Edición genómica con CRISPR/Cas9: Premio Nobel de Química 2020
Resumen
La Real Academia Sueca de Ciencias otorgó el Premio Nobel de Química 2020 a dos científicas, la Dra. Emmanuelle Charpentier de la Unidad Max Planck para la Ciencia de los Patógenos (Berlín, Alemania), y la Dra. Jennifer A. Doudna de la Universidad de California (Berkeley, Estados Unidos), por el desarrollo de un método para la edición del genoma, una de las herramientas más resonantes de la última década: las tijeras genéticas CRISPR/Cas9. Actualmente, los científicos pueden modificar el ADN de animales, plantas y microorganismos con una precisión extremadamente alta. La nueva tecnología CRISPR/Cas9 también tiene un impacto revolucionario en la medicina humana, y contribuye a generar nuevas terapias contra el cáncer e, incluso, a curar enfermedades hereditarias. Los objetivos del presente trabajo son mencionar los antecedentes, la importancia del descubrimiento de la edición genómica con CRISPR/Cas9, el mecanismo molecular y las aplicaciones actuales de esta valiosa herramienta biotecnológica en humanos, animales, plantas y microorganismos.
Referencias bibliográficas
(1) Martínez Oliva, B.G. CRISPR, Una herramienta para editar genomas. Gaceta Medica Boliviana, 2020, 43, (2): 179-183. https://doi.org/10.47993/gmb.v43i2.66
(2) Jinek, M.; Jinek, M.; Taylor, W.D.; Sternberg, H.S.; Kaya, E.; Ma, E.; Anders, C.; Hauer, M.; Zhou, K.; Lin, S.; Kaplan, M.; Iavarone, T.A.; Charpentier, E.; Nogales, E.; Doudna, A.J. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343 (6176), 1215-1226. https://doi.org/10.1126/science.1247997.
(3) Nishimasu, H.; Ran, A.F.; Hsu, D.P.; Konermann, S.; Shehata, I.S.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O.; Less, S. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156 (5), 935–949. https://doi.org/10.1016/j.cell.2014.02.001.
(4) Mojica, F.J.M.; Juez, G.; Rodríguez-Valera, F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 1993, 9, 613-621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
(5) Mojica, F.J.M.; Ferrer, C.; Juez, G.; Rodríguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology, 1995, 17, 85-93. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x.
(6) Cho, S.W., Kim, S.; Kim, M.J.; Jin-Soo, K. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature biotechnology, 2013, 31 (3), 230–232. https://doi.org/10.1038/nbt.2507
(7) Cong, L.; Ran, A.F.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, D.P.; Wu, X.; Jiang, W.; Marraffini, A.L.; Zhang, F. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 2013, 339 (6121), 819–823. https://doi.org/10.1126/science.1231143 .
(8) Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J. RNA-programmed genome editing in human cells. eLife, 2013, 2, 1–9. https://doi.org/10.7554/eLife.00471.
(9) Yang, H,; Wang, H.; Shivalila, C.S.; Cheng, A.W.; Shi, L.; Jaenis, R. One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell, 2013, 154, 6, 1370-1379.
DOI: https://doi.org/10.1016/j.cell.2013.08.022
(10) Jiang, W.; Bikard, D.; Cox, D.; Zhang, F. Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31: 233–239. https://doi.org/10.1038/nbt.2508
(11) Friedland, A.E.; Tzur, B.Y.; Esvelt, M.K.; Colaiácovo, P.M.; Church, M.G.; Calarco, J.A. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature methods, 2013, 10 (8), 741–3. https://doi.org/10.1038/nmeth.2532.
(12) Ma, S.; Chang, J.; Wang, X.; Liu, Y.; Zhang, J.; Lu, W.; Gao, J.; Shi, R.; Zhao, P.; Xia, Q.CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Scientific Reports, 2014, 4, 1-6, https://doi.org/10.1038/srep04489
(13) Sasaki, H.; Yoshida, K.; Hozumi, A.; Sasakura, Y. CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Development, Growth & Differentiation, 2014, 56 (7), 499–510. https://doi.org/10.1111/dgd.12149
(14) Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Kaini, P.; Sander, D.J.; Joung, K.J.; Peterson, T.R.; Jing-Ruey, J.Y. Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System. PLoS ONE, 2013, 8 (7), 1–9. https://doi.org/10.1371/journal.pone.0068708
(15) Nakayama, T.; Fish, B.M.; Fisher, M.; Oomen-Hajagos, J.; Thomsen, H.G.; Grainger, M.R. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis, 2013, 51 (12), 835–843. https://doi.org/10.1002/dvg.22720
(16) Wang, H.; Yang, H.; Shivalila, S.C.; Dawlaty, M.M.; Cheng, W.A.; Zhang, F., Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by crispr/cas-mediated genome engineering. Cell, 2013, 153, (4), 910-918, https://doi.org/10.1016/j.cell.2013.04.025
(17) Xie, F.; Ye, L.; Chang, C.J.; Beyer, I.A.; Wang, J.; Muench, O.M.; Kan, W.Y. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research. 2014, 24, (9): 1526-33. https://doi.org/10.1101/gr.173427.114
(18) Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, A.L. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology, 2013, 31 (3), 233–239. https://doi.org/10.1038/nbt.2508
(19) Yin, H.; Xue, W.; Anderson, D.G. CRISPR-Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, (5): 281-295. https://doi.org/10.1038/s41571-019-0166-8
(20) Kyrou, K.; Kyrou, K.; Hammond, M.A.; Galizi, R.; Kranjc, N.; Burt, A.; Beaghton, K.A.; Nolan, T.; Crisanti, A. A CRISPR–Cas9 gene drive targeting dou-blesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology. 2018, 36, 1062–1066. https://doi.org/10.1038/nbt.4245
(21) Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 2012, 17, 816-821. https://doi.org/10.1126/science.1225829
(22) Fernández Bayo I. CRISPR. Crónica de una revolución genética. Enlace de los químicos de Madrid. 2017, 41, 1-9. https://quimicosmadrid.org/home/2019/10/enlace-no-41-crispr-cronica-de-una-revolucion-genetica/#book1
(23) Hryhorowicz, M.; Lipiński, D.; Zeyland, J.; Słomski, R. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Archivum Immunologiae et Therapiae Experimentalis, 2016, 65, (3): 233-240. https://doi.org/10.1007/s00005-016-0427-5 .
(24) López M. Y. 2015, Ingeniería genómica mediante sistemas CRISPR-Cas. Trabajo fin de Grado. Universidad de Alicante.
(25) Mojica, F.J.M.; Garret, R.A. 2013, Discovery and Seminal Developments in the CRISPR Field. En CRISPR-Cas Systems RNA-Mediated Adaptative Immunity in Bacteria and Archaea. Barrangou, R. yvan der Oost, J., eds. Springer, p. 299.
(26) Firth, A.L.; Menon, T.; Parker, S.G.; Qualls, J.S.; Lewis, M.B.; Ke, E.; Dargitz, T.C.; Wright, R.; Khanna, A.; Gage, H.F.; Verma, M.I. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Reports. 2015, 12, (9): 1385-1390. https://doi.org/10.1016/j.celrep.2015.07.062
(27) Myhrvold, C.; Freije, C.A.; Gootenberg, S.J.; Abudayyeh, O.O.; Metsky, C.H.; Durbin, F.A.; Kellner, J.M.; Tan L.A.; Paul, M.L.; Parham, A.L., Garcia, F.K.; Barnes, G.K.; Chak, B.; Mondini, A.; Nogueira, L.M.; Isern, S.; Michael, F.S.; Lorenzana, I.; Yoswiak, L.N.; MacInnis, B.; Bosch, I.; Gehrke, L.; Zhang, F., Sabeti, C.P. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360 (6387): 444-448. https://doi.org/10.1126/science.aas8836
(28) Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018; 360 (6387): 439-44. https://doi.org/10.1126/science.aaq0179 .
(29) Wan, H et al. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Research. 2015, 25 (2): 258–261. https://doi.org/10.1038/cr.2014.158
(30) Zou, Q.; Wang, X.; Liu, Y.; Ouyang, Z.; Long, H.; Wei, S.; Xin, J.; Zhao, B.; Lai, S.; Shen, J.; Ni, Q.; Yang, H.; Zhong, H.; Li, L.; Hu, M.; Zhang, Q.; Zhou, Z.; He, J.; Yan, Q.; Fan, N.; Zhao, Y.; Liu, Z.; Guo, L.; Huang, J.; Zhang, G.; Ying, J.; Lai, L.; Gao, X. Generation of gene-target dogs using CRISPR/Cas9 system. Journal of Molecular Cell Biology. 2015, 7 (6): 580-583. https://doi.org/10.1093/jmcb/mjv061
(31) Whitworth, K.M.; Rowland, R.R.R.; Ewen, L.C.; Trible, R.B.; Kerrigan, A.M.; Cino-Ozuna, A.G.; Samuel, S.M.; Lightner, J.E.; McLaren, D.G.; Mileham, J.A.; Wells D.K.; Prather, S.R. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology. 2016, 34 (1): 20-22. https://doi.org/10.1038/nbt.3434
(32) Carlson, D.F. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology. 2016, 34 (5): 479-481. https://doi.org/10.1038/nbt.3560
(33) Gantz, V.M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V.M.; Bier, E.; James, A.A. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 2015, 112 (49): 736-743. https://doi.org/10.1073/pnas.1521077112
(34) Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Siniscalchi, C.; Katsanos, D.; Gribble, M.; Baker, D.; Marois, E.; Rusell, S.; Burt, A.; Windbichler, N.; Crisanti, A.; Nolan, T. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34, 78–83. https://doi.org/10.1038/nbt.3439
(35) Burt, A.; Crisanti, A. Gene Drive: Evolved and Synthetic. ACS Chem Biol. 2018, 13 (2): 343-346. http://pubs.acs.org/doi/10.1021/acschembio.7b01031
(36) Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology. 2018, 36 (1): 6-7. https://doi.org/10.1038/nbt0118-6b
(37) Arora, L.; Narula, A. Gene Editing and Crop Improvement Using CRISPR-Cas9 System. Frontiers in Plant Science. 2017, 8, 1-21. https://doi.org/10.3389/fpls.2017.01932
(38) Nieves-Cordones, M.; Mohamed, S.; Tanoi, K.; Kobayashi, N.I.; Takagi, K.; Vernet, A.; Guiderdoni, E.; Périn, C.; Sentenac, H.; Verý, A.A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. The Plant Journal. 2017, 92 (1): 43-56. https://doi.org/10.1111/tpj.13632
(39) Shi, J.; Gao, H.; Wang, H.; Lafitte, H. R.; Archibald, R. L.; Yang, M.; Hakimi, S. M.; Mo,H.; Habben, J. E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal. 2017, 15(2): 207-216. https://doi.org/10.1111/pbi.12603
(40) Parada, S.J.A.; Rozowski, N.J. Relación entre la respuesta glicémica del almidón y su estado microestructural. Revista Chilena de Nutrición, 2008, 35(2): 84-92. https://doi.org/10.4067/S0717-75182008000200001
(41) Sun, Y.; Jiao, G.; Liu, Z.; Zhang, X.; Li, J.; Guo, X.; Du, W.; Du, J.; Francis, F.; Zhao, Y.; Xia, L. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in Plant Science, 2017, 8, 1-15. https://doi.org/10.3389/fpls.2017.00298
(42) Zsögön, A.; Čermák, T.; Naves, E. R.; Notini, M. M.; Edel, K. H.; Weinl, S.; Freschi, L.; Voytas, D. F.; Kudla, J.; Peres, L. E. P. De novo domestication wild of tomato using genome editing. Nature biotechnology, 2018, 36 (12): 1211-1216. https://doi.org/10.1038/nbt.4272
(43) Woo, J.W.; Kim, J.K.; Won, S.I.; Corvalán, C.; Cho, S.W.; Kim, H.; Kim, S.G.; Kim, S.T. Choe, S.; Kim, J.S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015, 33, 1162–1164. https://doi.org/10.1038/nbt.3389
(44) Jiang, W.; Yang, B.; Weeks, D.P. Efficient CRISPR/Cas9-Mediated Gene Editing in Arabidopsis thaliana and Inheritance of Modified Genes in the T2 and T3 Generations. PLoS ONE 9, 2014, 9, (6): 1-10. https://doi.org/10.1371/journal.pone.0099225 .
(45) Hyun, Y.; Kim, J.; Cho, S.W.; Choi, Y.; Kim, J.S.; Coupland, G. Site-directed 1058mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of 1059the CRISPR/Cas system to generate heritable null alleles. Planta 2015, 241, 271–284 https://doi.org/10.1007/s00425-014-2180-5
(46) Lagunes, R.F.A. Sistema CRISPR/Cas. Ciencia, 2019, 70, 1-5.
(47) Spizek, J.; Havlicek, V. Tackling antibiotic resistance. In: Sanchez, S., Demian, A. L. (Eds.), Antibiotics: Current innovations and future trends. Caister Academic Press, Norfolk, UK. 2015, pp. 83-93.
(48) Aminov, R. History of antimicrobial drug discovery – Major classes and health impact. Biochemistry Pharmacology, 2017, 133, 4-19. https://doi.org/10.1016/j.bcp.2016.10.001
(49) O ́Neill, J. Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. 2016, The Wellcome Trust and UK Gobernment.
(50. Bikard, D.; Euler, C.W.; Nussenzweig, P.M.; Goldberg W.G.; Duportet, X.; Fischetti, V.A.; Marraffini, L.A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 2014, 32, 1146–1150. https://doi.org/10.1038/nbt.3043
(51) Gomaa, A. A.; Klumpe, H. E.; Luo, M. L.; Selle, K.; Barrangou, R.; Beisel, C. L. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2014, 5, (1): 1-9. https://doi.org/10.1128/mBio.00928-13
(52) Citorik, R. J.; Mimee, M.; Lu, T. K. Sequence- specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 2014, 32 (11): 1141-1145. https://doi.org/10.1038/nbt.3011
(53) Yosef, I.; Manor, M.; Kiro, R.; Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proceedings of the National Academy of Sciences, 2015, 112 (23): 7267-7272. https://doi.org/10.1073/pnas.1500107112
(54) Noguez-Moreno, R.; Fernández-Salas, I.; Cime-Castillo, J.; Merino-Pérez, E.; Renaud, C.; Cabrera-Romo, S.; Lanz-Mendoza, H. New strategies of vector control: Genetically modified mosquitoes. Folia Entomológica Mexicana, 2017, 3, (3): 114−138. http://folia.socmexent.org/revista/Num%202017_3/FEM_ns_114-138.pdf
(55) Godfray, H.C.J.; North, A.; Burt, A. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biology. 2017, 105, (1): 81. https://doi.org/10.1186/s12915-017-0420-4
(56) Galizi, R.; Hammond, A.K.; Kyrou, A CRISPR-Cas9 sex-ratio distortion system for genetic control. Scientific Reports, 2016, 6, 311–339. https://doi.org/10.1038/srep31139
(57) Grunwald, H., et al. Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline. Nature, 2019, 566, 105–109. https://doi.org/10.1101/362558 .
(58) Doudna, J. “How CRISP lets us edit our DNA”. TEDGlobal, Septiembre 2005. https://www.ted.com/talks/jennifer_doudna_how_crispr_lets_us_edit_our_dna/transcript?language=es