Tendencias en el uso del biocarbón como acondicionador de suelos

  • Gloria María Aponte Universidad Católica Andrés Bello

    Universidad Católica Andrés Bello. Centro de Investigación y Desarrollo de Ingeniería. Av. Teherán, Edif. Laboratorios. PB. Zona postal: 1020. Caracas, Venezuela.

  • Beatriz Soledad-Rodríguez Universidad Católica Andrés Bello

    Universidad Católica Andrés Bello. Centro de Investigación y Desarrollo de Ingeniería. Av. Teherán, Edif. Laboratorios. PB. Zona postal: 1020. Caracas, Venezuela

Palabras clave: Acondicionador de suelos; Agricultura; Biocarbón; Tendencias

Resumen

El biocarbón es un producto que se obtiene a partir de diferentes tipos de biomasa tales como la corteza de madera de pino, bambú, residuos orgánicos y vegetales, estiércol humano, estiércol de aves de corral, entre otros. El biocarbón se ha usado de diferentes maneras como mejorador de suelos entre las que se encuentran: mejorar la retención de agua y nutrientes en el suelo, aumentar la productividad de los cultivos, aumentar la calidad del suelo y también actúa como un retenedor del dióxido de carbono en el suelo. Este uso como mejorador de suelos no solo es reconocido desde el punto de investigación o académico, sino que hay mucho interés empresarial en su desarrollo y comercialización lo cual se ve por la tendencia acelerada de investigación y desarrollo de patentes en los últimos diez años. El liderazgo tecnológico está representado por empresas de Estados Unidos y el sector académico por las publicaciones de las universidades en China. El futuro del biocarbón, como acondicionador de suelos, luce prometedor tanto desde el punto de vista empresarial como académico.

Referencias bibliográficas

(1) FAO. El trabajo de la FAO sobre el cambio climático. Conferencia de las Naciones Unidas sobre el cambio climático 2019. (Recuperado en mayo 21, 2021) https://www.fao.org/publications/card/es/c/CA7126ES/

(2) Galindo-Segura, L.; Pérez, A.; Landeros, C.; Gómez-Merino, F. Bibliometric analysis of scientific research on biochar. Agrop. 2021, 14(2):15-21. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/1710/1481

(3) Jagdish, G.W.; Vivek, P, B.; Pravin, D. P.; Sneka, T.B. & Sachin, K. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied. Sciences. 2020, 2, 1307. https://doi.org/10.1007/s42452-020-3121-5

(4) Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A. y Lima, M. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 2011, 59 2501–2510. https://doi.org/10.1021/jf104206c

(5) Babalola, O., Olubukola, O., Obembe, O. Significance of biochar application to the environment and economy. Annals of Agriculture Sciences. 2019, 64, 222-236. https://doi.org/10.1016/j.aoas.2019.12.006

(6) Quang-Vu, B., Khanh-Quang, T., Øyvind, S., Roger, K. y Anh, P. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions, Fuel. 2014, 137, (1) 375–383. https://doi.org/10.1016/j.fuel.2014.08.011

(7) Wei-Hsin, C., Bo-Jhih, L., Yu-Ying, L., Yen-Shih, C., Aristotle, U., Pau, L., Hwai, C., Jo-Shu, C.; Shih-Hsin, H., Alvin, C., Anélie, P. y Mathieu, P. Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science 2021, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887

(8) Liu, S., Xie, Q., Zhang, B., Cheng, Y., Liu, Y., Chen, P., Ruan, R. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresources Technology. 2016. 204,164–170. https://doi.org/10.1016/j.biortech.2015.12.085

(9) Arafat H. M.; Ganesan P, Jewaratnam J, Chinna K. Optimization of process parameters for microwave pyrolysis of oil palm fber (OPF) for hydrogen and biochar production. Energy Conversion and Management. 2017. 133 (1), 349–362. https://doi.org/10.1016/j.enconman.2016.10.046

(10) Jung K-W, Hwang M-J, Jeong T-U, Ahn K-H. A novel approach for preparation of modified-biochar derived from marine macroalgae: dual purpose electro-modification for improvement of surface area and metal impregnation. Bioresour Technol. 2015, 191, 342–345. https://pubmed.ncbi.nlm.nih.gov/26008889/

(11) Fang C, Zhang T, Li P, Jiang R, Wang Y. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. Int. J. Environ. Res. Public Health. 2014, 11 (9), 217–9237. https://www.mdpi.com/1660-4601/11/9/9217/htm

(12) Hu X, Ding Z, Zimmerman AR, Wang S, Gao B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research. 2015. 68 (1), 206–216. https://doi.org/10.1016/j.watres.2014.10.009

(13) Wu, H., Lai, C., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J., Li, X., Liu, J., Chen, M., Lu, L., Hu, L y Wan, J. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical Reviews In Biotechnology. 2017. 37(6),754–764. http://dx.doi.org/10.1080/07388551.2016.1232696

(14) Ahmed, J. y Raghavan, V. Biochar influences on agricultural soils, crop production, and the environment: A review Environ. Rev. 2016. 24 (4), 495–502 https://doi.org/10.1139/er-2016-0008

(15) Fiallos-Ortega, L, Flores-Mancheno, L, Duchi-Duchi, N, Flores-Mancheno, C, Baño-Ayala, D., Estrada-Orozco, L. Restauración ecológica del suelo aplicando biochar (carbón vegetal), y su efecto en la producción de Medicago sativa. Rev Cien Agri. 2015. 12 (2).13-20. https://doi.org/10.19053/01228420.4349

(16) Abdulrahman, D., Othman, R, Saud, H y Abu Bakr, R. Effects of biochar and stenotrophomonas maltophilia (SB16) on soil properties and growth of sweet corn J Agric. Res., 2017. 55(3),485-499. https://apply.jar.punjab.gov.pk/upload/1507128776_128_4._JAR_791.pdf (Recuperado en mayo 20, 2021).

(17) McDonald, M., Bakker, C y Motior, M. Evaluation of wood biochar and compost soil amendment on cabbage yield and quality. Can. J. Plant Sci. 2019. 99 (5),624–638 https://doi.org/10.1139/cjps-2018-0122

(18) Huck Ywih Ch'ng, Osumanu Haruna Ahmed, Nik Muhamad Ab. Majid & Mohamadu Boyie Jalloh. Reducing Soil Phosphorus Fixation to Improve Yield of Maize on a Tropical Acid Soil Using Compost and Biochar Derived from Agro-Industrial Wastes, Compost Science & Utilization. 2017, 25(2), 82-94. https://doi.org/10.1139/cjps-2018-0122

(19) Islami, T., Guritno, B., Basuki, N y Suryanto, A. Biochar for sustaining productivity of cassava based cropping systems in the degraded lands of East Java, Indonesia. Journal of Tropical Agriculture. 2011. 49 (1-2), 40-46. http://jtropag.kau.in/index.php/ojs2/article/view/235/235

(20) Xu Qin, Qingqing Huang, Yiyun Liu, Lijie Zhao, Yingming Xu & Yetong Liu. Effects of sepiolite and biochar on microbial diversity in acid red soil from southern China. Chemistry and Ecology. 2019. 35(9),846-860. https://doi.org/10.1080/02757540.2019.1648441

(21) Liu, C. H., Chuang, Y. H., Li, H., Teppen, B. J., Boyd, S. A., Gonzalez, J. M., Johnston, C. T., Lehmann, J., & Zhang, W. Sorption of Lincomycin by Manure-Derived Biochars from Water. Journal of environmental quality. 2016. 45(2),519–527. doi.org/10.2134/jeq2015.06.0320

(22) Clark, M, Hastings,M y Ryals, R. Soil Carbon and Nitrogen Dynamics in Two Agricultural Soils Amended with Manure-Derived Biochar. Journal of Environmental Quality. 2019. 48 (3), 727-734. http://doi.org/10.2134/jeq2018.10.0384

(23) Li, M., Wang, Y., Liu, M., Liu, Q., Xie, Z., Li, Z., Uchimiya, M y Chen, Y. Three-Year Field Observation of Biochar-Mediated Changes in Soil Organic Carbon and Microbial Activity. Journal of Environmental Quality. 2019, 48(3), 717-726. https://doi.org/10.2134/jeq2018.10.0354

(24) Ismail, A., Prasher, S., Chénier, M y Patel, R. Evaluation of Biochar Soil Amendments in Reducing Soil and Water Pollution from Total and Fecal Coliforms in Poultry Manure. Canadian Biosystems Engineering. 2016, 58 (1),1.21-1.31. https://library.csbe-scgab.ca/docs/journal/58/C16286.pdf

(25) Scharenbroch, B., Meza, E., Catania, M y Fite, K. Biochar and Biosolids Increase Tree Growth and Improve Soil Quality for Urban Landscapes. Journal of Environmental Quality. 2013. 42 (5), 1372-1385. https://doi.org/10.2134/jeq2013.04.0124

(26) Buss, W., Assavavittayanon, K., Shepherd, J., Heal, K y Soh, S. Biochar Phosphorus Release Is Limited by High pH and Excess Calcium. Journal of Environmental Quality. 2018, 47 (5), 1298-1303. https://doi.org/10.2134/jeq2018.05.0181

(27) Prost, K., Borchard, N., Siemens, J., Kautz, T., Séquaris, J-M, Möller, A y Amelung, W. Biochar Affected by Composting with Farmyard Manure. Journal of Environmental Quality. 2013. 42 (1),164-172. https://doi.org/10.2134/jeq2012.0064

(28) Grand View Research. Biochar Market Size, Share & Trends Analysis Report By Technology (Gasification, Pyrolysis), By Application (Agriculture (Farming, Livestock)), By Region, And Segment Forecasts, 2019–2025. https://www.grandviewresearch.com/industry-analysis/biochar-market. (Recuperado en abril, 22 2021).

(29) Shearer, D. & Gaunt, J. 2017. (Full Circle Biochar Inc.) Biochar compositions and methods of use thereof. US Patent 9725371-B2. 2017-08-08. https://patentimages.storage.googleapis.com/5d/bc/76/a12ce9a5a18633/US9725371.pdf

Descargas

El artículo aún no registra descargas.
Cómo citar
Aponte, G., & Soledad-Rodríguez, B. (2021). Tendencias en el uso del biocarbón como acondicionador de suelos. Revista De Química, 35(2), 44-51. Recuperado a partir de https://revistas.pucp.edu.pe/index.php/quimica/article/view/24110