Armas químicas: descripción general de tipos, riesgos y tratamientos

Palabras clave: Armas químicas; agentes químicos; guerra química; detección; descontaminación.

Resumen

Las armas químicas han sido utilizadas desde tiempos inmemoriales con especial auge durante el siglo XIX y la Primera Guerra Mundial donde jugaron un papel crucial como armas de destrucción masiva. A pesar de la mayor concienciación actual por parte de la población, el peligro de los agentes químicos no ha finalizado debido al incremento de su uso con fines terroristas. En este trabajo se realiza una clasificación de las diferentes armas químicas y se analizan sus efectos tóxicos y mecanismos de acción entre otros aspectos, para seguir sensibilizando sobre la importancia de su prohibición. 

Referencias bibliográficas

(1) What is a Chemical Weapon? | OPCW. https://www.opcw.org/our-work/what-chemical-weapon (consultada el 17 de marzo de 2021).

(2) Szinicz, L. History of Chemical and Biological Warfare Agents. Toxicology 2005, 214, 167–181. https://doi.org/10.1016/j.tox.2005.06.011

(3) Sönmez, S. F. Tourism, Terrorism, and Political Instability. Ann. Tour. Res. 1998, 25, 416-456. https://doi.org/10.1016/S0160-7383(97)00093-5

(4) Chauhan, S.; Chauhan, S.; D’Cruz, R.; Faruqi, S.; Singh, K. K.; Varma, S.; Singh, M.; Karthik, V. Chemical Warfare Agents. Environ. Toxicol. Pharmacol. 2008, 26, 113–122. https://doi.org/10.1016/j.etap.2008.03.003

(5) Richardt, A. Chapter 2: History of Chemical Warfare. En Decontamination of Warfare Agents: Enzymatic Methods for the Removal of B/C Weapons; Richardt, A., Blum, M.-M. (eds.); Wiley-VCH: Weinheim, 2008; pp. 11-19. https://doi.org/10.1002/9783527621620.ch2

(6) Prokop, Z.; Opluštil, F.; DeFrank, J.; Damborský, J. Enzymes Fight Chemical Weapons. Biotechnol. J. 2006, 1, 1370–1380. https://doi.org/10.1002/biot.200600166

(7) Smart, J. K. Chapter 2: History of Chemical and Biological Warfare: An American Perspective. En Medical Aspects of Chemical and Biological Warfare; Sidell, F. R., Takafuji, E. T. Franz, D. R. (eds.); Office of The Surgeon General at TMM Publications, Borden Institute, Walter Reed Army Medical Center: Washington, DC, 1997; pp. 9–86. https://www.hsdl.org/?view&did=3233

(8) Ellison, D. H. Handbook of Chemical and Biological Warfare Agents, 2nd edition; CRC Press: Boca Raton, FL, 2007. https://doi.org/10.1201/9781420003291

(9) Walker, P. F. Syrian Chemical Weapons Destruction: Taking Stock and Looking Ahead. Arms Control Today 2014, 44, 8–17. https://www.armscontrol.org/act/2014-12/features/syrian-chemical-weapons-destruction-taking-stock-looking-ahead

(10) Ganesan, K.; Raza, S. K.; Vijayaraghavan, R. Chemical Warfare Agents. J. Pharm. Bioall. Sci. 2010, 2, 166–178. https://doi.org/10.4103/0975-7406.68498

(11) White, S. M. Chemical and Biological Weapons. Implications for Anaesthesia and Intensive Care. Br. J. Anaesth. 2002, 89, 306–324. https://doi.org/10.1093/bja/aef168

(12) Sidell, F. R.; Borak, J. Chemical Warfare Agents: II . Nerve Agents. Ann. Emerg. Med. 1992, 21, 865–871. https://doi.org/10.1016/S0196-0644(05)81036-4

(13) Kuča, K.; Pohanka, M. Chemical Warfare Agents. En Molecular, Clinical and Environmental Toxicology. Vol. 2: Clinical Toxicology; Luch, A. (ed.); Birkhäuser Verlag: Basel, 2010; pp. 543–558. https://www.springer.com/gp/book/9783764383374

(14) McManus, J.; Huebner, K. Vesicants. Crit. Care Clin. 2005, 21, 707–718. https://doi.org/10.1016/j.ccc.2005.06.005

(15) McCafferty, R. R.; Lennarson, P. J. Common Chemical Agent Threats. Neurosurg. Focus 2002, 12:E3. https://doi.org/10.3171/foc.2002.12.3.4

(16) Anderson, P. D. Emergency Management of Chemical Weapons Injuries. J. Pharm. Pract. 2012, 25, 61–68. https://doi.org/10.1177/0897190011420677

(17) Beswick, F. W. Chemical Agents Used in Riot Control and Warfare. Hum. Exp. Toxicol. 1983, 2, 247–256. https://doi.org/10.1177/096032718300200213

(18) Rodgers G.C., Jr.; Condurache, C.T. Antidotes and Treatments for Chemical Warfare/Terrorism Agents: An Evidence-Based Review. Clin. Pharmacol. Ther. 2010, 88, 318-327. https://doi.org/10.1038/clpt.2010.152

(19) Meier, H. L.; Gross, C. L.; Papirmeister, B. 2,2’-Dichloroethyl Sulfide (Sulfur Mustard) Decreases NAD+ Levels in Human Leukocytes. Toxicol. Lett. 1987, 39, 109–122. https://doi.org/10.1016/0378-4274(87)90263-3

(20) Wormser, U.; Brodsky, B.; Sintov, A. Skin Toxicokinetics of Mustard Gas in the Guinea Pig: Effect of Hypochlorite and Safety Aspects. Arch. Toxicol. 2002, 76, 517–522. https://doi.org/10.1007/s00204-002-0362-6

(21) Wormser, U.; Brodsky, B.; Green, B. S.; Arad-Yellin, R.; Nyska, A. Protective Effect of Povidone-Iodine Ointment against Skin Lesions Induced by Sulphur and Nitrogen Mustards and by Non-Mustard Vesicants. Arch. Toxicol. 1997, 71, 165–170. https://doi.org/10.1007/s002040050371

(22) Kehe, K.; Flohé, S.; Krebs, G.; Kreppel, H.; Reichl, F. X.; Liebl, B.; Szinicz, L. Effects of Lewisite on Cell Membrane Integrity and Energy Metabolism in Human Keratinocytes and SCL II Cells. Toxicology 2001, 163, 137–144. https://doi.org/10.1016/s0300-483x(01)00389-4

(23) Winder, C. The Toxicology of Chlorine. Environ. Res. 2001, 85, 105–114. https://doi.org/10.1006/enrs.2000.4110

(24) Diller, W. F. Pathogenesis of Phosgene Poisoning. Toxicol. Ind. Health 1985, 1, 7–15. https://doi.org/10.1177/074823378500100202

(25) Pauluhn, J.; Carson, A.; Costa, D. L.; Gordon, T.; Kodavanti, U.; Last, J. A.; Matthay, M. A.; Pinkerton, K. E.; Sciuto, A. M. Workshop Summary: Phosgene-Induced Pulmonary Toxicity Revisited: Appraisal of Early and Late Markers of Pulmonary Injury from Animal Models with Emphasis on Human Significance. Inhal. Toxicol. 2007, 19, 789–810. https://doi.org/10.1080/08958370701479133

(26) Achanta, S.; Jordt, S.-E. Toxic Effects of Chlorine Gas and Potential Treatments: a Literature Review. Toxicol. Mech. Methods. 2019, en prensa. https://doi.org/10.1080/15376516.2019.1669244

(27) Polat, S.; Gunata, M.; Parlakpinar, H. Chemical Warfare Agents and Treatment Strategies. Ann. Med.Res. 2018. 25, 776-782. http://doi.org/10.5455/annalsmedres.2018.08.166

(28) Zilker, T. Medical Management of Incidents with Chemical Warfare Agents. Toxicology 2005, 214, 221–231. https://doi.org/10.1016/j.tox.2005.06.028

(29) Raza, S. K.; Jaiswal, D. K. Mechanism of Cyanide Toxicity and Efficacy of Its Antidotes. Def. Sci. J. 1994, 44, 331–340. https://doi.org/10.14429/dsj.44.4188

(30) Making the UK Safer : Detecting and Decontamination chemical and biological agents. Policy Document 06/04. The Royal Society, April 2004. https://royalsociety.org/~/media/%20royal_society_content/policy/publications/2004/9714.pdf (consultada el 17 de marzo de 2021).

(31) Sun, Y.; Ong, K. Y. Detection Technologies for Chemical Warfare Agents and Toxic Vapors; CRC Press: Boca Raton, Florida, 2005. https://doi.org/10.1201/9780203485705

(32) Sferopoulos, R. A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items; Australian Governement. Department of Defence, 2009. https://apps.dtic.mil/sti/pdfs/ADA502856.pdf (consultada el 17 de marzo de 2021).

(33) Murray, G. M.; Southard, G. E. Sensors for Chemical Weapon Detection. IEEE Instru. Meas. Mag. 2002, 5, 12–21. https://doi.org/10.1109/MIM.2002.1048978

(34) Pan, Y.; Zhang, G.; Guo, T.; Liu, X.; Zhang, C.; Yang, J.; Cao, B.; Zhang, C.; Wang, W. Environmental Characteristics of Surface Acoustic Wave Devices for Sensing Organophosphorus Vapor. Sens. Actuators B Chem. 2020, 315, 127986. https://doi.org/10.1016/j.snb.2020.127986.

(35) Creaser, C. S.; Griffiths, J. R.; Bramwell, C. J.; Noreen, S.; Hill, C. A.; Thomas, C. L. P. Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement. Analyst. 2004, 129, 984–994. https://doi.org/10.1039/B404531A

(36) Puton, J.; Namieśnik, J. Ion Mobility Spectrometry: Current Status and Application for Chemical Warfare Agents Detection. Trends. Analyt. Chem. 2016, 85, 10-20. https://doi.org/10.1016/j.trac.2016.06.002

(37) Seto, Y.; Hashimoto, R; Taniguchi, T.; Ohrui, Y.; Nagoya, T.; Iwamatsu, T.; Komaru, S.; Usui, D.; Morimoto, S.; Sakamoto, Y.; Ishizaki, A.; Nishide, T.; Inoue, Y.; Sugiyama, H.; Nakano, N. Development of Ion Mobility Spectrometry with Novel Atmospheric Electron Emission Ionization for Field Detection of Gaseous and Blister Chemical Warfare Agents. Anal. Chem. 2019, 91, 5403-5414. https://doi.org/10.1021/acs.analchem.9b00672

(38) Murray, G. W. Detection and Screening of Chemicals Related to the Chemical Weapons Convention. Encycl. Anal. Chem. 2013. https://doi.org/10.1002/9780470027318.a0403.pub2

(39) Pacsial-Ong, E.-J.; Aguilar, Z. Chemical Warfare Agent Detection: A Review of Current Trends and Future Perspective. Front. Biosci. (Schol. Ed.) 2013, 5, 516-543. https://doi.org/10.2741/s387

(40) Guide for the Selection of Chemical Detection Equipment for Emergency First Responders, Guide 100-06, 3rd edition, U.S. Department of Homeland Security, 2007. https://www.nist.gov/system/files/documents/oles/DHS_100-06ChemDetFinReport_3-20-07.pdf

(41) Davidson, C. E.; Dixon, M. M.; Williams, B. R.; Kilper, G. K.; Lim, S. H.; Martino, R. A.; Rhodes, P.; Hulet, M. S.; Miles, R. W.; Samuels, A. C.; Emanuel, P. A.; Miklos, A. E. Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays. ACS Sens. 2020, 5, 1102-1109. https://pubs.acs.org/doi/10.1021/acssensors.0c00042

(42) Yang, Y. C.; Baker, J. A.; Ward, J. R. Decontamination of Chemical Warfare Agents. Chem. Rev. 1992, 92, 1729–1743. https://doi.org/10.1021/cr00016a003

(43) Talmage, S. S.; Watson, A. P.; Hauschild, V.; Munro, N. B.; King, J. Chemical Warfare Agent Degradation and Decontamination. Curr. Org. Chem. 2007, 11, 285–298. https://doi.org/10.2174/138527207779940892

(44) Munro, N. B.; Talmage, S. S.; Griffin, G. D.; Waters, L. C.; Watson, A. P.; King, J. F.; Hauschild, V. The Sources, Fate, and Toxicity of Chemical Warfare Agent Degradation Products. Environ. Health Perspect. 1999, 107, 933–974. https://dx.doi.org/10.1289%2Fehp.99107933

(45) Smith, B. M. Catalytic Methods for the Destruction of Chemical Warfare Agents under Ambient Conditions. Chem. Soc. Rev. 2008, 37, 470–478. https://doi.org/10.1039/B705025A

(46) Wagner, G. W. Hydrogen Peroxide-Based Decontamination of Chemical Warfare Agents. Main Gr. Chem. 2010, 9, 257–263. https://content.iospress.com/articles/main-group-chemistry/mgc00028

(47) Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403. https://pubs.acs.org/doi/10.1021/cr100193y

(48) Yang, Y. C. Chemical Detoxification of Nerve Agent VX. Acc. Chem.Res. 1999, 32, 109–115. https://doi.org/10.1021/ar970154s

Descargas

El artículo aún no registra descargas.
Cómo citar
Muñoz-Canales, V., & Rodríguez-López, J. (2021). Armas químicas: descripción general de tipos, riesgos y tratamientos. Revista De Química, 35(2), 4-18. Recuperado a partir de https://revistas.pucp.edu.pe/index.php/quimica/article/view/23527