Voltamperometría: fundamentos electroquímicos y aplicaciones
Resumen
La voltamperometría es una técnica electroquímica con un amplio campo de aplicación en la determinación cuantitativa de analitos, en el análisis de caracterización y en el estudio de procesos de difusión, adsorción, reducción y oxidación. La capacidad de adaptación de esta herramienta analítica se atribuye, principalmente, a la integración de diversas modificaciones en su metodología, impulsadas por los avances tecnológicos que han mejorado y evolucionado los equipos y los sistemas electródicos. En esta revisión se abordan los principios fundamentales de la voltamperometría que incluyen las bases de la instrumentación, de la termodinámica y de la cinética de los procesos electroquímicos, así como un repaso por las técnicas voltamperométricas y algunas aplicaciones relevantes en distintos campos, tales como el análisis ambiental, la industria alimenticia y las ciencias forenses. Los múltiples estudios interdisciplinarios que se basan en la voltamperometría evidencian un uso significativo y una aplicabilidad reconocida de la técnica electroquímica.
Referencias bibliográficas
(1) Nilsson, A.; Pettersson, L. G. M.; Nørskov, J. K. Chemical Bonding at Surfaces and Interfaces; 2008. https://doi.org/10.1016/B978-0-444-52837-7.X5001-1.
(2) Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; 1998. https://doi.org/10.1016/b978-044482806-4/50007-6.
(3) Gary, C. D. Química Analítica, 6th ed.; McGraw Hill Companies: Mexico D.F., 2009.
(4) Wilches, M.; Ruiz, L. F.; Hernández, M. Bioingeniería VI : Fundamentos de Instrumentación Para La Química Clínica y Las Radiaciones Ionizantes, 1st ed.; Universidad de Antioquía: Colombia, 2007.
(5) Fernández Abedul, M. T. Chapter 1 - Dynamic Electroanalysis: An Overview. In Laboratory Methods in Dynamic Electroanalysis; Fernandez Abedul, M. T., Ed.; Elsevier, 2020; pp 1–10. https://doi.org/https://doi.org/10.1016/B978-0-12-815932-3.00001-2.
(6) Ivaska, A.; Bobacka, J. Process Analysis | Electroanalytical Techniques. In Encyclopedia of Analytical Science (Second Edition); Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, 2005; pp 309–316. https://doi.org/https://doi.org/10.1016/B0-12-369397-7/00487-8.
(7) Pingarrón, J. M.; Labuda, J.; Barek, J.; Brett, C. M. A.; Camões, M. F.; Fojta, M.; Hibbert, D. B. Terminology of Electrochemical Methods of Analysis (IUPAC Recommendations 2019). Pure and Applied Chemistry 2020, 92 (4), 641–694. https://doi.org/10.1515/pac-2018-0109.
(8) Hernández, P. R.; Galán, C. A.; Morales, A.; Alegret, S. Measuring System for Amperometric Chemical Sensors Using the Three-Electrode Technique for Field Application. Journal of Applied Research and Technology 2003, 1 (02). https://doi.org/10.22201/icat.16656423.2003.1.02.605.
(9) Segura, B.; Jiménez, N.; Giraldo, R. Prototipo de Potenciostato Con Aplicaciones En Procesos Electroquímicos. Entre Ciencia e Ingeniería 2016, 10 (19), 61–69. https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/476
(10) Gamry Instruments. https://www.gamry.com/ (accessed 2024-07-10).
(11) Pine Research Instrumentation, Inc. https://pineresearch.com/ (accessed 2024-07-11).
(12) BioLogic Science Instruments. EC-Lab-Application Note 4 - The mystery of potentiostat stability explained. https://www.biologic.net/documents/potentiostat-stability-electrochemistry-battery-application-note-4/ (accessed 2024-07-11).
(13) Metrohm. Basic overview of the working principle of a potentiostat / galvanostat ( PGSTAT ) – Electrochemical cell setup. www.metrohm.com/en/products/electrochemistry (accessed 2024-07-11).
(14) Álvaro Angel, A.-A.; Rosa Liliana, T.-C. Sistema Multipotenciostato Basado En Instrumentación Virtual. Ingeniería, Investigación y Tecnología 2014, 15 (3), 321–337. https://doi.org/10.1016/s1405-7743(14)70344-0.
(15) Zoski, C. G.; Leddy, J.; Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications, Student Solutions Manual; John Wiley & Sons, Inc., 2021.
(16) León, C. Química Electroanalítica: Polarografía, Voltamperometría y Amperometría, 1st ed.; Editorial Universidad de Costa Rica: San José, 2007.
(17) Castellanos, P. R.; Criado, P. A. R. Medio Ambiente, Calidad Ambiental; Colección Aquilafuente; Ediciones Universidad de Salamanca, 2002.
(18) Venton, B. J.; Discenza, D. J. Electrochemistry for Bioanalysis. Electrochemistry for Bioanalysis 2020. https://doi.org/10.1016/c2019-0-03108-1.
(19) Shah, N.; Arain, M. B.; Soylak, M. Historical Background: Milestones in the Field of Development of Analytical Instrumentation; INC, 2020. https://doi.org/10.1016/B978-0-12-818569-8.00002-4.
(20) Roy, S.; Pandit, S. Microbial Electrochemical System: Principles and Application; Elsevier B.V., 2018. https://doi.org/10.1016/B978-0-444-64052-9.00002-9.
(21) Yamada, H.; Yoshii, K.; Asahi, M.; Chiku, M.; Kitazumi, Y. Cyclic Voltammetry Part 1: Fundamentals. Electrochemistry 2022, 90 (10), 102005–102005. https://doi.org/10.5796/electrochemistry.22-66082.
(22) International Union of Pure and Applied Chemistry (IUPAC). Compendium of Chemical Terminology: Gold Book, 2.3.3.; 2014. https://doi.org/10.1351/goldbook.
(23) Analytical Chemistry 2.1 (Harvey). https://chem.libretexts.org/@go/page/122341 (accessed 2024-07-11).
(24) Almagro, V. Cinética Electroquímica. Anales de la Universidad de Murcia (Ciencias) 1965, XXIII (3–4).
(25) Modestino, M. A.; Hashemi, S. M. H.; Haussener, S. Mass Transport Aspects of Electrochemical Solar-Hydrogen Generation. Energy Environ Sci 2016, 9 (5), 1533–1551. https://doi.org/10.1039/c5ee03698d.
(26) Wen, C. J.; Huggins, R. A. Thermodynamic and Mass Transport Properties of “LiIn.” Mater Res Bull 1980, 15 (9), 1225–1234. https://doi.org/10.1016/0025-5408(80)90024-0.
(27) Houghton, R. W.; Kuhn, A. T. Mass-Transport Problems and Some Design Concepts of Electrochemical Reactors. J Appl Electrochem 1974, 4 (3), 173–190. https://doi.org/10.1007/BF01637227.
(28) Skoog, D. A.; West, D. M. Análisis Instrumental, 2nd ed.; McGraw-Hill, 1989.
(29) Patzek, T. W. Fick’s Diffusion Experiments Revisited —Part I. Advances in Historical Studies 2014, 03 (04), 194–206. https://doi.org/10.4236/ahs.2014.34017.
(30) Oldham, K. B. Advances in Engineering Software Fractional Differential Equations in Electrochemistry j o t. Advances in Engineering Software 2010, 41 (1), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012.
(31) Pungor, E.; Fehér, Z.; Váradi, M.; Campbell, B. H. Hydrodynamic Voltammetry. C R C Critical Reviews in Analytical Chemistry 1980, 9 (2), 97–165. https://doi.org/10.1080/10408348008542718.
(32) Fields, E.; Fields, S. E. Encyclopedia of Applied Electrochemistry; 2014. https://doi.org/10.1007/978-1-4419-6996-5.
(33) Seeber, R.; Zanardi, C. The Inherent Coupling of Charge Transfer and Mass Transport Processes : The Curious Electrochemical Reversibility. Chem Texts 2016. https://doi.org/10.1007/s40828-016-0027-3.
(34) Selman, J. R.; Tobias, C. W. Mass-Transfer Measurements by the Limiting-Current Technique; Drew, T. B., Cokelet, G. R., Hoopes, J. W., Vermeulen, T., Eds.; Advances in Chemical Engineering; Academic Press, 1978; Vol. 10, pp 211–318. https://doi.org/https://doi.org/10.1016/S0065-2377(08)60134-9.
(35) Kurzweil, P. Electrochemical Double-Layer Capacitors; Elsevier B.V., 2015. https://doi.org/10.1016/B978-0-444-62616-5.00019-X.
(36) Pal, P. Chapter 4 - Physicochemical Treatment Technology. In Industrial Water Treatment Process Technology; Pal, P., Ed.; Butterworth-Heinemann, 2017; pp 145–171. https://doi.org/https://doi.org/10.1016/B978-0-12-810391-3.00004-7.
(37) Zuman, P. Electrolysis with a Dropping Mercury Electrode: J. Heyrovský’s Contribution to Electrochemistry. Crit Rev Anal Chem 2001, 31 (4), 281–289. https://doi.org/10.1080/20014091076767.
(38) Harvey, D. Instrumental Analysis. DePauw University. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Instrumental_Analysis_(LibreTexts)
(39) Bontempelli, G.; Dossi, N.; Toniolo, R. Linear Sweep and Cyclic; Elsevier Inc., 2016. https://doi.org/10.1016/b978-0-12-409547-2.12200-0.
(40) Batchelor-McAuley, C.; Li, D.; Compton, R. G. Mass-Transport-Corrected Transfer Coefficients: A Fully General Approach. ChemElectroChem 2020, 7 (18), 3844–3851. https://doi.org/10.1002/celc.202001107.
(41) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ 2018, 95 (2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.
(42) Bontempelli, G.; Dossi, N.; Toniolo, R. Voltammetry | Polarography. In Encyclopedia of Analytical Science (Third Edition); Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, 2019; pp 218–229. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.14326-4.
(43) Westbroek, P. 2 - Electrochemical Methods. In Analytical Electrochemistry in Textiles; Westbroek, P., Priniotakis, G., Kiekens, P., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing, 2005; pp 37–69. https://doi.org/https://doi.org/10.1533/9781845690878.1.37.
(44) Morris, J. L.; Faulkner, L. R. Normal Pulse Voltammetry in Electrochemically Poised Systems. Anal Chem 1977, 49 (3), 489–494. https://doi.org/10.1021/ac50011a038.
(45) Harvey, D. Analytical Chemistry 2.1, 2.1.; Open textbook library; DePauw University, 2016.
(46) Grabarczyk, M.; Wlazłowska, E.; Wawruch, A. Stripping Voltammetry with Nanomaterials-Based Electrode in the Environmental Analysis of Trace Concentrations of Tin. ChemPhysChem 2024, 25 (2), 6–11. https://doi.org/10.1002/cphc.202300633.
(47) Vardar Sezgin, H.; Gökçel, H. I.; Dilgin, Y. Adsorptive Anodic Stripping Voltammetric Determination of Antimony(III) on a Glassy Carbon Electrode Using Rivastigmine as a New Chemical Receptor. Sens Actuators B Chem 2015, 209, 686–694. https://doi.org/10.1016/j.snb.2014.12.029.
(48) van den Berg, C. M. G.; Jacinto, G. S. The Determination of Platinum in Sea Water by Adsorptive Cathodic Stripping Voltammetry. Anal Chim Acta 1988, 211, 129–139. https://doi.org/https://doi.org/10.1016/S0003-2670(00)83675-2.
(49) Ariño, C.; Banks, C. E.; Bobrowski, A.; Crapnell, R. D.; Economou, A.; Królicka, A.; Pérez-Ràfols, C.; Soulis, D.; Wang, J. Electrochemical Stripping Analysis. Nature Reviews Methods Primers 2022, 2 (1), 63. https://doi.org/10.1038/s43586-022-00155-1.
(50) García-Miranda Ferrari, A.; Rowley-Neale, S. J.; Banks, C. E. Screen-Printed Electrodes: Transitioning the Laboratory in-to-the Field. Talanta Open 2021, 3 (January). https://doi.org/10.1016/j.talo.2021.100032.
(51) Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-Printed Electrodes for Biosensing: A Review (2008-2013). Microchimica Acta 2014, 181 (9–10), 865–891. https://doi.org/10.1007/s00604-014-1181-1.
(52) Applications of the Voltammetry. IntechOpen: Rijeka 2017. https://doi.org/10.5772/65154.
(53) Gulaboski, R.; Mirceski, V. Application of Voltammetry in Biomedicine - Recent Achievements in Enzymatic Voltammetry. Macedonian Journal of Chemistry and Chemical Engineering 2020, 39 (2), 153–166. https://doi.org/10.20450/mjcce.2020.2152.
(54) Alston, F.; Okorie, O. Inorganic Compounds. Occupational Exposures 2023, 93–118. https://doi.org/10.1201/9781003220114-7.
(55) Ortenero, J. R.; Dugos, N. P.; Soriano, A. N.; Borres, E. M. T.; Sing, A. M. J. T.; Pararuan, M. D. A.; Tined, E. L. R. A Review on the Application of Voltammetry in the Determination of Various Substances in Fruit Juices. Applied Science and Engineering Progress 2023, 16 (1), 1–13. https://doi.org/10.14416/j.asep.2022.02.010.
(56) Alvarado-Gámez, A. L.; Alonso-Lomillo, M. A.; Domínguez-Renedo, O.; Arcos-Martínez, M. J. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination. Sensors (Switzerland) 2014, 14 (2), 3756–3767. https://doi.org/10.3390/s140203756.
(57) Ding, W.; Bonk, A.; Gussone, J.; Bauer, T. Cyclic Voltammetry for Monitoring Corrosive Impurities in Molten Chlorides for Thermal Energy Storage. In Energy Procedia; Elsevier Ltd, 2017; Vol. 135, pp 82–91. https://doi.org/10.1016/j.egypro.2017.09.489.
(58) Taher, A. M. Evaluating Corrosion and Passivation by Using Electrochemical Techniques. International Journal of Mechanical Engineering and Robotics Research 2018, 7 (2), 131–135. https://doi.org/10.18178/ijmerr.7.2.131-135.
(59) Kokkinos, C.; Economou, A. Recent Advances in Voltammetric, Amperometric and Ion-Selective (Bio)Sensors Fabricated by Microengineering Manufacturing Approaches. Curr Opin Electrochem 2020. https://doi.org/10.1016/j.coelec.2020.02.020.
(60) Han, H.; Pan, D. Voltammetric Methods for Speciation Analysis of Trace Metals in Natural Waters. Trends in Environmental Analytical Chemistry 2021, 29, e00119. https://doi.org/10.1016/j.teac.2021.e00119.
(61) Holmes, J.; Pathirathna, P.; Hashemi, P. Novel Frontiers in Voltammetric Trace Metal Analysis: Towards Real Time, on-Site, in Situ Measurements. TrAC Trends in Analytical Chemistry 2019, 111, 206–219. https://doi.org/https://doi.org/10.1016/j.trac.2018.11.003.
(62) Wong, A.; A. Ferreira, P.; Santos, A. M.; Cincotto, F. H.; Silva, R. A. B.; Soomayor, M. D. P. T. A New Electrochemical Sensor Based on Eco-Friendly Chemistry for the Simultaneous Determination of Toxic Trace Elements. Microchemical Journal 2020, 158, 105292. https://doi.org/https://doi.org/10.1016/j.microc.2020.105292.
(63) Barbosa, P. F. P.; Vieira, E. G.; Cumba, L. R.; Paim, L. L.; Nakamura, A. P. R.; Andrade, R. D. A.; do Carmo, D. R. Voltammetric Techniques for Pesticides and Herbicides Detection- an Overview. Int J Electrochem Sci 2019, 14 (4), 3418–3433. https://doi.org/10.20964/2019.04.60.
(64) Köksoy, B.; Akyüz, D.; Şenocak, A.; Durmuş, M.; Demirbas, E. Sensitive, Simple and Fast Voltammetric Determination of Pesticides in Juice Samples by Novel BODIPY-Phthalocyanine-SWCNT Hybrid Platform. Food and Chemical Toxicology 2021, 147. https://doi.org/10.1016/j.fct.2020.111886.
(65) Orlović-Leko, P.; Vidović, K.; Plavšić, M.; Ciglenečki, I.; Šimunić, I.; Minkina, T. Voltammetry as a Tool for Rough and Rapid Characterization of Dissolved Organic Matter in the Drainage Water of Hydroameliorated Agricultural Areas in Croatia. Journal of Solid State Electrochemistry 2016, 20 (11), 3097–3105. https://doi.org/10.1007/s10008-016-3245-0.
(66) Chauhan, C. Contemporary Voltammetric Techniques and Its Application to Pesticide Analysis: A Review. Mater Today Proc 2020, 37 (Part 2), 3231–3240. https://doi.org/10.1016/j.matpr.2020.09.092.
(67) March, G.; Nguyen, T. D.; Piro, B. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors (Basel) 2015, 5 (2), 241–275. https://doi.org/10.3390/bios5020241.
(68) Chatterjee, S.; Chen, A. Voltammetric Detection of the α-Dicarbonyl Compound: Methylglyoxal as a Flavoring Agent in Wine and Beer. Anal Chim Acta 2012, 751, 66–70. https://doi.org/https://doi.org/10.1016/j.aca.2012.09.011.
(69) Zhang, L.; Liu, X.; Luo, L.; Hu, C.; Fu, J.; Chang, X.; Gan, T. A High-Performance Voltammetric Methodology for the Ultra-Sensitive Detection of Riboflavin in Food Matrices Based on Graphene Oxide-Covered Hollow MnO2 Spheres. Food Chem 2021, 352, 129368. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129368.
(70) Wahyuni, W. T.; Putra, B. R.; Marken, F. Voltammetric Detection of Vitamin B1 (Thiamine) in Neutral Solution at a Glassy Carbon Electrode via in Situ PH Modulation. Analyst 2020, 145 (5), 1903–1909. https://doi.org/10.1039/C9AN02186H.
(71) Zabihpour, T.; Shahidi, S.-A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A. Voltammetric Food Analytical Sensor for Determining Vanillin Based on Amplified NiFe2O4 Nanoparticle/Ionic Liquid Sensor. Journal of Food Measurement and Characterization 2020, 14 (2), 1039–1045. https://doi.org/10.1007/s11694-019-00353-8.
(72) David, I. G.; Buleandra, M.; Popa, D. E.; Cheregi, M. C.; David, V.; Iorgulescu, E. E.; Tartareanu, G. O. Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes 2022, 10 (3). https://doi.org/10.3390/pr10030472.
(73) Beitollahi, H.; Safaei, M.; Tajik, S. Voltammetric and Amperometric Sensors for Determination of Epinephrine: A Short Review (2013-2017): Original Scientific Paper. Journal of Electrochemical Science and Engineering 2018, 9 (1), 27–43. https://doi.org/10.5599/jese.569.
(74) Gomes, E. S.; Leite, F. R. F.; Ferraz, B. R. L.; Mourão, H. A. J. L.; Malagutti, A. R. Voltammetric Sensor Based on Cobalt-Poly(Methionine)-Modified Glassy Carbon Electrode for Determination of Estriol Hormone in Pharmaceuticals and Urine. J Pharm Anal 2019, 9 (5), 347–357. https://doi.org/https://doi.org/10.1016/j.jpha.2019.04.001.
(75) Erşan, T.; Dilgin, D. G.; Kumrulu, E.; Kumrulu, U.; Dilgin, Y. Voltammetric Determination of Favipiravir Used as an Antiviral Drug for the Treatment of Covid-19 at Pencil Graphite Electrode. Electroanalysis 2023, 35 (4), e202200295. https://doi.org/https://doi.org/10.1002/elan.202200295.
(76) Bilge, S.; Dogan-Topal, B.; Atici, E. B.; Sınağ, A.; Ozkan, S. A. Rod-like CuO Nanoparticles/Waste Masks Carbon Modified Glassy Carbon Electrode as a Voltammetric Nanosensor for the Sensitive Determination of Anti-Cancer Drug Pazopanib in Biological and Pharmaceutical Samples. Sens Actuators B Chem 2021, 343, 130109. https://doi.org/https://doi.org/10.1016/j.snb.2021.130109.
(77) Rezaei-Zarchi, S.; Saboury, A. A.; Norouzi, P.; Hong, J.; Barzegar, A.; Ganjali, M. R.; Ghourchian, H.; Moosavi-Movahedi, A. A.; Javed, A.; Rostami, A. A. Electrochemical Recognition of Metalloproteins by Bromide-Modified Silver Electrode - A New Method. Int. J. Mol. Sci 2007, 8, 723–735. https://doi.org/https://doi.org/10.3390/i8070723.
(78) Pheeney, C. G.; Arnold, A. R.; Grodick, M. A.; Barton, J. K. Multiplexed Electrochemistry of DNA-Bound Metalloproteins. J Am Chem Soc 2013, 135 (32), 11869–11878. https://doi.org/10.1021/ja4041779.
(79) Shaw, L.; Dennany, L. Applications of Electrochemical Sensors: Forensic Drug Analysis. Curr Opin Electrochem 2017, 3 (1), 23–28. https://doi.org/10.1016/j.coelec.2017.05.001.
(80) González-Hernández, J. Drogas Emergentes: Detección Mediante Sensores Electroquímicos. Revista Colombiana de Química 2024, 25–41. https://doi.org/10.15446/rev.colomb.quim.v52n1.108752.
(81) Cumba, L. R.; Smith, J. P.; Zuway, K. Y.; Sutcliffe, O. B.; Do Carmo, D. R.; Banks, C. E. Forensic Electrochemistry: Simultaneous Voltammetric Detection of MDMA and Its Fatal Counterpart “Dr Death” (PMA). Analytical Methods 2016, 8 (1), 142–152. https://doi.org/10.1039/c5ay02924d.
(82) Asturias-Arribas, L.; Alonso-Lomillo, M. A.; Domínguez-Renedo, O.; Arcos-Martínez, M. J. Sensitive and Selective Cocaine Electrochemical Detection Using Disposable Sensors. Anal Chim Acta 2014, 834 (1), 30–36. https://doi.org/10.1016/j.aca.2014.05.012.
(83) González-Hernández, J.; Ott, C. E.; Arcos-Martínez, M. J.; Colina, Á.; Heras, A.; Alvarado-Gámez, A. L.; Urcuyo, R.; Arroyo-Mora, L. E. Rapid Determination of the Legal Highs 4-MMC and 4-MEC by Spectroelectrochemistry: Simultaneous Cyclic Voltammetry and In Situ Surface-Enhanced Raman Spectroscopy. Sensors. 2022. https://doi.org/10.3390/s22010295.
(84) González-Hernández, J.; Alvarado-Moya, G.; Alvarado-Gámez, A. L.; Urcuyo, R.; Arcos-Martínez, M. J. Electrochemical Biosensor for Quantitative Determination of Fentanyl Based on Immobilized Cytochrome c on Multi Walled Carbon Nanotubes Modified Screen Printed Carbon Electrodes. Microchimica Acta 2022, 189 (12), 1–12. https://doi.org/10.1007/s00604-022-05578-x.
(85) Batchelor-Mcauley, C.; Kätelhön, E.; Barnes, E. O.; Compton, R. G.; Laborda, E.; Molina, A. Recent Advances in Voltammetry. ChemistryOpen 2015, 4 (3), 224–260. https://doi.org/10.1002/open.201500042.
(86) Bond, A. M.; Zhang, J.; Gundry, L.; Kennedy, G. F. Opportunities and Challenges in Applying Machine Learning to Voltammetric Mechanistic Studies. Curr Opin Electrochem 2022, 34, 101009. https://doi.org/10.1016/j.coelec.2022.101009.
(87) Bond, A. M. Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection. A Review. Analyst 1994, 119 (11), 1–21. https://doi.org/10.1039/AN994190001R.
Descargas
Derechos de autor 2024 Jerson González-Hernández, Jairo Garcia-Céspedes
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.