Resistencia bacteriana: un nuevo desafío científico

  • Julián Rodríguez-López Universidad de Castilla-La Mancha. Facultad de Ciencias y Tecnologías Químicas.

    Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas.

    Avda. Camilo José Cela 10, 13071-Ciudad Real, España.

  • Rodrigo Plaza-Pedroche Universidad de Castilla-La Mancha. Facultad de Ciencias y Tecnologías Químicas.

    Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas.

    Avda. Camilo José Cela 10, 13071-Ciudad Real, España.

Palabras clave: resistencia bacteriana; antibióticos; bacterias; retos científicos.

Resumen

El descubrimiento de los antibióticos en el siglo XIX permitió tratar enfermedades infecciosas incurables hasta la fecha. Sin embargo, en la actualidad, el número de bacterias resistentes ha crecido notablemente, situando el problema de la resistencia bacteriana como una de las principales causas de mortalidad a nivel mundial. En este trabajo se discute el origen de este fenómeno y las posibles soluciones que se barajan para minimizar sus efectos.  

Referencias bibliográficas

(1) Ludeña Reyes, J. A. Uso de antibióticos y el tipo de herida, evaluación frente al resultado de cultivo y antibiograma. Tesis previa a la obtención del título de Médico General. Universidad Nacional de Loja (Ecuador), 2014. https://dspace.unl.edu.ec/jspui/handle/123456789/12504

(2) Landsberg, H. Prelude to the Discovery of Penicillin. Isis 1949, 40, 225–227. https://www.journals.uchicago.edu/doi/abs/10.1086/349043

(3) Polaco Castillo, J. A.; Villalobos Huerta, M. A.; Mercado Hernández, B. M.; Peña Jiménez, C. M.; Baños Galeana, C. O. Capítulo 4: Asepsia y antisepsia. En Introducción a la cirugía; Tapia Jurado, J.; Archundia García, A.; Reyes Arellano, W. A. (eds.); McGraw Hill: México, 2011; pp. 49–60.

(4) Ligon, B. L. Penicillin: Its Discovery and Early Development. Semin. Pediatr. Infect. Dis. 2004, 15, 52–57. https://doi.org/10.1053/j.spid.2004.02.001

(5) Stacheleck, M.; Zalewska, M.; Kawecka-Grochocka, E.; Sakowski, T.; Bagnicka, E. Overcoming Bacterial Resistance to Antibiotics: The Urgent Need. Ann. Anim. Sci. 2020, 21(1), 63-87. https://doi.org/10.2478/aoas-2020-0098 .

(6) Bado, I.; Cordeiro, N.; García, V.; Robino, L.; Seija, V.; Vignoli, R. Principales Grupos de Antibióticos. En Temas de Bacteriología y Virología Médica, 3ª edición, Universidad de la República, Facultad de Medicina, Oficina del libro–FEFMUR: Montevideo, 2008; pp. 725–750. https://es.scribd.com/document/415474683/Virologia-y-parasitologia-medica

(7) Etebu, E.; Arikekpar, I. Antibiotics: Classification and Mechanisms of Action with Emphasis on Molecular Perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90-101. https://www.semanticscholar.org/paper/Antibiotics-%3A-Classification-and-mechanisms-of-with-Etebu-Arikekpar/b780290edda6a5ebb9f30ff583d414d94252d225

(8) McEwen, S. A.; Fedorka-Cray, P. J. Antimicrobial Use and Resistance in Animals. Clin. Infect. Dis. 2002, 34, 93-106. https://doi.org/10.1086/340246

(9) Thanner, S.; Drissner, D.; Walsh, F. Antimicrobial Resistance in Agriculture. mBio 2016, 7, e02227-15. https://mbio.asm.org/content/7/2/e02227-15

(10) European Centre for Disease Prevention and Control. Antimicrobial resistance on the EU/EEA (EARS-Net)- Annual Epidemiological Report 2019. Stockholm: ECDC; 2020. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019

(11) Cecchini, M.; Ouakrim, D. A. Chapter 1: Antimicrobial resistance: A large and growing problem. En Stemming the Superbug Tide: Just A Few Dollars More, OECD Health Policy Studies, OECD Publishing, Paris, 2018; pp. 21-42. https://read.oecd-ilibrary.org/social-issues-migration-health/stemming-the-superbug-tide/antimicrobial-resistance-a-large-and-growing-problem_9789264307599-4-en#page20

(12) Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 3, 417-433. https://mmbr.asm.org/content/74/3/417

(13) Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903-3910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929930/

(14) Ventola, C. L. The Antibiotic Resistance Crisis. Part 1: Crisis and Threats. Pharmacol. Ther. 2015, 40, 277-283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/

(15) Garrett, T. R.; Bhakoo, M.; Zhang, Z. Bacterial Adhesion and Biofilms on Surfaces. Prog. Nat. Sci. 2008, 18, 1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001

(16) Chadha, T. Bacterial Biofilms: Survival Mechanisms and Antibiotic Resistance. J. Bacteriol. Parasitol. 2014, 5, 190. https://www.longdom.org/abstract/bacterial-biofilms-survival-mechanisms-and-antibiotic-resistance-9843.html

(17) Stewart, P. S. Mechanisms of Antibiotic Resistance in Bacterial Biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. https://doi.org/10.1078/1438-4221-00196

(18) Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC, 2019. https://www.cdc.gov/drugresistance/biggest-threats.html

(19) Lasa, I.; del Pozo, J. L.; Penadés, J. R.; Leiva, J. Biofilms bacterianos e infección. An. Sist. Sanit. Navar. 2005, 28, 163–175. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272005000300002

(20) Hoyle, B. D.; Alcántara, J.; Costerton, J. W. Pseudomonas Aeruginosa Biofilm as a Diffusion Barrier to Piperacillin. Antimicrob. Agents Chemother. 1992, 36, 2054–2056. https://aac.asm.org/content/36/9/2054

(21) Yasuda, H.; Ajiki, Y.; Kawada, T.; Yokota, T. Interaction Between Biofilms Formed by Pseudomonas-Aeruginosa and Clarithromycin. Antimicrob. Agents Chemother. 1993, 37, 1749–1755. https://aac.asm.org/content/37/9/1749

(22) Suci, P. A.; Mittelman, M. W.; Yu, F. P.; Geesey, G. G. Investigation of Ciprofloxacin Penetration into Pseudomonas-Aeruginosa Biofilms. Antimicrob. Agents Chemother. 1994, 38, 2125–2133. https://aac.asm.org/content/38/9/2125

(23) Shigeta, M.; Tanaka, G.; Komatsuzawa, H.; Sugai, M.; Suginaka, H.; Usui, T. Permeation of Antimicrobial Agents through Pseudomonas Aeruginosa Biofilms: A Simple Method. Chemotherapy 1997, 43, 340–345. https://doi.org/10.1159/000239587

(24) Yasuda, H; Ajiki, Y.; Koga, T.; Yokota, T. Interaction between Clarithromycin and Biofilms Formed by Staphylococcus-Epidermidis. Antimicrob. Agents Chemother. 1994, 38, 138–141. https://aac.asm.org/content/38/1/138

(25) Zheng, Z.; Stewart, P. Penetration of Rifampin through Staphylococus Epidermidis Biofilms. Antimicrob. Agents Chemother. 2002, 46, 900–903. https://aac.asm.org/content/46/3/900

(26) Dunne, W. M.; Mason, E. O.; Kaplan, S. L. Diffusion of Rifampin and Vancomycin through a Staphylococcus-Epidermidis Biofilm. Antimicrob. Agents Chemother. 1993, 37, 2522–2526. https://aac.asm.org/content/37/12/2522

(27) Jouenne, T.; Tresse, O.; Junter, G. A. Agar-Entrapped Bacteria as an in Vitro Model of Biofilms and Their Susceptibility to Antibiotics. Microbiol. Lett. 1994, 119, 237–242. https://doi.org/10.1111/j.1574-6968.1994.tb06894.x

(28) Stepanović, S.; Ćirković, I.; Mijač, V.; Švabic-Vlahović, M. Influence of the Incubation Temperature, Atmosphere and Dynamic Conditions on Biofilm Formation by Salmonella Spp. Food Microbiol. 2003, 20, 339–343. https://doi.org/10.1016/S0740-0020(02)00123-5

(29) Yosef, I.; Kiro, R.; Molshanski-Mor, S.; Edgar, R.; Quimron, U. Different Approaches for Using Bacteriophages against Antibiotic Resistant Bacteria. Bacteriophage 2014, 4, e28491. https://doi.org/10.4161/bact.28491

(30) Ent, F.; Amos, L. A.; Löwe, J. Prokaryotic Origin of the Actin Cytoskeleton. Nature 2001, 413, 39–44. https://www.nature.com/articles/35092500

(31) García, E.; López, R. Los bacteriófagos y sus poderes génicos como agentes antimicrobianos. Rev. Esp. Quimioter. 2002, 15, 305-312. http://www.seq.es/seq/0214-3429/15/4/306.pdf

(32) Gadde, U.; Kimt, W. H.; Oht, S. T.; Lillehoj, H. S. Alternatives to Antibiotics for Maximizing Growth Performance and Feed Efficiency in Poultry: A Review. Anim. Health Res. Rev. 2017, 18, 26–45 https://doi.org/10.1017/S1466252316000207

(33) Brown, M. Modes of Action of Probiotics: Recent Developments. J. Anim. Vet. Adv. 2011, 10, 1895-1900. http://www.medwelljournals.com/abstract/?doi=javaa.2011.1895.1900

(34) Patterson, J. A.; Burkholder, K. M. Application of Prebiotics and Probiotics in Poultry Production. Poult. Sci. J. 2003, 82, 627–631. https://doi.org/10.1093/ps/82.4.627

(35) Dibner, J. J.; Buttin, P. Use of Organic Acids as a Model to Study the Impact of Gut Microflora on Nutrition and Metabolism. J. Appl. Poult. Res. 2002, 11, 453–463. https://doi.org/10.1093/japr/11.4.453

(36) Huyghebaert, G.; Ducatelle, R.; Immerseel, F. V. An Update on Alternatives to Antimicrobial Growth Promoters for Broilers. Vet. J. 2011, 187, 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003

(37) Banday, M. T.; Adil, S.; Khan, A.; Untoo, M. A Study on Efficacy of Fumaric Acid Supplementation in Diet of Broiler Chicken. Int. J. Poult. Sci. 2015, 11, 589–594. https://www.scialert.net/abstract/?doi=ijps.2015.589.594

(38) Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the Recent Study of Antimicrobial Peptides: Origins, Functions, Relative Mechanisms and Application. Peptides 2012, 37, 207–215. https://doi.org/10.1016/j.peptides.2012.07.001

(39) Wang, K.; Yan, J.; Dang, W.; Xie, J.; Yan, B.; Yan, W.; Sun, M.; Zhang, B.; Ma, M.; Zhau, Y.; Jia, F.; Zhu, R.; Chen, W.; Wang, R. Dual Antifungal Properties of Cationic Antimicrobial Peptides Polybia-MPI: Membrane Integrity Disruption and Inhibition of Biofilm Formation. Peptides 2014, 56, 22–29. https://doi.org/10.1016/j.peptides.2014.03.005

(40) Choi, S. C.; Ingale, S. L.; Kim, J. S.; Know, Y. K.; Chae, B. J. An Antimicrobial Peptide-A3: Effects on Growth Performance, Nutrient Retention, Intestinal and Faecal Microflora and Intestinal Morphology of Broilers. Br. Poult. Sci. 2013, 54, 738–746. https://doi.org/10.1080/00071668.2013.838746

(41) Ford, C. W.; Zurenko, G. E.; Barbachyn, M. R. The Discovery of Linezolid, the First Oxazolidinone Antibacterial Agent. Infect. Disord. Drug Targets 2001, 1, 181–199. https://www.eurekaselect.com/92274/article

(42) Jones, R. N.; Stilwell, M. G.; Hogan, P. A.; Sheehan, D. J. Activity of Linezolid against 3,251 Strains of Uncommonly Isolated Gram-Positive Organisms: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2007, 51, 1491–1493. https://aac.asm.org/content/51/4/1491

(43) Silverman, J.; Perlmutter, N. G.; Shapiro, H. M. Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus Aureus. Antimicrob. Agents Chemother. 2003, 47, 2538–2544. https://aac.asm.org/content/47/8/2538

(44) Noskin, G. A. Tigecycline: A New Glycylcycline for Treatment of Serious Infections. Clin. Infect. Dis. 2005, 41, 1537–6591. https://doi.org/10.1086/431672

(45) Bergeron, J.; Ammirati, M.; Danley, D.; James, L.; Norcia, M.; Retsema, J.; Strick, C. A.; Su, W.; Sutcliffe, J.; Wondrack, L. Glycylcyclines Bind to the High-Affinity Tetracycline Ribosomal Binding Site and Evade Tet(M)- and Tet(O)-Mediated Ribosomal Protection. Antimicrob. Agents Chemother. 1996, 40, 2226–2228. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC163507/

(46) Bentley, R. A Fresh Look at Natural Tropolonoids. Nat. Prod. Rep. 2008, 25, 118-138. https://doi.org/10.1039/B711474E

(47) Cao, F.; Orth, C.; Donlin, M. J.; Adegboyega, P.; Meyers, M. J.; Murelli, R. P.; Elagawany, M.; Elgendy, B.; Tavis, J. E. Synthesis and Evaluation of Troponoids as a New Class of Antibiotics. ACS Omega 2018, 3, 15125–15133. https://doi.org/10.1021/acsomega.8b01754

Descargas

El artículo aún no registra descargas.
Cómo citar
Rodríguez-López, J., & Plaza-Pedroche, R. (2021). Resistencia bacteriana: un nuevo desafío científico. Revista De Química, 35(1), 6-21. Recuperado a partir de https://revistas.pucp.edu.pe/index.php/quimica/article/view/23341