Validação de um modelo de aceitação de tecnologia TAM em estudantes universitários dominicanos

Autores

  • Emmanuel Silvestre Instituto Superior de Formación Docente Salomé Ureña https://orcid.org/0000-0002-9958-4848

    Doctor en Psicología Social, egresado de la Universidad Católica de Lovaina, Bélgica y ha realizado numerosas publicaciones científicas nacionales e internacionales. Después de una larga carrera docente en las principales universidades del país y en Venezuela, desde el 2017 es Profesor de Alta Calificación (PAC) de ISFODOSU, donde asesora a los docentes investigadores en metodología y análisis cuantitativo de investigación. Ha sido por muchos años consultor en investigación social, comunitaria y de mercado, así como en desarrollo organizacional, para diversas instituciones y empresas de Estados Unidos, República Dominicana, Venezuela y Colombia. Está certificado por el Departamento de Servicios Administrativos de Connecticut.
    Correo electrónico: esilvestre@esilvestre.com

  • Alexander Montes Miranda Instituto Superior de Formación Docente Salomé Ureña https://orcid.org/0000-0002-7168-6295

    Docente investigador en Instituto superior de Formación Docente Salomé Ureña (ISFODOSU), Santo Domingo, República Dominicana. Miembro del Grupo de Investigación Sociedad, Discurso y Educación. Doctor en ciencias de la Educación, Posdoctorado en Educación. Investigador Asociado en la clasificación Min Ciencias de Colombia, Par académico del Sistema de aseguramiento de la calidad de la Educación en Colombia. Profesor Invitado en varias universidades colombianas en programas de formación posgradual.
    Correo electrónico: alexander.montes@isfodosu.edu.do

  • Vladimir Figueroa Gutiérrez Instituto Superior de Formación Docente Salomé Ureña https://orcid.org/0000-0003-0944-3572

    Docente del Instituto Superior de Formación Docente Salomé Ureña (Isfodosu), República Dominicana, Doctor en Educación, Maestro en Calidad y Mejora de la Educación, Licenciado en Educación. Su trayectoria de investigación se centra en tecnología de la educación, eficacia escolar y dirección escolar. Es autor de diversos artículos científicos relacionados con el área. Investigador principal en diferentes proyectos de investigación a nivel local y miembro del equipo de investigadores del proyecto I+D+i. Miembro de la Red Iberoamericana de Investigación para el desarrollo de la Identidad Profesional Docente. Actualmente es miembro del Grupo de Investigación Factores psicosociales del Isfodosu, Director de Investigación del Isfodosu y Editor jefe de la Revista Caribeña de Investigación Educativa.
    Correo electrónico: vladimir.figueroa@isfodosu.edu.do

DOI:

https://doi.org/10.18800/educacion.202201.005

Palavras-chave:

Modelo TAM, Intenção Comportamental, Atitude, Facilidade Percebida, Utilidade Percebida

Resumo

No contexto da virtualização do ensino universitário devido à pandemia de Covid-19, realizamos um estudo para estabelecer os determinantes da intenção de uso da sala de aula virtual, seguindo um modelo teórico baseado no Modelo de Aceitação de Tecnologia modificado por Park (2009) e incluindo os fatores Atitude, Utilidade Percebida, Facilidade Percebida, Autoeficácia Virtual, Norma Subjetiva e Acessibilidade do sistema. A amostra foi composta por 1.260 estudantes autosselecionados de 13 universidades dominicanas. Para verificar a validade e confiabilidade do instrumento de medida, foi realizada uma Análise Fatorial Confirmatória, que determinou que o fator Acessibilidade do Sistema deveria ser eliminado por se basear em um único item que não possuía validade discriminatória. Um item foi eliminado do fator Norma Subjetiva para trazê-lo a uma confiabilidade aceitável. Em geral, a validade do instrumento foi mantida, mas seus índices de ajuste com o modelo teórico podem ser melhorados. Com a Análise de Mediação Múltipla, pudemos verificar que a Norma Subjetiva, o fator social, foi o fator com maior influência estatística na Intenção de Uso da sala de aula virtual, direta e indiretamente. Indiretamente, a Norma Subjetiva foi mediada pela Utilidade Percebida e Atitude. O outro fator que influenciou significativamente, direta e indiretamente, na Intenção de Uso foi a Autoeficácia Virtual. Indiretamente, essa Autoeficácia foi mediada pela Facilidade Percebida, Utilidade Percebida e Atitude.

Downloads

Não há dados estatísticos.

Referências

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I. (2011) Theory of Planned Behavior. In Van Lange, P.A.M., Kruglanski, A.W., & Higgins, E.T., Eds., Handbook of Theories of Social Psychology. 438-459. Sage Publishing, https://doi.org/10.4135/9781446249215.n22

Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Human Behavior and Emerging Technologies, 2(4). 314-324. https://doi.org/10.1002/hbe2.195

Ajzen, I. & Albarracin, D. (2012). Predicting and changing behavior: A reasoned action approach. In Ajzen, I., Albarracin, D., & Hornik, R. (eds.), Prediction and Change of Health Behavior: Applying the Reasoned Action Approach. 3-21. Taylor and Francis. https://doi.org/10.4324/9780203937082

Ajzen, I. & Fishbein, M (1980). Understanding attitudes and predicting social behavior. Prentice-Hall. https://books.google.com.my/books?id=A6AQAQAAIAAJ

Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2018). Technology Acceptance Model in M-learning context: A systematic review. Computers & Education, 125, 389-412. https://doi.org/10.1016/j.compedu.2018.06.008

Al-Rahmi, A. M., Shamsuddin, A., Alturki, U., Aldraiweesh, A., Yusof, F. M., Al-Rahmi, W. M., & Aljeraiwi, A. A. (2021). The influence of information system success and technology acceptance model on social media factors in education. Sustainability, 13(14), 7770. https://doi.org/10.3390/su13147770

Baby, A. & Kannammal, A. (2020). Network Path Analysis for developing an enhanced TAM model: A user-centric e-learning perspective. Computers in Human Behavior, 107, 106081. https://doi.org/10.1016/j.chb.2019.07.024

Bedregal-Alpaca, N., Cornejo-Aparicio, V., Tupacyupanqui-Jaén, D., & Flores-Silva, S. (2019). Evaluación de la percepción estudiantil en relación al uso de la plataforma Moodle desde la perspectiva del TAM. Ingeniare. Revista chilena de ingeniería, 27(4). https://doi.org/10.4067/S0718-33052019000400707

Cengiz, E. & Bakirtas, H. (2020). Technology Acceptance Model 3 in Understanding Employee’s Cloud Computing Technology. https://doi.org/10.1177/

Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. [Doctoral dissertation] MIT Sloan School of Management. https://dspace.mit.edu/handle/1721.1/15192

Esteban-Millat, I., Martínez-López, F. J., Pujol-Jover, M., Gázquez-Abad, J. C., & Alegret, A. (2018). An extension of the technology acceptance model for online learning environments. Interactive Learning Environments, 26(7), 895-910. https://doi.org/10.1080/10494820.2017.1421560

Fishbein, M. (2008). Theory of Reasoned Action. The International Encyclopedia of Communication. https://doi.org/10.1002/9781405186407.wbiecr017

Fitzmaurice, J. (2005). Incorporating consumers’ motivations into the theory of reasoned action. Psychology & Marketing, 22(11). 911-929. https://doi.org/10.1002/mar.20090

Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1). https://doi.org/10.1108/JEIM-08-2013-0065

Grandon, E., Alshare, O., & Kwan, O. (2005). Factors influencing student intention to adopt online classes: A cross-cultural study. Journal of Computing Sciences in Colleges, 20(4), 46-56. https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1334732

Grandón, E. E., Díaz-Pinzón, B., Magal, S. R., & Rojas-Contreras, K. (2021). Technology Acceptance Model Validation in an Educational Context: A Longitudinal Study of ERP System Use. Journal of Information Systems Engineering and Management, 6(1), em0134. https://doi.org/10.29333/jisem/9582

Granić, A. & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology 50(4), 2-40. https://doi.org/10.1111/bjet.12864

Guest, W., Wild, F., Vovk, A., Lefrere, P., Klemke, R., Fominykh, M., & Kuula, T. (2018). A Technology Acceptance Model for Augmented Reality and Wearable Technologies. J. Univers. Comput. Sci., 24(2), 192-219.

Jeffrey, D. (2015). Testing the Technology Acceptance Model 3 (TAM 3) with the Inclusion of Change Fatigue and Overload, in the Context of Faculty from Seventh-day Adventist Universities: A Revised Model. Dissertations. 1581. https://digitalcommons.andrews.edu/dissertations/158

Jöreskog, K. G. & Sörbom, D. (1989). LISREL 7: A guide to the programs and applications. SPSS. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1624759

Kusyanti, A., Santoso, N., Catherina, H. P. A., & Oktavia, E. (2022). Investigating mobile users’ intention: Technology acceptance and privacy perspectives. Procedia Computer Science, 197, 576-582. https://doi.org/10.1016/j.procs.2021.12.175

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40, 191-204. https://doi.org/10.1016/S0378-7206(01)00143-4

Lin, J. C. & Lu, H. (2000). Towards an understanding of the behavioral intention to use a Web Site. International Journal of Information Management, 20, 197-208. https://doi.org/10.1016/S0268-4012(00)00005-0

Liu, S., Liao, H., & Peng, C. (2005). Applying the technology acceptance model and flow theory to online e-learning users’ acceptance behavior. Issues in Information Systems, 6(2), 175-181. https://pdfs.semanticscholar.org/7c36/9457b622a38e451bd3ec76ed8caa1817d9c3.pdf

Mahon, D., Cowan, C. & McCarthy, M. (2006) The Role of Attitudes, Subjective Norm, Perceived Control and Habit in the Consumption of Ready Meals and Takeaways in Great Britain. Food Quality and Preference, 17, 474-481. https://doi.org/10.1016/j.foodqual.2005.06.001

Malhotra, Y. & Galletta, D. F. (1999). Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. Proceedings of the 32nd Hawaii International Conference on System Sciences. https://www.semanticscholar.org/paper/Extending-the-technology-acceptance-model-to-for-Malhotra-Galletta/0426969595d336a63b65042bf83b379fbaf1e984 https://doi.org/10.1109/HICSS.1999.772658

Moeser, G., Morison, H., & Schwenk, G. (2013). Determinants of Online Social Business Network Usage Behavior-Applying the Technology Acceptance Model and Its Extensions. Psychology, 4(4). https://doi.org/10.4236/psych.2013.44061

Moura, I. V., de Almeida, L. B., da Silva, W. V., Veiga, C. P. D., & Costa, F. (2020). Predictor factors of intention to use technological resources: A multigroup study about the approach of Technology Acceptance Model. Sage Open, 10(4). https://doi.org/10.1177/2158244020967942

Ndubisi, N. O. (2006). Factors of online learning adoption: A comparative juxtaposition of the theory of planned behavior and the technology acceptance model. International Journal on E-Learning, 5(4), 571-591. https://www.learntechlib.org/primary/p/6173/

Nikolopoulos, F. & Likothanassis, S. (2018). A Complete Evaluation of the TAM3 Model for Cloud Computing Technology Acceptance. In H. Panetto. C. Debruyne. H. Proper. C. Ardagna. D. Roman. R., & Meersman. (eds), On the Move to Meaningful Internet Systems. OTM 2018 Conferences. Lecture Notes in Computer Science, 11230. Springer, Cham. https://doi.org/10.1007/978-3-030-02671-4_17

Nisson, C. & Earl, A. (2020). The Theories of Reasoned Action and Planned Behavior. In K. Sweeny. M. L. Robbins., & L. M. Cohen (eds). The Wiley Encyclopedia of Health Psychology. https://doi.org/10.1002/9781119057840.ch129

Pal, D. & Vanijja, V. (2020). Perceived usability evaluation of Microsoft Teams as an online learning platform during COVID-19 using system usability scale and technology acceptance model in India. Children and youth services review, 119, 105535. https://doi.org/10.1016/j.childyouth.2020.105535

Park, S. Y. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students’ Behavioral Intention to Use e-Learning. Educational Technology & Society, 12(3), 150-162. https://www.jstor.org/stable/10.2307/jeductechsoci.12.3.150

Pituch, K. A. & Lee, Y.-K. (2006). The influence of system characteristics on e-learning use. Computers Education, 47, 222-244. https://doi.org/10.1016/j.compedu.2004.10.007

Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732. https://doi.org/10.1016/j.compedu.2019.103732

Samperio, V. & Barragán, J. (2017). Análisis de la percepción de docentes, usuarios de una plataforma educativa a través de los modelos TPACK, SAMR y TAM3 en una institución de educación superior. https://www.redalyc.org/jatsRepo/688/68855405008/index.html

Sargolzaei, S. (2017). Developing technology acceptance models for decision making in urban management. MOJ Civil Engineering, 2(6), 180-182. https://doi.org/10.15406/mojce.2017.02.00050

Sarıtaş, M., Yıldız, E., & Şenel, H. (2015). Examining the Attitudes and Intention to Use Synchronous Distance Learning Technology among Pre-service Teachers: A Qualitative Perspective of Technology Acceptance Model. American Journal of Educational Research, 3(10A),17-25. http://dx.doi.org/10.12691/education-3-10A-3

Selim, H. M. (2003). An empirical investigation of student acceptance of course web sites. Computers & Education, 40, 343-360. https://doi.org/10.1016/S0360-1315(02)00142-2

Shih, H.-P. (2004) An Empirical Study on Predicting User Acceptance of E-Shopping on the Web. Information and Management, 41, 351-368. http://dx.doi.org/10.1016/S0378-7206(03)00079-X

Taherdoost, H. (2018). Development of an adoption model to assess user acceptance of e-service technology: E-Service Technology Acceptance Model. Behaviour & Information Technology, 37(2), 173-197. https://doi.org/10.1080/0144929X.2018.1427793

Thong, J. Y. L., Hong, W., & Tam, K. (2002). Understanding user acceptance of digital libraries: What are the roles of interface characteristics, organizational context, and individual differences? International Journal of Human-Computer Studies, 57, 215-242. https://doi.org/10.1016/S1071-5819(02)91024-4

Turel, O., Serenko, A. and Bontis, N. (2007) User Acceptance of Wireless Short Messaging Services: Deconstructing Perceived Value. Information & Management, 44, 63-73. http://dx.doi.org/10.1016/j.im.2006.10.005

Venkatesh, V. (2000), Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11, 342-365. https://doi.org/10.1287/isre.11.4.342.11872

Venkatesh, V. & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39 (2), 273-315. http://dx.doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V. & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27, 451-481. https://doi.org/10.1111/j.1540-5915.1996.tb01822.x

Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46 (2), 186-204. http://dx.doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V. & Morris, M. G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and user behavior. Management Information Systems Quarterly, 24(1). 115-139. https://doi.org/10.2307/3250981

Weerasinghe, S. and Hindagolla, M.C.B. (2018), Technology acceptance model and social network sites (SNS): a selected review of literature. Global Knowledge, Memory and Communication, 67(3), 142-153. https://doi.org/10.1108/GKMC-09-2017-0079

Wu, F. & Yen, Y. (2014). Factors Influencing the Use of Mobile Financial Services: Evidence from Taiwan. Modern Economy, 5(13), 1221-1228. https://doi.org/10.4236/me.2014.513113

Ye, C. & Potter, R. (2011) The Role of Habit in Post-Adoption Switching of Personal Information Technologies: An Empirical Investigation. Communications of the Association for Information Systems, 28, 585-610. https://doi.org/10.17705/1CAIS.02835

Downloads

Publicado

2022-03-18

Como Citar

Silvestre, E., Montes Miranda, A., & Figueroa Gutiérrez, V. (2022). Validação de um modelo de aceitação de tecnologia TAM em estudantes universitários dominicanos. Educacion, 31(60), 113–136. https://doi.org/10.18800/educacion.202201.005

Edição

Seção

Monográfico