Semiotic Representations in School Algebra: A Systematic Review
DOI:
https://doi.org/10.18800/educacion.202402.A004Keywords:
Semiotic representations, Semiotic register, AlgebraAbstract
The objective of this study was to assess the current state of research on the use of various semiotic representations in the teaching and learning of school algebra from 2013 to 2022. Given their nature, students can access mathematical objects only through representations that involve signs and symbols. The predominantly symbolic nature of modern mathematics raises important questions about how students acquire and internalize mathematical knowledge. To evaluate the use of semiotic representations in school algebra among secondary education students, a systematic review was conducted following the PRISMA guidelines. This review involved analyzing the themes and theoretical frameworks presented in the selected studies. The findings highlighted a diversity of representations and theoretical principles, yet also revealed a scarcity of research during the 2013-2022 period, a limited number of studies from Latin America, notable variety in the semiotic registers used in study designs, and a strong preference for sociocultural theories.
Downloads
References
Adell, J. S., Llopis, M. A. N., Esteve, M. F. M., & Valdeolivas, N. M. G. (2019). El debate sobre el pensamiento computacional en educación. RIED. Revista Iberoamericana de Educación a Distancia, 22(1), 171-186.
https://doi.org/10.5944/ried.22.1.22303
Alexander, P. (2020). Methodological Guidance Paper: The Art and Science of Quality Systematic Reviews. Review of Educational Research 90(1), 6-23. https://doi.org/10.3102/0034654319854352
Alonso, F., Barbero, C., Fuentes, I., Azcárate, A., Dozagarat, J., Gutiérrez, S., et al. (1993). Ideas y Actividades para enseñar álgebra. Síntesis.
Antonini, S., & Lisarelli, G. (2021). Designing Tasks for Introducing Functions and Graphs within Dynamic Interactive Environments. Mathematics, 9(5), 572. https://doi.org/10.3390/math9050572
Bagossi, S., Swidan, O., & Arzarello, F. (2022). Timeline tool for analyzing the relationship between students-teachers-artifacts interactions and meaning-making. Journal on Mathematics Education, 13(2), 357-382. http://doi.org/10.22342/jme.v13i2.pp357-382
Campo-Meneses, K. G., Font, V., García-García, J., & Sánchez, A. (2021). Mathematical Connections Activated in High School Students’ Practice Solving Tasks on the Exponential and Logarithmic Functions. Eurasia Journal of Mathematics, Science and Technology Education, 17(9).
https://doi.org/10.29333/ejmste/11126
Duval, R. (2004). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales. Grupo de Educación Matemática.
Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de la Real Sociedad Matemática Española, 9(1), 143-168.
Erbilgin, E., & Gningue, S.M. (2023). Using the onto-semiotic approach to ana-lyze novice algebra learners’ meaning-making processes with different representations. Educational Studies in Mathematics, 114(2), 337-357. https://doi.org/10.1007/s10649-023-10247-8
Ferretti, F. (2019). The Manipulation of Algebraic Expressions: Deepening of a Widespread Difficulties and New Characterizations. International Electronic Journal of Mathematics Education, 15(1). https://doi.org/10.29333/iejme/5884
Florio, E. (2020). A Synergy between History of Mathematics and Mathematics Education: A Possible Path from Geometry to Symbolic Algebra. Educa-tional Sciences, 10(9), 243. https://doi.org/10.3390/educsci10090243
Hitt, F., & González-Martín, A.S. (2015). Covariation between variables in a modelling process: The ACODESA (collaborative learning, scientific de-bate and self-reflection) method. Educational Studies in Mathematics, 88, 201-219. https://doi.org/10.1007/s10649-014-9578-7
Kieran, C. (2007). Developing algebraic reasoning: The role of sequenced tasks and teacher question from the primary to the early secondary school levels. Quadrante, 16(1), 5-26. https://doi.org/10.48489/quadrante.22814
Ministerio de Educación de Chile. (2015a). Bases Curriculares de Primero Básico a Sexto Básico. MINEDUC.
Ministerio de Educación de Chile. (2015b). Bases Curriculares de Séptimo Básico a Segundo Medio. MINEDUC.
Ministerio de Educación de Chile. (2016). Programa de Estudio Matemática 1° Medio. MINEDUC.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097
Morey, B. (2020). Abordagem semiótica na teoria da objetivação. En S. T. Gobara & L. Radford (Eds.), Teoria da objetivação: Fundamentos e Aplicações para o Ensino e Aprendizagem de Ciências e Matemática (pp.43-68). Livraria da Física.
Monzon, L. W., & Gravina, M. A. (2013). Uma Introdução às Funções de Variável Complexa no Ensino Médio: Uma possibilidade através do uso de animações interativas. Bolema: Boletim de Educação Matemática, 27(46), 645-661. https://doi.org/10.1590/S0103-636X2013000300020
Mula-Falcón, J., & Caballero, K. (2022). Neoliberalism and its impact on academics: A qualitative review. Research in Post-Compulsory Education, 27(3), 373-390. https://doi.org/10.1080/13596748.2022.2076053
Mutodi, P., & Mosimege, M. (2021). Learning mathematical symbolization: Conceptual challenges and instructional strategies in secondary schools. Bolema: Boletim de Educação Matemática, 35(70), 1180-1199. https://doi.org/10.1590/1980-4415v35n70a29
Ninow, V., & Kaiber, C. (2019). Affine function: An analysis from the perspective of the epistemic and cognitive suitability of the onto-semiotic approach. Acta Scientiae. Revista de Ensino de Ciências e Matemática, 21(6), 130-149. https://doi.org/10.17648/acta.scientiae.5506
Osorio, V., Yáñez, P., Salazar, O., & Castro, J. (2021). Conflictos semióticos y niveles de algebrización en aspirantes a Ingeniería. Educación Matemática, 33(3), 263-289. https://doi.org/10.24844/em3303.10
Presmeg, N., Radford, L., Roth, W.-M., & Kadunz, G. (2016). Semiotics in Mathematics Education. Springer. https://doi.org/10.1007/978-3-319-31370-2
Presmeg, N., Radford, L., Roth, W.-M., & Kadunz, G. (Eds.). (2018). Signs of signification. Semiotics in Mathematics Education Research. Springer.
https://doi.org/10.1007/978-3-319-70287-2
Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. En L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in Mathematics Education: Epistemology, history, classroom, and culture (pp. 215-234). Sense Publishers.
Rojas, P. J. (2014). Mathematical objects, semiotic representations and senses. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 33(1), 151-165. https://doi.org/10.5565/rev/ensciencias.1479
Wu, H. (2001). How to prepare students for algebra. American Educator, 25(2), 10-17.




