Tendencias mundiales respecto al consumo de alimentos proteicos y las nuevas alternativas

Autores/as

  • Hugo Alberto Vigil Rodriguez Aarhus University, Denmark

    Última afiliación académica: Aarhus University, Department of Food Science, Agro Food Park 48, 8200 Aarhus N, Denmark. Actualmente: ACQ-Gestores (Perú)

DOI:

https://doi.org/10.18800/quimica.202502.002

Palabras clave:

Proteínas, Carne, Leche, Agricultura celular, Cambio climático, Gases de efecto invernadero

Resumen

En esta revisión se describen de forma divulgativa los conceptos fundamentales de las proteínas y se hace un recorrido por las tendencias mundiales respecto al actual consumo de fuentes proteicas. Asimismo, se presentan posibles alternativas a futuro para poder mitigar los efectos del calentamiento global debido a la alta emisión de gases de efecto invernadero por causa del alto consumo de alimentos de origen animal. La intención es generar una visión crítica con respecto a los vigentes hábitos alimenticios y los nuevos retos que deparará el crecimiento poblacional.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Aebersold, R.; Agar, J. N.; Amster, I. J.; Baker, M. S.; Bertozzi, C. R.; Boja, E. S.; Costello, C. E.; Cravatt, B. F.; Fenselau, C.; Garcia, B. A.; Ge, Y.; Gunawardena, J.; Hendrickson, R. C.; Hergenrother, P. J.; Huber, C. G.; Ivanov, A. R.; Jensen, O. N.; Jewett, M. C.; Kelleher, N. L.; Kiessling, L. L.; Krogan, N. J.; Larsen, M. R.; Loo, J. A.; Ogorzalek Loo, R. R.; Lundberg, E.; Maccoss, M. J.; Mallick, P.; Mootha, V. K.; Mrksich, M.; Muir, T. W.; Patrie, S. M.; Pesavento, J. J.; Pitteri, S. J.; Rodriguez, H.; Saghatelian, A.; Sandoval, W.; Schlüter, H.; Sechi, S.; Slavoff, S. A.; Smith, L. M.; Snyder, M. P.; Thomas, P. M.; Uhlén, M.; Van Eyk, J. E.; Vidal, M.; Walt, D. R.; White, F. M.; Williams, E. R.; Wohlschlager, T.; Wysocki, V. H.; Yates, N. A.; Young, N. L.; Zhang, B. How Many Human Proteoforms Are There? Nat Chem Biol 2018, 14 (3), 206. https://doi.org/10.1038/NCHEMBIO.2576

(2) Smith, L. M.; Agar, J. N.; Chamot-Rooke, J.; Danis, P. O.; Ge, Y.; Loo, J. A.; Paša-Toliæ, L.; Tsybin, Y. O.; Kelleher, N. L. The Human Proteoform Project: Defining the Human Proteome. Sci Adv 2021, 7 (46), 734. https://doi.org/10.1126/SCIADV.ABK0734/SUPPL_FILE/SCIADV.ABK0734_SM.PDF

(3) Calvez, J.; Azzout-Marniche, D.; Tomé, D. Protein Quality, Nutrition and Health. Front Nutr 2024, 11. https://doi.org/10.3389/FNUT.2024.1406618/FULL

(4) Morris, R.; Black, K. A.; Stollar, E. J. Uncovering Protein Function: From Classification to Complexes. Essays Biochem 2022, 66 (3), 255. https://doi.org/10.1042/EBC20200108

(5) Gutiérrez, L. Hierro: Fundamental Para La Vida y Causante de Enfermedades. Revista de Química 2015, 29 (2), 17–22. https://revistas.pucp.edu.pe/index.php/quimica/article/view/14586

(6) Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C. N. Current Global Food Production Is Sufficient to Meet Human Nutritional Needs in 2050 Provided There Is Radical Societal Adaptation. Elementa 2018, 6. https://doi.org/10.1525/ELEMENTA.310/112838

(7) Lumsden, C. L.; J, J.; Ziska, L.; Fanzo, J. Critical Overview of the Implications of a Global Protein Transition in the Face of Climate Change: Key Unknowns and Research Imperatives. https://doi.org/10.1016/j.oneear.2024.06.013

(8) Popkin, B. M. Will China’s Nutrition Transition Overwhelm Its Health Care System And Slow Economic Growth? https://doi.org/10.1377/hlthaff.27.4.1064 2017, 27 (4), 1064–1076. https://doi.org/10.1377/HLTHAFF.27.4.1064

(9) Yanni, A. E.; Iakovidi, S.; Vasilikopoulou, E.; Karathanos, V. T. Legumes: A Vehicle for Transition to Sustainability. Nutrients, 2023, 16 (1), 98. https://doi.org/10.3390/NU16010098

(10) González-García, S.; Esteve-Llorens, X.; Moreira, M. T.; Feijoo, G. Carbon Footprint and Nutritional Quality of Different Human Dietary Choices. Science of The Total Environment 2018, 644, 77–94. https://doi.org/10.1016/J.SCITOTENV.2018.06.339

(11) Gerber, P. J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock A Global Assessment of Emissions and Mitigation Opportunities; 2013.

(12) Martin, M.; Brandão, M. Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices. Sustainability, 2017, 9 (12), 2227. https://doi.org/10.3390/SU9122227

(13) Warner, R. D. Review: Analysis of the Process and Drivers for Cellular Meat Production. Animal 2019, 13 (12), 3041–3058. https://doi.org/10.1017/S1751731119001897

(14) Lanzoni, D.; Bracco, F.; Cheli, F.; Colosimo, B. M.; Moscatelli, D.; Baldi, A.; Rebucci, R.; Giromini, C. Biotechnological and Technical Challenges Related to Cultured Meat Production. Applied Sciences, 2022, 12 (13), 6771. https://doi.org/10.3390/APP12136771

(15) Guan, X.; Lei, Q.; Yan, Q.; Li, X.; Zhou, J.; Du, G.; Chen, J. Trends and Ideas in Technology, Regulation and Public Acceptance of Cultured Meat. Future Foods 2021, 3, 100032. https://doi.org/10.1016/J.FUFO.2021.100032

(16) Rolland, N. C. M.; Markus, C. R.; Post, M. J. The Effect of Information Content on Acceptance of Cultured Meat in a Tasting Context. PLoS One 2020, 15 (4). https://doi.org/10.1371/JOURNAL.PONE.0231176

(17) Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The Potential of Insect Protein to Reduce Food-Based Carbon Footprints in Europe: The Case of Broiler Meat Production. J. Clean Prod. 2021, 320, 128799. https://doi.org/10.1016/J.JCLEPRO.2021.128799

(18) Feng, Y.; Chen, X. M.; Zhao, M.; He, Z.; Sun, L.; Wang, C. Y.; Ding, W. F. Edible Insects in China: Utilization and Prospects. Insect Sci. 2018, 25 (2), 184–198. https://doi.org/10.1111/1744-7917.12449

(19) Rivera J. y Carbonell, F. Los insectos comestibles del Perú: Biodiversidad y perspectivas de la entomofagia en el contexto peruano. Ciencia & Desarrollo, 2020, 27. 3–36. https://doi.org/10.33326/26176033.2020.27.995

(20) Skotnicka, M.; Karwowska, K.; K?obukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021, Vol. 10, Page 766 2021, 10 (4), 766. https://doi.org/10.3390/FOODS10040766

(21) Niva, M.; Vainio, A. Towards More Environmentally Sustainable Diets? Changes in the Consumption of Beef and Plant- and Insect-Based Protein Products in Consumer Groups in Finland. Meat Sci 2021, 182, 108635. https://doi.org/10.1016/J.MEATSCI.2021.108635

(22) Wolfson, J. A.; Musicus, A. A.; Leung, C. W.; Gearhardt, A. N.; Falbe, J. Effect of Climate Change Impact Menu Labels on Fast Food Ordering Choices Among US Adults: A Randomized Clinical Trial. JAMA Netw Open 2022, 5 (12), e2248320–e2248320. https://doi.org/10.1001/JAMANETWORKOPEN.2022.48320

(23) Historical Timeline - Milk - ProCon.org. https://milk.procon.org/historical-timeline/ (accessed 2024-05-05).

(24) Medeiros, I.; Fernandez-Novo, A.; Astiz, S.; Simões, J. Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries. Vet Sci 2022, 9 (3). https://doi.org/10.3390/VETSCI9030125

(25) Lin, T.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Bioactives in Bovine Milk: Chemistry, Technology, and Applications. https://doi.org/10.1093/nutrit/nuab099

(26) Haug, A.; Høstmark, A. T.; Harstad, O. M. Bovine Milk in Human Nutrition – a Review. Lipids Health Dis 2007, 6, 25. https://doi.org/10.1186/1476-511X-6-25

(27) Costard, S.; Espejo, L.; Groenendaal, H.; Zagmutt, F. J. Outbreak-Related Disease Burden Associated with Consumption of Unpasteurized Cow’s Milk and Cheese, United States, 2009–2014 - Volume 23, Number 6—June 2017 - Emerging Infectious Diseases Journal - CDC. Emerg Infect Dis 2017, 23 (6), 957–964. https://doi.org/10.3201/EID2306.151603

(28) Lund, B. M.; Uyttendaele, M.; Franz, E.; Schlüter, O. Microbiological Food Safety for Vulnerable People. International Journal of Environmental Research and Public Health 2015, Vol. 12, Pages 10117-10132 2015, 12 (8), 10117–10132. https://doi.org/10.3390/IJERPH120810117

(29) Dash, K. K.; Fayaz, U.; Dar, A. H.; Shams, R.; Manzoor, S.; Sundarsingh, A.; Deka, P.; Khan, S. A. A Comprehensive Review on Heat Treatments and Related Impact on the Quality and Microbial Safety of Milk and Milk-Based Products. Food Chem. Adv. 2022, 1, 100041. https://doi.org/10.1016/J.FOCHA.2022.100041

(30) Sakkas, L.; Moutafi, A.; Moschopoulou, E.; Moatsou, G. Assessment of Heat Treatment of Various Types of Milk. Food Chem. 2014, 159, 293–301. https://doi.org/10.1016/J.FOODCHEM.2014.03.020

(31) Nielsen, S. D.; Le, T. T.; Knudsen, L. J.; Rauh, V.; Poulsen, N. A.; Larsen, L. B. Development and Application of a Multiple Reaction Monitoring Mass Spectrometry Method for Absolute Quantification of Lysinoalanine and Lanthionine in Dairy Products. Int. Dairy J. 2020, 105, 104693. https://doi.org/10.1016/j.idairyj.2020.104693

(32) Nielsen, S. D.; Knudsen, L. J.; Bækgaard, L. T.; Rauh, V.; Larsen, L. B. Influence of Lactose on the Maillard Reaction and Dehydroalanine-Mediated Protein Cross-Linking in Casein and Whey. Foods, 2022, 11 (7). 897. https://doi.org/10.3390/foods11070897

(33) Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53 (9), 3408. https://doi.org/10.1007/S13197-016-2328-3

(34) Pointke, M.; Albrecht, E. H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value. Sustainability, 2022, 14 (13), 7996. https://doi.org/10.3390/SU14137996

(35) Silva, A. R. A.; Silva, M. M. N.; Ribeiro, B. D. Health Issues and Technological Aspects of Plant-Based Alternative Milk. Food Research International 2020, 131, 108972. https://doi.org/10.1016/J.FOODRES.2019.108972

(36) Khanpit, V.; Viswanathan, S.; Hinrichsen, O. Environmental Impact of Animal Milk vs Plant-Based Milk: Critical Review. J. Clean Prod. 2024, 449, 141703. https://doi.org/10.1016/J.JCLEPRO.2024.141703

(37) Berardy, A. J.; Rubín-García, M.; Sabaté, J. A Scoping Review of the Environmental Impacts and Nutrient Composition of Plant-Based Milks. Adv. Nutrition 2022, 13 (6), 2559–2572. https://doi.org/10.1093/ADVANCES/NMAC098

(38) Kova?evi?, J.; Bechtold, T.; Pham, T. Plant-Based Proteins and Their Modification and Processing for Vegan Cheese Production. Macromol. 2024, 4 (1), 23–41. https://doi.org/10.3390/MACROMOL4010002

(39) Chavarri-Uriarte, B. J.; Santisteban-Murga, L. N. R.; Tito-Tito, A. B.; Saintila, J.; Calizaya-Milla, Y. E. Evaluation of Sensory Acceptability and Iron Content of Vegan Cheeses Produced with Protein Legume Isolates and Cushuro Algae (Nostoc Sphaericum). Food Chem. Adv. 2025, 6, 100924. https://doi.org/10.1016/J.FOCHA.2025.100924

(40) Short, E. C.; Kinchla, A. J.; Nolden, A. A. Plant-Based Cheeses: A Systematic Review of Sensory Evaluation Studies and Strategies to Increase Consumer Acceptance. Foods 2021, 10 (4), 725. https://doi.org/10.3390/FOODS10040725

(41) Mendly-Zambo, Z.; Powell, L. J.; Newman, L. L. Dairy 3.0: Cellular Agriculture and the Future of Milk. Food Cult Soc 2021, 24 (5), 675–693. https://doi.org/10.1080/15528014.2021.1888411

(42) Kwon, H. C.; Jung, H. S.; Kothuri, V.; Han, S. G. Current Status and Challenges for Cell-Cultured Milk Technology: A Systematic Review. Journal of Animal Science and Biotechnology 2024, 15 (1), 1–15. https://doi.org/10.1186/S40104-024-01039-Y

(43) Parlasca, M. C.; Qaim, M. Meat Consumption and Sustainability. Annu. Rev. Resour. Economics 2022, 14, 17–41. https://doi.org/https://doi.org/10.1146/annurev-resource-111820-032340

(44) Chai, B. C.; van der Voort, J. R.; Grofelnik, K.; Eliasdottir, H. G.; Klöss, I.; Perez-Cueto, F. J. A. Which Diet Has the Least Environmental Impact on Our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11 (15), 4110. https://doi.org/10.3390/SU11154110

(45) Rabès, A.; Seconda, L.; Langevin, B.; Allès, B.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; Pointereau, P.; Kesse-Guyot, E. Greenhouse Gas Emissions, Energy Demand and Land Use Associated with Omnivorous, Pesco-Vegetarian, Vegetarian, and Vegan Diets Accounting for Farming Practices. Sustain. Prod. Consum. 2020, 22, 138–146. https://doi.org/10.1016/J.SPC.2020.02.010

(46) Scarborough, P.; Appleby, P. N.; Mizdrak, A.; Briggs, A. D. M.; Travis, R. C.; Bradbury, K. E.; Key, T. J. Dietary Greenhouse Gas Emissions of Meat-Eaters, Fish-Eaters, Vegetarians and Vegans in the UK. Clim. Change 2014, 125 (2), 179–192. https://doi.org/10.1007/S10584-014-1169-1/TABLES/4

(47) Guasch-Ferré, M.; Willett, W. C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290(3), 549–566. https://doi.org/10.1111/JOIM.13333

(48) Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V. D.; Colao, A.; Barrea, L. Mediterranean Diet and Obesity-Related Disorders: What Is the Evidence? Current Obesity Reports 2022 11:4 2022, 11 (4), 287–304. https://doi.org/10.1007/S13679-022-00481-1

(49) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (acceso 2025-01-30).

(50) Ministerio de Salud. Sobrepeso y Obesidad En La Población Peruana; Lima, 2023.

Descargas

Publicado

2025-11-11

Cómo citar

Vigil Rodriguez, H. A. (2025). Tendencias mundiales respecto al consumo de alimentos proteicos y las nuevas alternativas. Revista De Química, 39(2), 13–25. https://doi.org/10.18800/quimica.202502.002

Número

Sección

Artículos