Validación de un modelo de aceptación de la tecnología TAM en estudiantes universitarios dominicanos
Resumen
En el contexto de la virtualización de la educación universitaria debido a la pandemia del Covid- 19, realizamos un estudio para establecer los determinantes de la intención de uso del aula virtual, siguiendo un modelo teórico basado en el Modelo de Aceptación de la Tecnología modificado por Park (2009) y que incluye los factores Actitud, Utilidad Percibida, Facilidad Percibida, Autoeficacia Virtual, Norma Subjetiva y Accesibilidad del sistema. La muestra estuvo compuesta por 1260 estudiantes auto-seleccionados de 13 universidades dominicanas. Para comprobar la validez y fiabilidad del instrumento de medida, se realizó un Análisis Factorial Confirmatorio, en el que se determinó que el factor Accesibilidad del Sistema debía ser eliminado por estar basado en un único ítem que no tenía validez discriminatoria. Se eliminó un ítem del factor Norma Subjetiva para llevarlo a una fiabilidad aceptable. En general, la validez del instrumento se mantuvo, pero sus índices de ajuste con el modelo teórico podrían mejorarse. Con el Análisis de Mediación Múltiple, pudimos comprobar que la Norma Subjetiva, el factor social, fue el factor con la influencia estadística más significativa sobre la Intención de Uso del aula virtual, tanto directa como indirectamente. Indirectamente, la Norma Subjetiva fue mediada por la Utilidad Percibida y la Actitud. El otro factor que tuvo una influencia significativa, tanto directa como indirecta, en la Intención de Uso fue la Autoeficacia Virtual. Indirectamente, esta Autoeficacia fue mediada por la Facilidad Percibida, la Utilidad Percibida y la Actitud.
Referencias bibliográficas
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (2011) Theory of Planned Behavior. In Van Lange, P.A.M., Kruglanski, A.W., & Higgins, E.T., Eds., Handbook of Theories of Social Psychology. 438-459. Sage Publishing, https://doi.org/10.4135/9781446249215.n22
Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Human Behavior and Emerging Technologies, 2(4). 314-324. https://doi.org/10.1002/hbe2.195
Ajzen, I. & Albarracin, D. (2012). Predicting and changing behavior: A reasoned action approach. In Ajzen, I., Albarracin, D., & Hornik, R. (eds.), Prediction and Change of Health Behavior: Applying the Reasoned Action Approach. 3-21. Taylor and Francis. https://doi.org/10.4324/9780203937082
Ajzen, I. & Fishbein, M (1980). Understanding attitudes and predicting social behavior. Prentice-Hall. https://books.google.com.my/books?id=A6AQAQAAIAAJ
Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2018). Technology Acceptance Model in M-learning context: A systematic review. Computers & Education, 125, 389-412. https://doi.org/10.1016/j.compedu.2018.06.008
Al-Rahmi, A. M., Shamsuddin, A., Alturki, U., Aldraiweesh, A., Yusof, F. M., Al-Rahmi, W. M., & Aljeraiwi, A. A. (2021). The influence of information system success and technology acceptance model on social media factors in education. Sustainability, 13(14), 7770. https://doi.org/10.3390/su13147770
Baby, A. & Kannammal, A. (2020). Network Path Analysis for developing an enhanced TAM model: A user-centric e-learning perspective. Computers in Human Behavior, 107, 106081. https://doi.org/10.1016/j.chb.2019.07.024
Bedregal-Alpaca, N., Cornejo-Aparicio, V., Tupacyupanqui-Jaén, D., & Flores-Silva, S. (2019). Evaluación de la percepción estudiantil en relación al uso de la plataforma Moodle desde la perspectiva del TAM. Ingeniare. Revista chilena de ingeniería, 27(4). https://doi.org/10.4067/S0718-33052019000400707
Cengiz, E. & Bakirtas, H. (2020). Technology Acceptance Model 3 in Understanding Employee’s Cloud Computing Technology. https://doi.org/10.1177/
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. [Doctoral dissertation] MIT Sloan School of Management. https://dspace.mit.edu/handle/1721.1/15192
Esteban-Millat, I., Martínez-López, F. J., Pujol-Jover, M., Gázquez-Abad, J. C., & Alegret, A. (2018). An extension of the technology acceptance model for online learning environments. Interactive Learning Environments, 26(7), 895-910. https://doi.org/10.1080/10494820.2017.1421560
Fishbein, M. (2008). Theory of Reasoned Action. The International Encyclopedia of Communication. https://doi.org/10.1002/9781405186407.wbiecr017
Fitzmaurice, J. (2005). Incorporating consumers’ motivations into the theory of reasoned action. Psychology & Marketing, 22(11). 911-929. https://doi.org/10.1002/mar.20090
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1). https://doi.org/10.1108/JEIM-08-2013-0065
Grandon, E., Alshare, O., & Kwan, O. (2005). Factors influencing student intention to adopt online classes: A cross-cultural study. Journal of Computing Sciences in Colleges, 20(4), 46-56. https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1334732
Grandón, E. E., Díaz-Pinzón, B., Magal, S. R., & Rojas-Contreras, K. (2021). Technology Acceptance Model Validation in an Educational Context: A Longitudinal Study of ERP System Use. Journal of Information Systems Engineering and Management, 6(1), em0134. https://doi.org/10.29333/jisem/9582
Granić, A. & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology 50(4), 2-40. https://doi.org/10.1111/bjet.12864
Guest, W., Wild, F., Vovk, A., Lefrere, P., Klemke, R., Fominykh, M., & Kuula, T. (2018). A Technology Acceptance Model for Augmented Reality and Wearable Technologies. J. Univers. Comput. Sci., 24(2), 192-219.
Jeffrey, D. (2015). Testing the Technology Acceptance Model 3 (TAM 3) with the Inclusion of Change Fatigue and Overload, in the Context of Faculty from Seventh-day Adventist Universities: A Revised Model. Dissertations. 1581. https://digitalcommons.andrews.edu/dissertations/158
Jöreskog, K. G. & Sörbom, D. (1989). LISREL 7: A guide to the programs and applications. SPSS. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1624759
Kusyanti, A., Santoso, N., Catherina, H. P. A., & Oktavia, E. (2022). Investigating mobile users’ intention: Technology acceptance and privacy perspectives. Procedia Computer Science, 197, 576-582. https://doi.org/10.1016/j.procs.2021.12.175
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40, 191-204. https://doi.org/10.1016/S0378-7206(01)00143-4
Lin, J. C. & Lu, H. (2000). Towards an understanding of the behavioral intention to use a Web Site. International Journal of Information Management, 20, 197-208. https://doi.org/10.1016/S0268-4012(00)00005-0
Liu, S., Liao, H., & Peng, C. (2005). Applying the technology acceptance model and flow theory to online e-learning users’ acceptance behavior. Issues in Information Systems, 6(2), 175-181. https://pdfs.semanticscholar.org/7c36/9457b622a38e451bd3ec76ed8caa1817d9c3.pdf
Mahon, D., Cowan, C. & McCarthy, M. (2006) The Role of Attitudes, Subjective Norm, Perceived Control and Habit in the Consumption of Ready Meals and Takeaways in Great Britain. Food Quality and Preference, 17, 474-481. https://doi.org/10.1016/j.foodqual.2005.06.001
Malhotra, Y. & Galletta, D. F. (1999). Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. Proceedings of the 32nd Hawaii International Conference on System Sciences. https://www.semanticscholar.org/paper/Extending-the-technology-acceptance-model-to-for-Malhotra-Galletta/0426969595d336a63b65042bf83b379fbaf1e984 https://doi.org/10.1109/HICSS.1999.772658
Moeser, G., Morison, H., & Schwenk, G. (2013). Determinants of Online Social Business Network Usage Behavior-Applying the Technology Acceptance Model and Its Extensions. Psychology, 4(4). https://doi.org/10.4236/psych.2013.44061
Moura, I. V., de Almeida, L. B., da Silva, W. V., Veiga, C. P. D., & Costa, F. (2020). Predictor factors of intention to use technological resources: A multigroup study about the approach of Technology Acceptance Model. Sage Open, 10(4). https://doi.org/10.1177/2158244020967942
Ndubisi, N. O. (2006). Factors of online learning adoption: A comparative juxtaposition of the theory of planned behavior and the technology acceptance model. International Journal on E-Learning, 5(4), 571-591. https://www.learntechlib.org/primary/p/6173/
Nikolopoulos, F. & Likothanassis, S. (2018). A Complete Evaluation of the TAM3 Model for Cloud Computing Technology Acceptance. In H. Panetto. C. Debruyne. H. Proper. C. Ardagna. D. Roman. R., & Meersman. (eds), On the Move to Meaningful Internet Systems. OTM 2018 Conferences. Lecture Notes in Computer Science, 11230. Springer, Cham. https://doi.org/10.1007/978-3-030-02671-4_17
Nisson, C. & Earl, A. (2020). The Theories of Reasoned Action and Planned Behavior. In K. Sweeny. M. L. Robbins., & L. M. Cohen (eds). The Wiley Encyclopedia of Health Psychology. https://doi.org/10.1002/9781119057840.ch129
Pal, D. & Vanijja, V. (2020). Perceived usability evaluation of Microsoft Teams as an online learning platform during COVID-19 using system usability scale and technology acceptance model in India. Children and youth services review, 119, 105535. https://doi.org/10.1016/j.childyouth.2020.105535
Park, S. Y. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students’ Behavioral Intention to Use e-Learning. Educational Technology & Society, 12(3), 150-162. https://www.jstor.org/stable/10.2307/jeductechsoci.12.3.150
Pituch, K. A. & Lee, Y.-K. (2006). The influence of system characteristics on e-learning use. Computers Education, 47, 222-244. https://doi.org/10.1016/j.compedu.2004.10.007
Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732. https://doi.org/10.1016/j.compedu.2019.103732
Samperio, V. & Barragán, J. (2017). Análisis de la percepción de docentes, usuarios de una plataforma educativa a través de los modelos TPACK, SAMR y TAM3 en una institución de educación superior. https://www.redalyc.org/jatsRepo/688/68855405008/index.html
Sargolzaei, S. (2017). Developing technology acceptance models for decision making in urban management. MOJ Civil Engineering, 2(6), 180-182. https://doi.org/10.15406/mojce.2017.02.00050
Sarıtaş, M., Yıldız, E., & Şenel, H. (2015). Examining the Attitudes and Intention to Use Synchronous Distance Learning Technology among Pre-service Teachers: A Qualitative Perspective of Technology Acceptance Model. American Journal of Educational Research, 3(10A),17-25. http://dx.doi.org/10.12691/education-3-10A-3
Selim, H. M. (2003). An empirical investigation of student acceptance of course web sites. Computers & Education, 40, 343-360. https://doi.org/10.1016/S0360-1315(02)00142-2
Shih, H.-P. (2004) An Empirical Study on Predicting User Acceptance of E-Shopping on the Web. Information and Management, 41, 351-368. http://dx.doi.org/10.1016/S0378-7206(03)00079-X
Taherdoost, H. (2018). Development of an adoption model to assess user acceptance of e-service technology: E-Service Technology Acceptance Model. Behaviour & Information Technology, 37(2), 173-197. https://doi.org/10.1080/0144929X.2018.1427793
Thong, J. Y. L., Hong, W., & Tam, K. (2002). Understanding user acceptance of digital libraries: What are the roles of interface characteristics, organizational context, and individual differences? International Journal of Human-Computer Studies, 57, 215-242. https://doi.org/10.1016/S1071-5819(02)91024-4
Turel, O., Serenko, A. and Bontis, N. (2007) User Acceptance of Wireless Short Messaging Services: Deconstructing Perceived Value. Information & Management, 44, 63-73. http://dx.doi.org/10.1016/j.im.2006.10.005
Venkatesh, V. (2000), Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11, 342-365. https://doi.org/10.1287/isre.11.4.342.11872
Venkatesh, V. & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39 (2), 273-315. http://dx.doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V. & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27, 451-481. https://doi.org/10.1111/j.1540-5915.1996.tb01822.x
Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46 (2), 186-204. http://dx.doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V. & Morris, M. G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and user behavior. Management Information Systems Quarterly, 24(1). 115-139. https://doi.org/10.2307/3250981
Weerasinghe, S. and Hindagolla, M.C.B. (2018), Technology acceptance model and social network sites (SNS): a selected review of literature. Global Knowledge, Memory and Communication, 67(3), 142-153. https://doi.org/10.1108/GKMC-09-2017-0079
Wu, F. & Yen, Y. (2014). Factors Influencing the Use of Mobile Financial Services: Evidence from Taiwan. Modern Economy, 5(13), 1221-1228. https://doi.org/10.4236/me.2014.513113
Ye, C. & Potter, R. (2011) The Role of Habit in Post-Adoption Switching of Personal Information Technologies: An Empirical Investigation. Communications of the Association for Information Systems, 28, 585-610. https://doi.org/10.17705/1CAIS.02835