Alternativas para mitigar el impacto en el uso de glifosato, herbicida altamente tóxico empleado en la agricultura en México
DOI:
https://doi.org/10.18800/quimica.202502.001Palabras clave:
Agricultura, Herbicida, GlifosatoResumen
La agricultura es una de las actividades más importantes en el mundo, responsable de la provisión de insumos y alimentos. La demanda de alimentos se ha incrementado en los últimos años y con ella, la implementación de sustancias químicas que mejoren la productividad en los cultivos. Entre los principales productos usados en este tipo de industria están los plaguicidas (que incluyen a los insecticidas, fungicidas y herbicidas) y los fertilizantes sintéticos. En las últimas décadas, el uso de todos estos compuestos ha aumentado de forma preocupante y, en ocasiones, desmedida, generando que especies nocivas como bacterias, hongos y malezas que afectan a los cultivos importantes se vuelvan más resistentes y requieran mayor concentración o compuestos más tóxicos. Otra preocupación es la exposición colateral que tenemos los humanos a estos compuestos, lo que ocasiona graves problemas de salud. Existen múltiples reportes acerca de los efectos tóxicos y carcinogénicos que tienen dichos compuestos, como se documenta en este trabajo, particularmente centrado en el uso del glifosato, un herbicida altamente tóxico, usado en México y en el mundo. Finalmente, se ofrecen alternativas para la eliminación de este compuesto, basadas en técnicas que van desde la biorremediación hasta el uso de tecnologías de punta, como el uso de nanomateriales, incluso para su monitoreo ambiental.
Descargas
Citas
1. Benbrook, C.M., Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur., 2016, 28, 1-15. https://doi.org/10.1186/s12302-016-0070-0
2. SENADO DE LA REPÚBLICA de México, L.L., GACETA: LXIV/1PPO-61/870 36. 2018.
3. FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. 2025. https://www.fao.org/faostat/es/#data/RP
4. Gaupp-Berghausen, M., Hofer, M., Rewald, B., Zaller, J.G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Scientific Reports, 2015. 5(1), 12886. https://doi.org/10.1038/srep12886
5. Kremer, R.J., Environmental implications of herbicide resistance: soil biology and ecology. Weed Science, 2014, 62(2), 415-426. https://doi.org/10.1614/WS-D-13-00114.1
6. Eker, S., Ozturk, L., Yazici, A., Erenoglu, B., Romheld ,V., Cakmak, I. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J. Agric. Food Chem., 2006, 54(26), 10019-10025. https://doi.org/10.1021/jf0625196
7. Pleasants, J.M., K.S. Oberhauser, Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers., 2013. 6(2): p. 135-144. https://doi.org/10.1111/j.1752-4598.2012.00196.x
8. Cuhra, M. , Traavik, T. , Dando, M. , Primicerio, R. , Holderbaum, D., Bøhn, T., Glyphosate-residues in roundup-ready soybean impair Daphnia magna life-cycle. J. Agric. Food Chem. 2015, 4, 24-36. http://dx.doi.org/10.4236/jacen.2015.41003
9. Balbuena, M.S., Tison, L., Hahn M.L., Greggers, U., Menzel, R., Farina W.M. Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol., 2015. 218(17): p. 2799-2805. https://doi.org/10.1242/jeb.117291
10. Dill, G.M., Sammons, R.D., Feng, P.C.C., Kohn, F., Kretzmer, K., Mehrsheikh, A., Bleeke, M., Honegger, J.L., Farmer, D., Wright, D. and Haupfear, E.A.: Glyphosate: discovery, development, applications, and properties. En Nandula V.K. (Ed.) “Glyphosate resistance in crops and weeds: history, development, and management”, Wiley, 2010: pp. 1-33. https://doi.org/10.1002/9780470634394.ch1
11. Valavanidis, A., Glyphosate, the Most Widely Used Herbicide. Health and safety issues. Why scientists differ in their evaluation of its adverse health effects. Reporte independiente, 2018.
12. Tang, Q., Tang, J., Ren, X., Li, C.: Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environ. Pollut., 2020, 261, 114129. https://doi.org/10.1016/j.envpol.2020.114129
13. Battaglin, W.A., Meyer, M.T. Kuivila, K.M. Dietze, J.E.: Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA, 2014. 50(2): p. 275-290. https://doi.org/10.1111/jawr.12159
14. Borggaard, O.K. and A.L. Gimsing, Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci., 2008. 64(4): p. 441-456. https://doi.org/10.1002/ps.1512
15. Chang, F-C., M.F. Simcik, and P.D. Capel, Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere. Environ. Toxicol. Chem., 2011. 30(3), 548-555. https://doi.org/10.1002/etc.431
16. Chiesa LM, Nobile M, Panseri S, Arioli F.: Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry (IC-HRMS). Food Addit. Contam.: A, 2019. 36(4), 592-600. https://doi.org/10.1080/19440049.2019.1583380
17. Coupe, R.H., et al., Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci., 2012. 68(1): p. 16-30.
18. International Agency for Research on Cancer: Agents Classified by the IARC Monographs. 2025. (Consulta agosto 2025) https://monographs.iarc.who.int/agents-classified-by-the-iarc/
19. Vainio, H., Public health and evidence-informed policy-making: The case of a commonly used herbicide. Scand. J. Work Environ. Health, 2020. 46(1): p. 105-109. https://doi.org/10.5271/sjweh.3851
20. Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE., Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem. Res. Toxicol., 2010. 23(10), 1586-1595. https://doi.org/10.1021/tx1001749
21. Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J., Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol., 2013. 59: p. 129-136. https://doi.org/10.1016/j.fct.2013.05.057
22. Muñoz, J.P., T.C. Bleak, Calaf, G.M., Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere, 2021. 270: p. 128619.
23. Bukowska, B., Wo?niak, E., Sici?ska, P., Mokra K, Micha?owicz J.: Glyphosate disturbs various epigenetic processes in vitro and in vivo–a mini review. Sci. Total Environ., 2022. 851, 158259. https://doi.org/10.1016/j.scitotenv.2022.158259
24. Antoniou M., Habib M.E.M., Howard, C.V., Jennings R.C., Leifert C., Nodari, R.O., Robinson C.J., Fagan J. Teratogenic effects of glyphosate-based herbicides: divergence of regulatory decisions from scientific evidence. J. Environ. Anal. Toxicol., 2012. 4(006): p. 2161-0525.
25. Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE., Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol., 2015. 84, 133-153. https://doi.org/10.1016/j.fct.2015.08.012
26. Cattani, D., de Liz Oliveira Cavalli V.L., Heinz Rieg C.E., Domingues J.T., Dal-Cim T., Tasca, C.I., Mena Barreto Silva, F.R., Zamoner A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology, 2014. 320: p. 34-45. https://doi.org/10.1016/j.tox.2014.03.001
27. Jayasumana, C., Gunatilake, S., and Senanayake P.: Glyphosate, hard water and nephrotoxic metals: are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka? Int. J. Environ. Res. Public Health, 2014. 11(2): p. 2125-2147. https://doi.org/10.3390/ijerph110202125
28. Hokanson R, Fudge R, Chowdhary R, Busbee D.: Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate. Hum. Exp. Toxicol., 2007. 26(9): p. 747-752. https://doi.org/10.1177/0960327107083453
29. Ma, J., Y. Bu, and X. Li, Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate. Environ. Toxicol. Pharmacol., 2015. 39(1): p. 1-8. https://doi.org/10.1016/j.etap.2014.11.004
30. Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi M.M, Nunes MT, de Oliveira CA.: Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch. Toxicol., 2012. 86(4): p. 663-673. https://doi.org/10.1007/s00204-011-0788-9
31. Schinasi, L. and M.E. Leon, Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health, 2014. 11(4) 4449-4527. https://doi.org/10.3390/ijerph110404449
32. Spisák S., Solymosi N., Ittzés P., Bodor A., Kondor D., Vattay G., Barták B.K., Sipos F., Galamb O., Tulassay Z, Szállási Z., Rasmussen S., Sicheritz-Ponten T., Brunak S., Molnár B., Csabai I.: Complete genes may pass from food to human blood. PLoS One, 2013. 8(7): e69805. https://doi.org/10.1371/journal.pone.0069805
33. Zdziarski I.M., Edwards J.W., Carman J.A., Haynes J.I. GM crops and the rat digestive tract: a critical review. Environ Int., 2014. 73, 423-433. https://doi.org/10.1016/j.envint.2014.08.018
34. Soares D, Silva L, Duarte S, Pena A, Pereira A. Glyphosate Use, Toxicity and Occurrence in Food. Foods. 2021. 10(11), 2785. https://doi.org/10.3390/foods10112785
35. Arellano-Aguilar, O., Rendón von Osten, O. La huella de los plaguicidas en México. E. Martínez. Greenpeace México. AC Las Flores, 2016. https://www.greenpeace.org/static/planet4-mexico-stateless/2018/11/30b49459-30b49459-plaguicidas_en_agua_ok_em.pdf (Consultado: abril 2025)
36. Ruiz-Toledo J., Castro R., Rivero-Pérez N., Bello-Mendoza R., Sánchez D., Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico. Bull. Environ. Contam. Toxicol., 2014, 93, 289-293. https://doi.org/10.1007/s00128-014-1328-0
37. Rendón-von Osten, J. and R. Dzul-Caamal: Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health., 2017. 14(6): p. 595. https://doi.org/10.3390/ijerph14060595
38. Jönsson, J., Camm, R., Hall, T., Removal and degradation of glyphosate in water treatment: a review. J. Water Supply: Res. Technol.—Aqua, 2013. 62(7): p. 395-408. https://doi.org/10.2166/aqua.2013.080
39. López Escandon, V., Evaluación in-vitro de la biodegradación del glifosato en suelo utilizando Pleurotus ostreatus. Tesis. Universidad El Bosque: Bogotá, 2022. https://hdl.handle.net/20.500.12495/10129
40. Liu, H., Chen, P. Liu, Z., Liu, J., Yi, J., Xia, F., Zhou, C. Electrochemical luminescence sensor based on double suppression for highly sensitive detection of glyphosate. Sensors and Actuators B: Chem., 2020. 304, 127364. https://doi.org/10.1016/j.snb.2019.127364
41. Gu, C., Wang, Q., Zhang, L., Yang, P., Xie, Y., Fei, J., Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide@ mesoporous carbon composite. Sensors and Actuators B: Chem., 2020. 305, 127478. https://doi.org/10.1016/j.snb.2019.127478
42. Zhao, H., et al., Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. J. Gen. Appl. Microbiol., 2015. 61(5), 165-170.
43. Yakasai, H. M. ., Manogaran, M. ., Halmi, M. I. E., Abubakar, A., Khayat, M. E., Characterization of a Pseudomonas sp. Isolated from Langkawi Capable of Degrading Glyphosate. Bull. Environ. Sci. Sustain. Manag., 2023. 7(2), 26-33. https://doi.org/10.54987/bessm.v7i2.914
44. Yu, X.M., Yu, T., Yin, G.H., Dong, Q.L., An M., Wang, H.R., Ai C.X.: Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet. Mol. Res., 2015. 14(4): p. 14717-14730. https://doi.org/10.4238/2015.november.18.37
45. Eththiligoda, E., Aththanayake a.: Isolation of Glyphosate-tolerant and Degrading Bacteria from Agricultural Fields for Future Soil Bioremediation Studies. 16th International Research Conference, Sri Lanka, 2023. http://ir.kdu.ac.lk/handle/345/6844
46. Herath, G.A.D., Poh, L.S. Ng, W.J., Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology. Chemosphere, 2019. 227, 533-540. https://doi.org/10.1016/j.chemosphere.2019.04.078
47. da Silva, V.E.C., Tadayozzi, Y.S., Putti, F.F., Santos FA, Forti JC.: Degradation of commercial glyphosate-based herbicide via advanced oxidative processes in aqueous media and phytotoxicity evaluation using maize seeds. Sci. Total Environ., 2022. 840, 156656. https://doi.org/10.1016/j.scitotenv.2022.156656
48. Manassero, A., Passalia, C., Negro, A.C., Cassano, A.E., Zalazar C.S.: Glyphosate degradation in water employing the H2O2/UVC process. Water Res., 2010. 44(13), 3875-3882. https://doi.org/10.1016/j.watres.2010.05.004
49. Liu Y., Hua J.F., Zhang M.D., Huang M., Glyphosate wastewater treatment by combined precipitation and advanced oxidation processes. Adv. Mater. Res., 2013. 746: p. 45-48. https://doi.org/10.4028/www.scientific.net/AMR.746.45
50. Chen, S., Liu, Y.: Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 2007, 67(5), 1010-1017. https://doi.org/10.1016/j.chemosphere.2022.134709
51. Biswas, B., Goel, S.: Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review. Chemosphere, 2022. 302: p. 134709. https://doi.org/10.1016/j.chemosphere.2022.134709
52. Pizzul, L., Castillo, M.d.P. Stenström, J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 2009. 20: p. 751-759. https://doi.org/10.1007/s10532-009-9263-1
53. Gao, W., Zhang, Y., Lin, M., Mao, J., Xing, B., Li, Y., & Hou, R. Capability of phytoremediation of glyphosate in environment by Vulpia myuros. Ecotoxicol. Environ. Safety, 2023. 265, 115511. https://doi.org/10.1016/j.ecoenv.2023.115511
54. Hena, S., Patil, K.S., Leinecker, N., Bhatelia, T., Shah, M. Effect of algal organic matter on adsorption of glyphosate using coconut shell-activated carbon. Chem. Eng. J. Adv., 2025: p. 100754. https://doi.org/10.1016/j.ceja.2025.100754
55. Bezerra, W. F. da P., Dognani, G., Alencar, L. N. de ., Parizi, M. P. S., Boina, R. F., Cabrera, F. C., & Job, A. E.: Chemical treatment of sugarcane bagasse and its influence on glyphosate adsorption. Matéria (Rio de Janeiro), 2022. 27: p. e13142. https://doi.org/10.1590/S1517-707620220001.1342
56. Mehta, J., Dhaka, R.K., Dilbaghi, N. et al. Recent advancements in adsorptive removal of organophosphate pesticides from aqueous phase using nanomaterials. J Nanostruct Chem, 2024. 14(1): p. 53-70. https://doi.org/10.1007/s40097-022-00516-y
57. Carneiro R.T., Taketa T.B., Gomes Neto R.J., Oliveira J.L., Campos E.V., de Moraes M.A., da Silva CM, Beppu MM, Fraceto LF. Removal of glyphosate herbicide from water using biopolymer membranes. J. Environ. Manag., 2015. 151: p. 353-360. https://doi.org/10.1016/j.jenvman.2015.01.005
58. Wang, M., Rivenbark, K.J., Phillips, T.D.: Kinetics of glyphosate and aminomethylphosphonic acid sorption onto montmorillonite clays in soil and their translocation to genetically modified corn. J. Environ. Sci., 2024. 135, 669-680. https://doi.org/10.1016/j.jes.2023.02.006
59. Besghaier, S., Cecilia, J.A., Chouikhi, N. Vilarrasa-García, E., Rodríguez-Castellón, E., Chlendi, M., Bagane, M. Glyphosate adsorption onto porous clay heterostructure (PCH): kinetic and thermodynamic studies. Braz. J. Chem. Eng. 2022, 39, 903–917. https://doi.org/10.1007/s43153-021-00166-7











