation, Inc. https://pineresearch.com/ (accessed 2024-07-11).

(12) BioLogic Science Instruments. EC-Lab-Application Note 4 - The mystery of potentiostat stability explained. https://www.biologic.net/documents/potentiostat-stability-electrochemistry-battery-application-note-4/ (accessed 2024-07-11).

(13) Metrohm. Basic overview of the working principle of a potentiostat / galvanostat ( PGSTAT ) – Electrochemical cell setup. www.metrohm.com/en/products/electrochemistry (accessed 2024-07-11).

(14) Álvaro Angel, A.-A.; Rosa Liliana, T.-C. Sistema Multipotenciostato Basado En Instrumentación Virtual. Ingeniería, Investigación y Tecnología 2014, 15 (3), 321–337. https://doi.org/10.1016/s1405-7743(14)70344-0.

(15) Zoski, C. G.; Leddy, J.; Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications, Student Solutions Manual; John Wiley & Sons, Inc., 2021.

(16) León, C. Química Electroanalítica: Polarografía, Voltamperometría y Amperometría, 1st ed.; Editorial Universidad de Costa Rica: San José, 2007.

(17) Castellanos, P. R.; Criado, P. A. R. Medio Ambiente, Calidad Ambiental; Colección Aquilafuente; Ediciones Universidad de Salamanca, 2002.

(18) Venton, B. J.; Discenza, D. J. Electrochemistry for Bioanalysis. Electrochemistry for Bioanalysis 2020. https://doi.org/10.1016/c2019-0-03108-1.

(19) Shah, N.; Arain, M. B.; Soylak, M. Historical Background: Milestones in the Field of Development of Analytical Instrumentation; INC, 2020. https://doi.org/10.1016/B978-0-12-818569-8.00002-4.

(20) Roy, S.; Pandit, S. Microbial Electrochemical System: Principles and Application; Elsevier B.V., 2018. https://doi.org/10.1016/B978-0-444-64052-9.00002-9.

(21) Yamada, H.; Yoshii, K.; Asahi, M.; Chiku, M.; Kitazumi, Y. Cyclic Voltammetry Part 1: Fundamentals. Electrochemistry 2022, 90 (10), 102005–102005. https://doi.org/10.5796/electrochemistry.22-66082.

(22) International Union of Pure and Applied Chemistry (IUPAC). Compendium of Chemical Terminology: Gold Book, 2.3.3.; 2014. https://doi.org/10.1351/goldbook.

(23) Analytical Chemistry 2.1 (Harvey). https://chem.libretexts.org/@go/page/122341 (accessed 2024-07-11).

(24) Almagro, V. Cinética Electroquímica. Anales de la Universidad de Murcia (Ciencias) 1965, XXIII (3–4).

(25) Modestino, M. A.; Hashemi, S. M. H.; Haussener, S. Mass Transport Aspects of Electrochemical Solar-Hydrogen Generation. Energy Environ Sci 2016, 9 (5), 1533–1551. https://doi.org/10.1039/c5ee03698d.

(26) Wen, C. J.; Huggins, R. A. Thermodynamic and Mass Transport Properties of “LiIn.” Mater Res Bull 1980, 15 (9), 1225–1234. https://doi.org/10.1016/0025-5408(80)90024-0.

(27) Houghton, R. W.; Kuhn, A. T. Mass-Transport Problems and Some Design Concepts of Electrochemical Reactors. J Appl Electrochem 1974, 4 (3), 173–190. https://doi.org/10.1007/BF01637227.

(28) Skoog, D. A.; West, D. M. Análisis Instrumental, 2nd ed.; McGraw-Hill, 1989.

(29) Patzek, T. W. Fick’s Diffusion Experiments Revisited —Part I. Advances in Historical Studies 2014, 03 (04), 194–206. https://doi.org/10.4236/ahs.2014.34017.

(30) Oldham, K. B. Advances in Engineering Software Fractional Differential Equations in Electrochemistry j o t. Advances in Engineering Software 2010, 41 (1), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012.

(31) Pungor, E.; Fehér, Z.; Váradi, M.; Campbell, B. H. Hydrodynamic Voltammetry. C R C Critical Reviews in Analytical Chemistry 1980, 9 (2), 97–165. https://doi.org/10.1080/10408348008542718.

(32) Fields, E.; Fields, S. E. Encyclopedia of Applied Electrochemistry; 2014. https://doi.org/10.1007/978-1-4419-6996-5.

(33) Seeber, R.; Zanardi, C. The Inherent Coupling of Charge Transfer and Mass Transport Processes : The Curious Electrochemical Reversibility. Chem Texts 2016. https://doi.org/10.1007/s40828-016-0027-3.

(34) Selman, J. R.; Tobias, C. W. Mass-Transfer Measurements by the Limiting-Current Technique; Drew, T. B., Cokelet, G. R., Hoopes, J. W., Vermeulen, T., Eds.; Advances in Chemical Engineering; Academic Press, 1978; Vol. 10, pp 211–318. https://doi.org/https://doi.org/10.1016/S0065-2377(08)60134-9.

(35) Kurzweil, P. Electrochemical Double-Layer Capacitors; Elsevier B.V., 2015. https://doi.org/10.1016/B978-0-444-62616-5.00019-X.

(36) Pal, P. Chapter 4 - Physicochemical Treatment Technology. In Industrial Water Treatment Process Technology; Pal, P., Ed.; Butterworth-Heinemann, 2017; pp 145–171. https://doi.org/https://doi.org/10.1016/B978-0-12-810391-3.00004-7.

(37) Zuman, P. Electrolysis with a Dropping Mercury Electrode: J. Heyrovský’s Contribution to Electrochemistry. Crit Rev Anal Chem 2001, 31 (4), 281–289. https://doi.org/10.1080/20014091076767.

(38) Harvey, D. Instrumental Analysis. DePauw University. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Instrumental_Analysis_(LibreTexts)

(39) Bontempelli, G.; Dossi, N.; Toniolo, R. Linear Sweep and Cyclic; Elsevier Inc., 2016. https://doi.org/10.1016/b978-0-12-409547-2.12200-0.

(40) Batchelor-McAuley, C.; Li, D.; Compton, R. G. Mass-Transport-Corrected Transfer Coefficients: A Fully General Approach. ChemElectroChem 2020, 7 (18), 3844–3851. https://doi.org/10.1002/celc.202001107.

(41) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ 2018, 95 (2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.

(42) Bontempelli, G.; Dossi, N.; Toniolo, R. Voltammetry | Polarography. In Encyclopedia of Analytical Science (Third Edition); Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, 2019; pp 218–229. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.14326-4.

(43) Westbroek, P. 2 - Electrochemical Methods. In Analytical Electrochemistry in Textiles; Westbroek, P., Priniotakis, G., Kiekens, P., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing, 2005; pp 37–69. https://doi.org/https://doi.org/10.1533/9781845690878.1.37.

(44) Morris, J. L.; Faulkner, L. R. Normal Pulse Voltammetry in Electrochemically Poised Systems. Anal Chem 1977, 49 (3), 489–494. https://doi.org/10.1021/ac50011a038.

(45) Harvey, D. Analytical Chemistry 2.1, 2.1.; Open textbook library; DePauw University, 2016.

(46) Grabarczyk, M.; Wlazłowska, E.; Wawruch, A. Stripping Voltammetry with Nanomaterials-Based Electrode in the Environmental Analysis of Trace Concentrations of Tin. ChemPhysChem 2024, 25 (2), 6–11. https://doi.org/10.1002/cphc.202300633.

(47) Vardar Sezgin, H.; Gökçel, H. I.; Dilgin, Y. Adsorptive Anodic Stripping Voltammetric Determination of Antimony(III) on a Glassy Carbon Electrode Using Rivastigmine as a New Chemical Receptor. Sens Actuators B Chem 2015, 209, 686–694. https://doi.org/10.1016/j.snb.2014.12.029.

(48) van den Berg, C. M. G.; Jacinto, G. S. The Determination of Platinum in Sea Water by Adsorptive Cathodic Stripping Voltammetry. Anal Chim Acta 1988, 211, 129–139. https://doi.org/https://doi.org/10.1016/S0003-2670(00)83675-2.

(49) Ariño, C.; Banks, C. E.; Bobrowski, A.; Crapnell, R. D.; Economou, A.; Królicka, A.; Pérez-Ràfols, C.; Soulis, D.; Wang, J. Electrochemical Stripping Analysis. Nature Reviews Methods Primers 2022, 2 (1), 63. https://doi.org/10.1038/s43586-022-00155-1.

(50) García-Miranda Ferrari, A.; Rowley-Neale, S. J.; Banks, C. E. Screen-Printed Electrodes: Transitioning the Laboratory in-to-the Field. Talanta Open 2021, 3 (January). https://doi.org/10.1016/j.talo.2021.100032.

(51) Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-Printed Electrodes for Biosensing: A Review (2008-2013). Microchimica Acta 2014, 181 (9–10), 865–891. https://doi.org/10.1007/s00604-014-1181-1.

(52) Applications of the Voltammetry. IntechOpen: Rijeka 2017. https://doi.org/10.5772/65154.

(53) Gulaboski, R.; Mirceski, V. Application of Voltammetry in Biomedicine - Recent Achievements in Enzymatic Voltammetry. Macedonian Journal of Chemistry and Chemical Engineering 2020, 39 (2), 153–166. https://doi.org/10.20450/mjcce.2020.2152.

(54) Alston, F.; Okorie, O. Inorganic Compounds. Occupational Exposures 2023, 93–118. https://doi.org/10.1201/9781003220114-7.

(55) Ortenero, J. R.; Dugos, N. P.; Soriano, A. N.; Borres, E. M. T.; Sing, A. M. J. T.; Pararuan, M. D. A.; Tined, E. L. R. A Review on the Application of Voltammetry in the Determination of Various Substances in Fruit Juices. Applied Science and Engineering Progress 2023, 16 (1), 1–13. https://doi.org/10.14416/j.asep.2022.02.010.

(56) Alvarado-Gámez, A. L.; Alonso-Lomillo, M. A.; Domínguez-Renedo, O.; Arcos-Martínez, M. J. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination. Sensors (Switzerland) 2014, 14 (2), 3756–3767. https://doi.org/10.3390/s140203756.

(57) Ding, W.; Bonk, A.; Gussone, J.; Bauer, T. Cyclic Voltammetry for Monitoring Corrosive Impurities in Molten Chlorides for Thermal Energy Storage. In Energy Procedia; Elsevier Ltd, 2017; Vol. 135, pp 82–91. https://doi.org/10.1016/j.egypro.2017.09.489.

(58) Taher, A. M. Evaluating Corrosion and Passivation by Using Electrochemical Techniques. International Journal of Mechanical Engineering and Robotics Research 2018, 7 (2), 131–135. https://doi.org/10.18178/ijmerr.7.2.131-135.

(59) Kokkinos, C.; Economou, A. Recent Advances in Voltammetric, Amperometric and Ion-Selective (Bio)Sensors Fabricated by Microengineering Manufacturing Approaches. Curr Opin Electrochem 2020. https://doi.org/10.1016/j.coelec.2020.02.020.

(60) Han, H.; Pan, D. Voltammetric Methods for Speciation Analysis of Trace Metals in Natural Waters. Trends in Environmental Analytical Chemistry 2021, 29, e00119. https://doi.org/10.1016/j.teac.2021.e00119.

(61) Holmes, J.; Pathirathna, P.; Hashemi, P. Novel Frontiers in Voltammetric Trace Metal Analysis: Towards Real Time, on-Site, in Situ Measurements. TrAC Trends in Analytical Chemistry 2019, 111, 206–219. https://doi.org/https://doi.org/10.1016/j.trac.2018.11.003.

(62) Wong, A.; A. Ferreira, P.; Santos, A. M.; Cincotto, F. H.; Silva, R. A. B.; Soomayor, M. D. P. T. A New Electrochemical Sensor Based on Eco-Friendly Chemistry for the Simultaneous Determination of Toxic Trace Elements. Microchemical Journal 2020, 158, 105292. https://doi.org/https://doi.org/10.1016/j.microc.2020.105292.

(63) Barbosa, P. F. P.; Vieira, E. G.; Cumba, L. R.; Paim, L. L.; Nakamura, A. P. R.; Andrade, R. D. A.; do Carmo, D. R. Voltammetric Techniques for Pesticides and Herbicides Detection- an Overview. Int J Electrochem Sci 2019, 14 (4), 3418–3433. https://doi.org/10.20964/2019.04.60.

(64) Köksoy, B.; Akyüz, D.; Şenocak, A.; Durmuş, M.; Demirbas, E. Sensitive, Simple and Fast Voltammetric Determination of Pesticides in Juice Samples by Novel BODIPY-Phthalocyanine-SWCNT Hybrid Platform. Food and Chemical Toxicology 2021, 147. https://doi.org/10.1016/j.fct.2020.111886.

(65) Orlović-Leko, P.; Vidović, K.; Plavšić, M.; Ciglenečki, I.; Šimunić, I.; Minkina, T. Voltammetry as a Tool for Rough and Rapid Characterization of Dissolved Organic Matter in the Drainage Water of Hydroameliorated Agricultural Areas in Croatia. Journal of Solid State Electrochemistry 2016, 20 (11), 3097–3105. https://doi.org/10.1007/s10008-016-3245-0.

(66) Chauhan, C. Contemporary Voltammetric Techniques and Its Application to Pesticide Analysis: A Review. Mater Today Proc 2020, 37 (Part 2), 3231–3240. https://doi.org/10.1016/j.matpr.2020.09.092.

(67) March, G.; Nguyen, T. D.; Piro, B. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors (Basel) 2015, 5 (2), 241–275. https://doi.org/10.3390/bios5020241.

(68) Chatterjee, S.; Chen, A. Voltammetric Detection of the α-Dicarbonyl Compound: Methylglyoxal as a Flavoring Agent in Wine and Beer. Anal Chim Acta 2012, 751, 66–70. https://doi.org/https://doi.org/10.1016/j.aca.2012.09.011.

(69) Zhang, L.; Liu, X.; Luo, L.; Hu, C.; Fu, J.; Chang, X.; Gan, T. A High-Performance Voltammetric Methodology for the Ultra-Sensitive Detection of Riboflavin in Food Matrices Based on Graphene Oxide-Covered Hollow MnO2 Spheres. Food Chem 2021, 352, 129368. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129368.

(70) Wahyuni, W. T.; Putra, B. R.; Marken, F. Voltammetric Detection of Vitamin B1 (Thiamine) in Neutral Solution at a Glassy Carbon Electrode via in Situ PH Modulation. Analyst 2020, 145 (5), 1903–1909. https://doi.org/10.1039/C9AN02186H.

(71) Zabihpour, T.; Shahidi, S.-A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A. Voltammetric Food Analytical Sensor for Determining Vanillin Based on Amplified NiFe2O4 Nanoparticle/Ionic Liquid Sensor. Journal of Food Measurement and Characterization 2020, 14 (2), 1039–1045. https://doi.org/10.1007/s11694-019-00353-8.

(72) David, I. G.; Buleandra, M.; Popa, D. E.; Cheregi, M. C.; David, V.; Iorgulescu, E. E.; Tartareanu, G. O. Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes 2022, 10 (3). https://doi.org/10.3390/pr10030472.

(73) Beitollahi, H.; Safaei, M.; Tajik, S. Voltammetric and Amperometric Sensors for Determination of Epinephrine: A Short Review (2013-2017): Original Scientific Paper. Journal of Electrochemical Science and Engineering 2018, 9 (1), 27–43. https://doi.org/10.5599/jese.569.

(74) Gomes, E. S.; Leite, F. R. F.; Ferraz, B. R. L.; Mourão, H. A. J. L.; Malagutti, A. R. Voltammetric Sensor Based on Cobalt-Poly(Methionine)-Modified Glassy Carbon Electrode for Determination of Estriol Hormone in Pharmaceuticals and Urine. J Pharm Anal 2019, 9 (5), 347–357. https://doi.org/https://doi.org/10.1016/j.jpha.2019.04.001.

(75) Erşan, T.; Dilgin, D. G.; Kumrulu, E.; Kumrulu, U.; Dilgin, Y. Voltammetric Determination of Favipiravir Used as an Antiviral Drug for the Treatment of Covid-19 at Pencil Graphite Electrode. Electroanalysis 2023, 35 (4), e202200295. https://doi.org/https://doi.org/10.1002/elan.202200295.

(76) Bilge, S.; Dogan-Topal, B.; Atici, E. B.; Sınağ, A.; Ozkan, S. A. Rod-like CuO Nanoparticles/Waste Masks Carbon Modified Glassy Carbon Electrode as a Voltammetric Nanosensor for the Sensitive Determination of Anti-Cancer Drug Pazopanib in Biological and Pharmaceutical Samples. Sens Actuators B Chem 2021, 343, 130109. https://doi.org/https://doi.org/10.1016/j.snb.2021.130109.

(77) Rezaei-Zarchi, S.; Saboury, A. A.; Norouzi, P.; Hong, J.; Barzegar, A.; Ganjali, M. R.; Ghourchian, H.; Moosavi-Movahedi, A. A.; Javed, A.; Rostami, A. A. Electrochemical Recognition of Metalloproteins by Bromide-Modified Silver Electrode - A New Method. Int. J. Mol. Sci 2007, 8, 723–735. https://doi.org/https://doi.org/10.3390/i8070723.

(78) Pheeney, C. G.; Arnold, A. R.; Grodick, M. A.; Barton, J. K. Multiplexed Electrochemistry of DNA-Bound Metalloproteins. J Am Chem Soc 2013, 135 (32), 11869–11878. https://doi.org/10.1021/ja4041779.

(79) Shaw, L.; Dennany, L. Applications of Electrochemical Sensors: Forensic Drug Analysis. Curr Opin Electrochem 2017, 3 (1), 23–28. https://doi.org/10.1016/j.coelec.2017.05.001.

(80) González-Hernández, J. Drogas Emergentes: Detección Mediante Sensores Electroquímicos. Revista Colombiana de Química 2024, 25–41. https://doi.org/10.15446/rev.colomb.quim.v52n1.108752.

(81) Cumba, L. R.; Smith, J. P.; Zuway, K. Y.; Sutcliffe, O. B.; Do Carmo, D. R.; Banks, C. E. Forensic Electrochemistry: Simultaneous Voltammetric Detection of MDMA and Its Fatal Counterpart “Dr Death” (PMA). Analytical Methods 2016, 8 (1), 142–152. https://doi.org/10.1039/c5ay02924d.

(82) Asturias-Arribas, L.; Alonso-Lomillo, M. A.; Domínguez-Renedo, O.; Arcos-Martínez, M. J. Sensitive and Selective Cocaine Electrochemical Detection Using Disposable Sensors. Anal Chim Acta 2014, 834 (1), 30–36. https://doi.org/10.1016/j.aca.2014.05.012.

(83) González-Hernández, J.; Ott, C. E.; Arcos-Martínez, M. J.; Colina, Á.; Heras, A.; Alvarado-Gámez, A. L.; Urcuyo, R.; Arroyo-Mora, L. E. Rapid Determination of the Legal Highs 4-MMC and 4-MEC by Spectroelectrochemistry: Simultaneous Cyclic Voltammetry and In Situ Surface-Enhanced Raman Spectroscopy. Sensors. 2022. https://doi.org/10.3390/s22010295.

(84) González-Hernández, J.; Alvarado-Moya, G.; Alvarado-Gámez, A. L.; Urcuyo, R.; Arcos-Martínez, M. J. Electrochemical Biosensor for Quantitative Determination of Fentanyl Based on Immobilized Cytochrome c on Multi Walled Carbon Nanotubes Modified Screen Printed Carbon Electrodes. Microchimica Acta 2022, 189 (12), 1–12. https://doi.org/10.1007/s00604-022-05578-x.

(85) Batchelor-Mcauley, C.; Kätelhön, E.; Barnes, E. O.; Compton, R. G.; Laborda, E.; Molina, A. Recent Advances in Voltammetry. ChemistryOpen 2015, 4 (3), 224–260. https://doi.org/10.1002/open.201500042.

(86) Bond, A. M.; Zhang, J.; Gundry, L.; Kennedy, G. F. Opportunities and Challenges in Applying Machine Learning to Voltammetric Mechanistic Studies. Curr Opin Electrochem 2022, 34, 101009. https://doi.org/10.1016/j.coelec.2022.101009.

(87) Bond, A. M. Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection. A Review. Analyst 1994, 119 (11), 1–21. https://doi.org/10.1039/AN994190001R.

Descargas

El artículo aún no registra descargas.
Cómo citar
González-Hernández, J., & Garcia-Céspedes, J. (2024). Voltamperometría: fundamentos electroquímicos y aplicaciones. Revista De Química, 38(2), 2-17. https://doi.org/10.18800/quimica.202402.001